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Abstract

This paper proposes, focusing on random forests, the isiorgdst used statistical method for classification and regjmn problems
introduced by Leo Breiman in 2001, to investigate two clealsissues of variable selection. The first one is to find irtgodr
variables for interpretation and the second one is morec#ge and try to design a good prediction model. The maintgbution
is twofold: to provide some insights about the behavior ef¥ariable importance index based on random forests ancdfmpe
a strategy involving a ranking of explanatory variablemgghe random forests score of importance and a stepwisadiage
variable introduction strategy.
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1. Introduction recall the statistical framework by considering a learngeg

. o o ) . L = {(X1, Y1),...,(%Xn, Yn)} made ofn i.i.d. observations of a
This paper is primarily interested in random forests foi-var 5,q0m vectorX, Y). VectorX = (X%, ..., XP) contains predic-

able selection. Mainly methodological the main contribati 4,5 or explanatory variables, sa e RP, andY € Y where

IS t‘_NOfOI‘_j: to prowde_ some insights about the behavior @ th y s ejther a class label or a numerical response. For classifi-
variable importance index based on random forests and to U$&jon problems, a classifieis a mapping : RP — Y while

it to propose a tvx_/o—steps_ algorithm fpr twq classical p_rntﬂe for regression problems, we suppose that S(X) + & with

of variable selection starting from variable importanagiag. E[£/X] = 0 ands the so-called regression function. For more
The first problemis to find important variables for interjtain background on statistical learning, see e.g. Hastie e2601).
and the second one is more restrictive and try to design a go§andom forests is a model building strategy providing estim
prediction model. The general strategy involves a ranking Otqs of either the Bayes classifier, which is the mapping min-
explanatory variables using the random forests score obimp jmizing the classification errdP(Y # t(X)), or the regression
tance and a stepwise ascending variable introductioregyat  ,nction.

Let us mention that we propose an heuristic strategy whiesdo e principle of random forests is to combine many binary

not depend on specific model hypotheses but based on daigacision trees built using several bootstrap samples apmin
driven thresholds to take decisions. _ from the learning samplé and choosing randomly at each
Before entering into details, let us shortly present in thengge 5 subset of explanatory variablesMore precisely, with
Se_quel of this introduction the th.ree main topics addrem;(_ed respect to the well-known CART model building strategy (see
this paper: random forests, variable importance and vi@riab greiman et al. (1984)) performing a growing step followedsby
selection. pruning one, two dferences can be noted. First, at each node,
a given number (denoted bwitry) of input variables are ran-
Random forests _ domly chosen and the best split is calculated only withis thi
~ Random forests (RF henceforth) is a popular and very efgpset. Second, no pruning step is performed so all thedfees
ficient algorithm, based on model aggregation ideas, fon botinea forest are maximal trees.
classification and regression problems, introduced byriBaai In addition to CART, bagging, another well-known related
(2001). It belongs to the family of ensemble methods, appeakee_pased method, is to be mentioned (see Breiman (1996)).
ing in machine learning at the end of nineties (see for examp,qeed random forests witmtry = p reduce simply to un-
ple Dietterich (1999) and Dietterich (2000)). Let us briefly pruned bagging. The associated Rackages are respectively
randomForest (intensively used in the sequel of the paper),
*Corresponding author. Tel.: (33) 1 69 15 57 44; Fax: (33) 159234, rpart andipred for CART and bagging respectively (cited
Email addressesRobin.Genuer@math.u-psud. fr (Robin Genuer),
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malot@unice.fr (Christine Tuleau-Malot) 1see httpywww.r-project.org
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here for the sake of completeness). for classification problems when this index is based on the

RF algorithm becomes more and more popular and appeasverage loss of entropy criterion, like the Gini entropydise
to be very powerful in a lot of dierent applications (see for ex- for growing classification trees. Let us cite two remarkse Th
ample Diaz-Uriarte et al. (2006) for gene expression dadéd-a first one is that the RF Gini importance is not fair in favor
ysis) even if it is not clearly elucidated from a mathemadtica of predictor variables with many categories (see Strobl et
point of view (see the recent paper by Biau et al. (2008) aboual. (2007)) while the RF permutation importance is a more
purely random forests and Biihimann et al. (2002) about bageliable indicator. So we restrict our attention to thid lase.
ging). Nevertheless, Breiman (2001) sketches an exptamati The second one is that it seems that permutation importance
of the good performance of random forests related to the goodverestimates the variable importance of highly corrélate
quality of each tree (at least from the bias point of view) to-variables and a conditional variant is proposed by Strobl et
gether with the small correlation among the trees of thestpre al. (2008). Let us mention that, in this paper, we do not
where the correlation between trees is defined as the oydinadiagnose such a critical phenomenon for variable selection
correlation of predictions on so-called out-of-bag (OOBdee  The recent paper by Archer et al. (2008), focusing more
forth) samples. The OOB sample which is the set of observaspecifically on the VI topic is also of interest. We address tw
tions which are not used for building the current tree, isduse crucial questions about the variable importance behaviwe:
to estimate the prediction error and then to evaluate vigriab importance of a group of variables and its behavior in presen
importance. of highly correlated variables. This is the first goal of thégper.

The R package about random forests is based on the seminal
contribution of Breiman et al. (2005) and is described iniLia ~ Variable selection
etal. (2002). In this paper, we focus on trendomForest pro- Many variable selection procedures are based on the cooper-
cedure. The two main parameters ariey, the number of input  ation of variable importance for ranking and model estiorati
variables randomly chosen at each split amigte the number to generate, evaluate and compare a family of models. Feollow
of trees in the forest. Some details about numerical and-sensng Kohavi et al. (1997) and Guyon et al. (2003)), it is usual
tivity experiments can be found in Genuer et al. (2008)). to distinguish three types of variable selection methodi: ”

In addition, let us mention we will concentrate on theter” for which the score of variable importance does not de-
prediction performance of RF focusing on out-of-bag (OOB)pend on a given model design method; "wrapper” which in-
error (see Breiman (2001)). We use this kind of predictionclude the prediction performance in the score calculatom
error estimate for three reasons: the main is that we arelynainfinally "embedded” which intricate more closely variabléese
interested in comparing models instead of assessing modelson and model estimation.
the second is that it gives fair estimation compared to thialus  Let us briefly mention some of them, in the classification
alternative test set error even if it is considered as &Iitit  case, which are potentially competing tools, of course the
optimistic and the last one, is that it is a default outputief t wrapper methods based on VI coming from CART, and from
randomForest procedure, so it is used by almost all users.  random forests. Then some examples of embedded methods:

Poggi et al. (2006) propose a method based on CART scores

Variableimportance and using stepwise ascending procedure with eliminatiem; st

The quantification of the variable importance (VI hencédiprt Guyon et al. (2002) and Rakotomanonjy (2003), propose meth-
is an important issue in many applied problems complementeds based on SVM scores and using descending elimination.
ing variable selection by interpretation issues. In thedinre- More recently, Ben Ishak et al. (2008) propose a stepwise
gression framework it is examined for example by Grompingvariant while Park et al. (2007) propose a "LARS” type
(2007), making a distinction between various variance deco strategy (see Efron et al. (2004)) for classification proide
position based indicators: "dispersion importance”, 8lewn-  Finally let us mention a mixed approach, see Fan et al. (2008)
portance” or "theoretical importance” quantifying explad in regression, ascending in order to avoid to select redunda
variance or changes in the response for a given change of eachriables or, for the case << p, descending first using a
regressor. Various ways to define and compute using R sudtreening procedure to reach a classical situation p, and
indicators are available (see Gromping (2006)). then ascending using LASSO or SCAD, see Fan et al. (2001).

In the random forests framework, the most widely used scor&Ve propose in this paper, a two-steps procedure, the second
of importance of a given variable is the increasing in mean obne depends on the objective (interpretation or predittion
the error of a tree (MSE for regression and misclassificatiomwhile the first one is common. The key point is that it is
rate for classification) in the forest when the observedeslu entirely based on random forests, so fully non parametrit an
of this variable are randomly permuted in the OOB sampleshen free from the usual linar framework.

(let us mention that it could be slightly negative). Oftencls

random forests VI is called permutation importance indices A typical situation

opposition to total decrease of node impurity measureaadyjre Let us close this section by introducing a typical situation
introduced in the seminal book about CART by Breiman et alwhich can be useful to capture the main ideas of this paper.
(1984). Let us consider a high dimensional (<< p) classification

Even if only little investigation is available about RF problem for which the predictor variables are associated to
variable importance, some interesting facts are collectegixel in an image or a 3D location in the brain like in fMRI
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brain activity classification problems. In such situation$ e for 70% of data,X' ~ yN(i,1) fori = 1,2,3 andX ~
course it is clear that there is a lot of useless variables and y~N/(0,1) fori = 4,5, 6.

that there exist a lot a highly correlated groups of predgto
corresponding to brain regions. We emphasize that twandisti
objectives about variable selection can be identified:qTyd
important variables highly related to the response vagidd
interpretation purpose; (2) to find a small number of vagabl
sufficient for a good prediction of the response variable. KeyAfter simulation, the obtained variables are finally stadda
tools combine variable importance thresholding, variableézed.

ranking and stepwise introduction of variables. Turningiia Let us consider the toys data and compute the variable im-
our typical example, an example of the first kind of problem isportance.

the determination of entire regions in the brain or a fullger K ion th able i .
in an image while an instance of the second one is to exhibit Remark 2.1. Let us mention that variable importance is com-

suficient subset of the most discriminant variables within theIOUted condlt!onally/_ o a given re_gl|;at|on even for. S'Q‘E‘“’t
previously highlighted groups datasets. This choice which is criticizable if the objesiiy to

reach a good estimation of an underlying constant, is céasts
Outline with the idea of staying as close as possible to the expetahen
situation dealing with a given dataset. In addition, the tuem

The paper is organized as follows. After this introduction, ; :
Section 2 proposes to study the behavior of the RF variable imPf permutations of the observed values in the COB sampld, use

portance, especially in the presence of groups of highlyesor to compute the score of importance is set to the default value
lated explanatory variables. Section 3 investigates tloectas- I

sical issues of variable selection using the permutaticeeda 2.1. Sensitivity to n and p

random forests score of importance. Section 4 examines someFigure 1 illustrates the behavior of variable importance fo
experimental results, by focusing mainly on high dimenaion several values ofi and p. Parametersitreeandmtry are set
classification datasets and, in order to illustrate the ggne to their default valuesnfree = 500 andmtry = +/p for the
value of the strategy it is applied to a standarc-¢& p) regres- ~ classification case). Boxplots are based on 50 runs of thé-RF a
sion dataset. Finally Section 5 opens discussion aboutefutu gorithm and for visibility, we plot the variable importanaely

e for the 30% left,X' ~ yN(0,1) fori = 1,2,3 andX' ~
yN(i -3,1)fori =4,5,6.

e the other variables are nois¢, ~ N(0,1) fori = 7,..., p.

work. for a few variables.
. 3 0.2 %‘ n=500 0:? E n=500 O:j n=500]|

2. Variableimportance 8 0ue 6 | é‘ p=200, é p=500)

The quantification of the variable importance (abbreviated % oy % * zzf . sz ?
VI) is a crucial issue not only for ranking the variables brefa £ oos = | oo B oozt °
stepwise estimation model but also to interpret data anémnd SU T e ITTIE Melaiiinn
stand underlying phenomenons in many applied problems. variable

In this section, we examine the RF variable importance be- z : B B
havior according to three fierent issues. The first one deals 0 Biéoo 008/ § 32333 006 32233
with the sensitivity to the sample sineand the number of vari- § 019 ood| § oosf §
ablesp. The second examines the sensitivity to method pa- £ | = I ooal B
rametersntry andntree The third one deals with the variable B _= Foe e 0% T
importance in presence of groups thlgh|y correlated \wem 3 zva?iagles 6 12345678910 12 14 16 12345678910 12 14 16

As a result, a good choice of parameters of RF can help to
better discriminate between important and useless vasabh
addition, it can increase the stability of VI scores. Figure 1: Variable importance sensitivity toandp (toys data)

To illustrate this discussion, let us examine a simulated
dataset for the case<< p, introduced by Weston et al. (2003)  On each row, the first plot is the reference one for which we
and called “toys data” in the sequel. It is an equiprobablte tw observe a convenient picture of the relative importancénef t
class problemY € {-1, 1}, with 6 true variables, the others be- initial variables. Then, whep increases tremendously, we try
ing some noise. This example is interesting since it consru to check if: (1) the situation between the two groups remains
two near independent groups of 3 significant variables (ligh readable; (2) the situation within each group is stableti8)
moderately and weakly correlated with respoi¥@nd an ad- importance of the additional dummy variables is close to 0.
ditional group of noise variables, uncorrelated with A for- The situatiom = 500 (graphs at the top of the figure) corre-
ward reference to the plots on the left side of Figure 1 allowsponds to an “easy” case, where a lot of data are available and
to see the variable importance picture and to note that the inm = 100 (graphs at the bottom) to a harder one. For each value
portance of the variables 1 to 3 is much higher than the one aff n, three values op are considered: ,200 and 500. When
variables 4 to 6. More precisely, the model is defined througtp = 6 only the 6 true variables are present. Then two very
the conditional distribution of th¥' for Y =y: difficult situations are considere@:= 200 with a lot of noisy



variables ang = 500 is even harder. Graphs are truncated after The efect of taking a larger value faontryis obvious. Indeed

the 16th variable for readability (importance of noisy ehtes  the magnitude of VI is more than doubled starting froviry =

left are of the same order of magnitude as the last plotted). 14 tomtry = 100, and it again increases whititry = 200. The
Let us comment on graphs on the first raw< 500). When effect ofntreeis less visible, but takingtree = 2000 leads to

p = 6 we obtain concentrated boxplots and the order is cleabetter stability. What is interesting in the bottom rightyh

variables 2 and 6 having nearly the same importance. Wheis that we get the same order for all true variables in eveny ru

p increases, the order of magnitude of importance decrease$the procedure. In top left situation the mean OOB errce rat

(note that the y-axis scale isftérent forp = 6 and forp # 6).  is about 5% and in the bottom right one it is 3%. The gain in

The order within the two groups of variables{13 and 4- 6)  error may not be considered as large, but what we get in VI is

remains the same, while the overall order is modified (végiab interesting.

6 is now less important than variable 2). In addition, vagab

importance is more unstable for huge valuepoBut whatis 2 3 sensitivity to highly correlated predictors

remarkable is that all noisy variables have a zero VI. So ane ¢ ) ) )
easily recover variables of interest. Let us now address an important issue: how does variable

In the second rowr( = 100), we note a greater instability importance behave in presence of several highlly correlated _
since the number of observations is only moderate, but ttie va ables? We take as basic framework the previous context with
able ranking remains quite the same. Whadfeds is that in N = 100, p = 200, ntree = 2000 andmtry = 100. Then we
the dificult situations p = 200 500) importance of some noisy add to the_ dataset highly c_orrelated r(_epllcatlons of sontbef
variables increases, and for example variable 4 cannotge hi 6 tr.ue variables. The replicates are inserted between tige tr
lighted from noise (even variable 5 in the bottom right giaph Variables and the useless ones.

This is due to the decreasing behavior of VI wihgrowing,
coming from the fact that whep = 500 the algorithm ran-
domly choose only 22 variables at each split (with they
default value). The probability of choosing one of the 6 true oos . oo .
variables is really small and the less a variable is choden, t S P - ®
less it can be considered as important. We will see the benefit R R R RS et e o e
of increasingntry in the next paragraph. variable

In addition, let us remark that the variability of VI is larfm
true variables with respect to useless ones. This remarkean
used to build some kind of test for VI (see Strobl et al. (2007)
but of course ranking is better suited for variable selectio

We now study how this VI index behaves when changing val- R B N N ISR
ues of the main method parameters. 12345678910 12 14 16 18 20 14 710131612272

variable

0.15

+HH

01f £ 0.1

importance
-

0.15 0.15

0.1 0.1

importance

f :
s L %é 0.05 d . \

s e

2.2. Sensitivity to mtry and ntree
. . Figure 3: Variable importance of a group of correlated \#es (augmented
The choice ofmtry and ntree can be important for the VI  toys data)

computation. Let us fix = 100 andp = 200. In Figure 2 we

plot variable importance obtained using three valuesnat The first graph of Figure 3 is the reference one: the situa-
(14 the default, 100 and 200) and two valuesiote (500 the  jon js the same as previously. Then for the three other cases
default, and 2000). we simulate 1, 10 and 20 variables with a correlation &f O
with variable 3 (the most important one). These replicaion
* wee-soo| nweessoo| 07} b nweessan are plotted between the two vertical lines.
gos el o The magnitude of importance of the grou®13 is steadily
g™ ot e , decreasing when adding more replications of variable 3.h@n t
E oo » R i other hand, the importance of the groub4 is unchanged.
0123:56;;;1’04’1’217;3 0123:56;;;;D+];+1;+;3 0123;55;;;;;;;;12 Notice that the importance is not divided by the number Om-rep

variable

cations. Indeed in our example, even with 20 replicatiors th
maximum importance of the group containing variable 3 (that

. 0012 s 001: . miyei00 001': | ez is variable 12, 3 and all replications of variable 3) is only three
g " uls o times lower than the initial importance of variable 3. Fipal
_gm " o . oos : - note that even if some variables in this group have low impor-
S ] S ] tance, they cannot be confused with noise.
13BTIM U4l 123SETEMDIZUI  123456TEMOI2IA Let us briefly comment on similar experiments (see Figure

4) but perturbing the basic situation not only by introdacin
highly correlated versions of the third variable but alsdodf
Figure 2: Variable importance sensitivity atry andntree(toys data) sixth, leading to replicate the most important of each group
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Figure 4: Variable importance of two groups of correlatedaldes (augmented

toys data) Figure 5: Variable importance for Prostate data (usitige= 2000 andntry =
p/3, on the right and using default values on the left)

Again, the first graph is the reference one. Then we simu-
late 1, 5 and 10 variables of correlation abo® @ith variable 3. Variable selection
3 and the same with variable 6. Replications of variable 3 are
plotted between the first vertical line and the dashed lind, a  We distinguish two variable selection objectives:
replications of variable 6 between the dashed line and tbe se
ond vertical line.

The magnitude of importance of each group2B and
4,5,6 respectively) is steadily decreasing when adding more
replications. The relative importance between the two gsasi
preserved. And the relative importance between the twoggrou The first is to magnify all the important variables, even with
of replications is of the same order than the one between thigigh redundancy, for interpretation purpose and the se@nd
two initial groups. to find a suficient parsimonious set of important variables for
prediction.

As mentioned at the end of the introduction, we are guided
in this paper by a typical situation matching two charastears.

To end this section, we illustrate the behavior of variatslei  The first one is high dimensionality, or at least when the nemb
portance on a high dimensional real dataset: the microdatsy of true variables is much less thanand the second one is the
called Prostate, for which = 102 andp = 6033 (see Singh et presence of groups of highly correlated predictors. They ar
al. (2002) for a detailed presentation). The global pictsitee  also specifically addressed in two earlier works by Diaatte
following: two hugely important variables, about twentydro et al. (2006) and Ben Ishak et al. (2008). Let us briefly recall
erately important variables and the others of small impm#a these contributions.

So, more precisely Figure 5 compares VI obtained for param- Diaz-Uriarte, Alvarez de Andrés propose a strategy based
eters set to their default values (graphs of the left coluamt)  recursive elimination of variables. More precisely, thegtfi
those obtained fontree= 2000 andntry = p/3 (graphs of the compute RF variable importance. Then, at each step, thay eli
right column). Graphs are truncated after the 250th vagifdsl  inate the 20% of the variables having the smallest impoganc
readability (importance of noisy variables left are of then®  and build a new forest with the remaining variables. They fi-
order of magnitude as the last plotted). nally select the set of variables leading to the smallest @©B

Let us comment on Figure 5. For the two most importantror rate. The proportion of variables to eliminate is an tasoy
variables (first row), the magnitude of importance obtaiwéi parameter of their method and does not depend on the data.
ntree = 2000 andmtry = p/3 is much larger than to the one  Ben Ishak, Ghattas choose an ascendant strategy based on a
obtained with default values. In the second row, the in@@ds sequential introduction of variables. First, they commdme
magnitude is still noticeable from the third to the 9th masti SVM-based variable importance. Then, they build a sequence
portant variables and from the 10th to the 20th most impoértanof SVM models invoking at the beginning tkemost important
variables, VI is quite the same for the two parameter choicesvariables, by step of 1. Whenbecomes too large, the addi-

In the third row, we get VI closer to zero for the variablestwit tional variables are invoked by packets. They finally sefleet
ntree = 2000 andmtry = p/3 than with default values. In ad- set of variables leading to the model of smallest error rEle
dition, note that for the less important variables, boxplate  way to introduce variables is not data-driven since it isdike-
larger for default values, especially for unimportant aates  fore running the procedure. They also compare their pragedu
(from the 200th to the 250th). with a similar one using RF instead of SVM.

1. to find important variables highly related to the response
variable for interpretation purpose;

2. to find a small number of variablesfBaient to a good
prediction of the response variable.

2.4. Prostate data variable importance



3.1. Procedure

We propose the following two-steps procedure, the first one
is common while the second one depends on the objective:

Step 1. Preliminary elimination and ranking:

e Compute the RF scores of importance, cancel the
variables of small importance;

e Order themremaining variables in decreasing or-
der of importance.

Step 2. Variable selection:

e Forinterpretation construct the nested collection
of RF models involving the first variables, for
k = 1 tomand select the variables involved in the
model leading to the smallest OOB error;

e For prediction starting from the ordered vari-
ables retained for interpretation, construct an as-
cending sequence of RF models, by invoking and
testing the variables stepwise. The variables of
the last model are selected.

Of course, this is a sketch of procedure and more details are
needed to beftective. The next paragraph answer this point but
we emphasize that we propose an heuristic strategy which doe

not depend on specific model hypotheses but based on data-

driven thresholds to take decisions.

Remark 3.1. Since we want to treat in an unified way all the
situations, we will use for finding prediction variables gwame-
what crude strategy previously defined. Neverthelesstisgar
from the set of variables selected for interpretation (shyine
K), a better strategy could be to examine all, or at least géar
part, of the2K possible models and to select the variables of
the model minimizing the OOB error. But this strategy become
quickly unrealistic for high dimensional problems so wefgre
to experiment a strategy designed for small n and large K kvhic
is not conservative and even possibly leads to select feaver v
ables.

3.2. Starting example

To both illustrate and give more details about this procedur
we apply it on a simulated learning set of size= 100 from
the classification toys data model wiph= 200. The results are
summarized in Figure 6. The true variables (1 to 6) are respec
tively represented byX, A, o, x, <, [0). We compute, thanks to
the learning set, 50 forests witliree = 2000 andmtry = 100,

x
=
o,
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Figure 6: Variable selection procedures for interpretatimd prediction for
toys data

Variable elimination.

We keep this order in mind and plot the corresponding
standard deviations of VI. We use this graph to estimate
some threshold for importance, and we keep only the vari-
ables of importance exceeding this level. More precisely,
we select the threshold as the minimum prediction value
given by a CART model fitting this curve (see Figure 7).
This rule is, in general conservative and leads to retain
more variables than necessary in order to make a careful
choice later.

x10°

IS

w
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T

N
T

=)
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standard deviation of importance

. . . . . . . .
40 60 80 100 120 140 160 180 200
variables

o
N
S

standard deviation of importance

. . . . . . . . .
0 20 40 60 80 _100 120 140 160 180 200
variables

which are values of the main parameters pre\”OUSIy consitler Figure 7: Selecting the threshold for variable eliminatissing CART. Bold

as well adapted for VI calculations (see Section 2.2).

line refers to the CART estimation of the dotted line and thezontal dashed

Let us detail the main stages of the procedure together withine indicates the threshold (the bottom graph being a zobiieatop one)

the results obtained on toys data:

e Variable ranking.

First we rank the variables by sorting the VI (averaged
from the 50 runs) in descending order.

The result is drawn on the top left graph for the 50 most
important variables (the other noisy variables having an
importance very close to zero too). Note that true variables
are significantly more important than the noisy ones.

The standard deviations of VI can be found in the top right

graph. We can see that true variables standard deviation is
large compared to the noisy variables one, which is close

to zero. The threshold leads to retain 33 variables.

e Variable selection procedure for interpretation.
Then, we compute OOB error rates of random forests (us-

ing default parameters) of the nested models starting from



the one with only the most important variable, and ending humber of interpretation prediction

with the one involving all important variables kept previ- _replications set set
ously. The variables of the model leading to the smallest 1 37265 365
OOB error are selected. 5 32P10°611351% 365

3 3
Note that in the bottom left graph the error decreases 10 31#8°21565101320° | 36510

quickly and reaches its minimum when the first 4 true vari-

ables are included in the model. Then it remains constanttable 1: Variable selection procedure in presence of higbiyelated variables
We select the model containing 4 of the 6 true variables(augmented toys data) where the expressianeans that variableis a repli-
More precisely, we select the variables involved in the firstSaion of variablej

modelalmostleading to the smallest OOB error. The ac-

tual minimum is reached with 24 variables. important variable of each group). The situations of irgeage
The expected behavior is non-decreasing as soon as all tilee same as those considered to produce Figure 4.
"true” variables have been selected. It is theflidilt to Let us comment on Table 1, where the expressianeans

treat in a unified way nearly constant of or slightly increas-that variable is a replication of variablg.
ing. In fact, we propose to use an heuristic rule similar to Interpretation sets do not contain all variables of interes
the 1 SE rule of Breiman et al. (1984) used for selection inParticularly we hardly keep replications of variable 6. Tea-

the cost-complexity pruning procedure. son is that even before adding noisy variables to the model th
_ _ o error rate of nested models do increase (or remain constant)
e Variable selection procedure for prediction. when several highly correlated variables are added, treerbia

We perform a sequential variable introduction with test-mains the same while the variance increases. However the pre

ing: a variable is added only if the error gain exceeds dliction sets are satisfactory: we always highlight vaeshs
threshold. The idea is that the error decrease must be sig"d 6 and at most one correlated variable with each of them.

nificantly greater than the average variation obtained by Even if all the variables of interest do not appear in the in-
adding noisy variables. terpretation set, they always appear in the first positidreio

) i ranking according to importance. More precisely the 16 most
The bottom right graph shows the result of this step, thq, o tant variables in the case of 5 replications are: (3 207

final model for prediction purpose involves only variablesg 113 5 16 g3 126 168 1 15 146 93 4), and the 26 most impor-
3,6and 5. The threshold is set to the mean of the absoluig ¢ ariaples in the case of 10 replications are: (382 15°
values of the first order fiierentiated OOB errors between 65105 133 206 216 112 128 18 1 24 78 265 23 163 256 296

the model withpinterp = 4 variables (the first model after 176 106 4 %) Note that the order of the true variables (3 2 6 5
the one we selected for interpretation, see the bottom lef} 4) remains the same in all situations.

graph) and the one with all them = 33 variables :

1 Petim—1 _ _ 4. Experimental results
W |OOB(J+1)_OOB(J)|~
e In this section we experimentthe proposed procedure on four

high dimensional classification datasets and then finallgxve
It should be noted that if one wants to estimate the predictio amine the results on a standard regression problem tordhest
error, since ranking and selection are made on the same set e versatility of the procedure.
observations, of course an error evaluation on a test sefiiog u
a cross validation scheme should be preferred. Itis tak®n in 4 1 prostate data

account in the next section when our results are compared to . )
others. We apply the variable selection procedure on Prostate data

To evaluate fairly the dierent prediction errors, we prefer (for whichn =102 andp = 6033, see Singh et al. (2002)). The
here to simulate a test set of the same size than the learting s9"aPhs 0f Figure 8 are obtained as those of Figure 6, excapt th
The test error rate with all (200) variables is about 6% whileo" the RF procedure, we usgree = 2000,miry = p/3 and
the one with the 4 variables selected for interpretatiorpizua  10F the bottom left graph, we only plot the 100 most important
4.5%, a little bit smaller. The model with prediction variably ~ Variables for visibility. The procedure leads to the sanoéupe
6 and 5 reaches an error of 1%. Repeating the global procedufé§ Previously, except for the OOB rate along the nested raodel
10 times on the same data always gave the same interpretati&‘r}f"Ch is less regular. The first point is to notice that thenel

set of variables and the same prediction set, in the same orde"ation step leads to keep only 270 variables. The key point
is that the procedure selects 9 variables for interpretatiod

6 variables for prediction. The number of selected varimide
then very much smaller thgn= 6033.

Let us now apply the procedure on toys data with replicated In addition, to examine the variability of the interpretati
variables: a first group of variables highly correlated wishi-  and prediction sets the global procedure is repeated fivestim
able 3 and a second one replicated from variable 6 (the mosin the entire Prostate dataset. The five prediction setseaye v

7

3.3. Highly correlated variables



Dataset | interpretation| prediction| original
Colon 0.16 (35) 0.20 (8) 0.14
Leukemia 0(2) 0(1) 0.02
Lymphoma| 0.08 (77) 0.09(12) | 0.10
Prostate 0.085(33) | 0.075(8) | 0.07
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Table 2: Variable selection procedure for four high dimenal real datasets.

0.14 CV-error rate and into brackets the average number of selectriables

o
i
IS

oo dures are of the same order of magnitude as the original error
O%W 006 (but a little bit larger).

We compare these results with the results obtained by Ben
’ Ishak et al. (2008) (see tables 9 and 11 in Ben Ishak et al.
(2008)) which have compared their method with 5 competitors
(mentioned in the introduction) for classification probkon
these four datasets. Error rates are comparable. With the pr
diction procedure, as already noted in the introductoryamm
we always select fewer variables than their proceduresf®xc
close to each other. The number of prediction variablestftuct for their method GLMpath which select less than 3 variatdes f
ates between 6 and 10, and 5 variables appear in all sets. \moal| datasets).
the five interpretation sets, 2 are identical and made of B var |et us notice that the results for the dataset Prostaterdi
ables and the 3 other are made of 25 variables. The 9 variabl§®m Section 4.1 to Section 4.2. Thisfidirence can mainly be
of the smallest sets are present in all sets and the biggisst s@xplained by the use of 5-fold cross-validation in Sectich 4
(of size 25) have 23 variables in common. Indeed the fact that is very small i = 62) makes the method

So, although the sets of variables are not identical for eacuite unstable with respect to resampling.

run of the procedure, the most important variables are dredu

OOB error
OOB error

100 200 300 2 . 3. 4 5
nested models predictive models

Figure 8: Variable selection procedures for interpretaimd prediction for
Prostate data

in all of the sets. 4.3. Ozone data
_ _ _ o Before ending the paper, let us consider a standard regressi
4.2. Four high dimensional classification datasets dataset. Since it is far from matching the two main character

Let us consider the four well known high dimensional realistics which have guided the algorithm principle , it allous
datasets called Colom(= 62 p = 2000), see Alon et al. 1o check that it still work well. We apply the entire proceeur
(1999), Leukemiar( = 38, p = 3051), see Golub et al. (1999), to the easy to interpret ozone dataset (it can be retriewed fr
Lymphoma @ = 62 p = 4026), see Alizahed (2000) and the R packagelbench and detailed information can be found
Prostatetf = 102 p = 6033), see Singh et al. (2002). We in the corresponding description file). It consistsnot 366
apply the global variable selection procedure on theseviellr ~ observations of the daily maximum one-hour-average ozmne t
known high dimensional real datasets, and we want to get a@ether withp = 12 meteorologic explanatory variables. Let us
estimation of prediction error rates. Since these datasetef ~ first examine, in Figure 9 the VI obtained with RF procedure
small size and in order to be comparable with the previous reusingmtry = p/3 = 4 andntree= 2000.
sults, we use a 5-fold cross-validation to estimate ther eate. P
So we split the sample in 5 stratified parts, each part is sdcce =
sively used as a test set, and the remaining of the data isassed )
a learning set. Note that the set of variables selected varny f
one fold to another. So, we give in Table 2 the misclassificati
error rate, given by the 5-fold cross-validation, for inptesta-
tion and prediction sets of variables respectively. The num
ber into brackets is the average number of selected vasiable
In addition, one can find the original error which stands for |
the misclassification rate given by the 5-fold cross-vdiata .
achieved with random forests using all variables. Thisrdgo
calculated using the same partition in 5 parts and again &e us
ntree= 2000 andntry = p/3 for all datasets. Figure 9: Variable importance for ozone data

The number of interpretation variables is hugely smallenth
p, at most tens to be compared to thousands. The number of From the left to the right, the 12 explanatory variables are
prediction variables is very small (always smaller thandr&)  1-Month, 2-Day of month, 3-Day of week, 5-Pressure height,
the reduction can be very important with respectto thejpreer  6-Wind speed, 7-Humidity, 8-Temperature (Sandburg), 9-
tation set size. The errors for the two variable selectimter  Temperature (El Monte), 10-Inversion base height, 11 dtres
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importance

= = = = =

7‘ . é 9
variable



gradient, 12-Inversion base temperature, 13-Visibilitget us  only purely random forests, a simple version of random figres
mention that the variables are numbered exactly a3trench, is considered. Purely random forests have been introduged b
so the 4th variable is the response one. Cutler et al. (2001) for classification problems and thedisttl

Three very sensible groups of variables appear from the mosity Breiman (2004), but the results are somewhat preliminary
to the least important. First, the two temperatures (8 and 9More recently Biau et al. (2008) obtained the first well siate
the inversion base temperature (12) known to be the beseozomronsistency type results.
predictors, and the month (1), which is an important predict =~ From a practical perspective, surprisingly, this simpdiféad
since ozone concentration exhibits an heavy seasonal compessentially not data-driven strategy seems to perform, \aell
nent. A second group of clearly less important meteorologileast for prediction purpose (see Cutler et al. (2001)) afd,
cal variables: pressure height (5), humidity (7), invendiase course, can be handled theoretically in a easier way. Nexert
height (10), pressure gradient (11) and visibility (13)ndily  less, it should be interesting to check that the same condsis
three unimportant variables: day of month (2), day of wegk (3 hold for variable importance and variable selection tasks.
of course and more surprisingly wind speed (6). This ladt fac In addition, it could be interesting to examine some vasgant
is classical: wind enter in the model only when ozone pailuti  of random forests which, at the contrary, try to take into ac-
arises, otherwise wind and pollution are weakly correlé§se@ count more information. Let us give for example two ideas.
for example Cheze et al. (2003) highlighting this phenonmeno The first is about pruning: why pruning is not used for indi-
using partial estimators). vidual trees? Of course, from the computational point ofwie

Let us now examine the results of the selection proceduresthe answer is obvious and for prediction performance, avera
ing eliminate the negativeffects of individual overfitting. But
from the two other previously mentioned statistical protde
prediction and variable selection, it remains unclear. 3ée
ond remark is about the random feature selection step. The
most widely used version of RF selects randommiry input
variables according to the discrete uniform distributidiwvo
variants can be suggested: the first is to select randomsnput
10 according to a distribution coming from a preliminary ramdi
given by a pilot estimator; the second one is to adaptively up
date this distribution taking profit of the ranking based ba t
current forest which is then more and more accurate.

Finally, let us mention an application currently in progres
for fMRI brain activity classification (see Genuer et al. {20).
This is a typical situation where << p, with a lot of highly
correlated variables and where the two objectives have to be
addressed: find the most activated (whole) regions of thie bra
and build a predictive model involving only a few voxels oéth
Figure 10: Variable selection procedures for interpretatand prediction for  prain. An interesting aspect for us will be the feedback give
ozone data by specialists, needed to interpret the set of variablesdduy
our algorithm. In addition a lot of well known methods have
already been used for these data, so fair comparisons will be
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After the first elimination step, the 2 variables of negative
importance are canceled, as expected.

Therefore we keep 10 variables for interpretation step an§2sY:
then the model with 7 variables is then selected and it costai
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