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Abstract

We consider the problem of fitting linearly parameterized models, that arises

in many computer vision problems such as road scene analysis. Data ex-

tracted from images usually contain non-Gaussian noise and outliers, which

makes non-robust estimation methods ineffective. In this paper, we propose

an overview of a Lagrangian formulation of the Half-Quadratic approach

by, first, revisiting the derivation of the well-known Iterative Re-weighted

Least Squares (IRLS) robust estimation algorithm. Then, it is shown that

this formulation helps derive the so-called Modified Residuals Least Squares

(MRLS) algorithm. In this framework, moreover, standard theoretical results

from constrained optimization can be invoked to derive convergence proofs

easier. The interest of using the Lagrangian framework is also illustrated

by the extension to the problem of the robust estimation of sets of linearly

parameterized curves, and to the problem of robust fitting of linearly param-

eterized regions. To demonstrate the relevance of the proposed algorithms,

applications to lane markings tracking, road sign detection and recognition,

road shape fitting and road surface 3D reconstruction are presented.
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1. Introduction1

As in many scientific activities, a very common approach to image analysis2

involves collecting n observations (x1, y1), · · · , (xn, yn) that take their values3

in R
p×R, and then finding the model that best fits these data. The simplest4

regression model is the linear one:5

yi = X(xi)
tA + bi i = 1, ....n (1)

where A = (al)0≤l≤d is the vector of (unknown) model parameters, X(xi) =6

(fl(xi))0≤l≤d collects the values of some basis of real functions at locations7

xi and bi is the random measurement noise. X(xi) is also called design of8

the measurement (or experiment) [1]. We assume that the residuals, bi, are9

independent and identically distributed (i.i.d.), and centered. In real-world10

applications, residuals are most of the time non-Gaussian and thus some11

gross errors, called outliers may be observed.12

Outliers pose a threat on parametric regression under the linear gen-13

erative model (1) in the sense of ordinary Gaussian Maximum-Likelihood14

estimation. To alleviate their biasing effect on estimation, Huber proposed15

in [2] to use non-Gaussian Maximum-Likelihood type estimators, a.k.a. M-16

estimators. Bounding the resulting non-quadratic energy with parabolas17

leads to the so-called Iterative Re-weighted Least Squares (IRLS or IRWLS)18

or to Modified Residuals Least Squares (MRLS), depending on the analytic19

form of the parabola. Unfortunately, although the theory of robust estima-20

tion was already known in statistics as early as the mid 80s, it did not cross21

the barrier of communities.22
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In image reconstruction, the work of the Geman brothers [3–5] for edge-23

preserving regularization was integrated and extended in [6, 7] under the24

name of Half-Quadratic regularization. The direct connection between M-25

estimation and Half-Quadratic theory was pointed out in [8]. More recently,26

Lange [9] proposed an interpretation of these algorithms as optimization27

transfer or bounded optimization algorithms, a particular class of Convex-28

Concave procedures [10] to which the Expectation Maximization (EM) algo-29

rithm also belongs. An interpretation of Half-Quadratic algorithms as EM30

algorithms was also proposed in [11].31

In this paper, we revisit a derivation of Half-Quadratic algorithms which32

is based on a Lagrangian formalism. The Lagrangian Half-Quadratic ap-33

proach was developed in a series of papers which are here summarized for a34

unified presentation. Our goal in this article is to show that the Lagrangian35

Half-quadratic approach offers two non-negligible advantages over existing36

derivations. First, it eases convergence proofs since we can invoke standard37

results from the theory of constrained optimization. This is illustrated by38

the derivation of the classical IRLS algorithm, as presented first in [16] and39

by the derivation of the less known MRLS algorithm, as first explain here.40

Second, it helps derive new algorithms, for e.g. simultaneous regression of41

multiple curves (first presented in [23] and detailed in [12, 13]) or for lin-42

early parameterized region fitting (first presented in [33] for road surface43

segmentation). Moreover, we show that the MRLS and IRLS algorithms can44

be used with advantages in many computer vision problems as illustrated45

with two non-obvious and original application examples in the context of46

road scene analysis: detection and recognition of traffic signs (previously47
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presented in [25]) and 3D stereo reconstruction of surfaces (first presented48

in [30] for the road surface case).49

The organization of the paper is as follows: in Section 2, the Lagrangian50

formulation is presented and is applied to the derivation of the IRLS and51

MRLS algorithms. We also present a family of potential functions, and a52

continuation heuristic which helps convergence to a satisfactory local mini-53

mum. Various applications, involving extensions of the proposed framework,54

in the field of road scene analysis are proposed in Section 3. We also address55

difficult problems, such as:56

• multiple marking lanes detection and tracking under adverse meteoro-57

logical conditions,58

• road sign detection and recognition,59

• road pavement detection in images,60

• 3D road shape reconstruction using stereovision.61

2. Robust Parameter Estimation62

As explained in [12, 13], the derivation of the robust estimator can be63

obtained using Lagrange’s formulation which leads to the same algorithms64

as those obtained by the Half-Quadratic and M-estimation approaches. As65

in these approaches, we focus on a symmetric probability density functions66

(pdf) of the residual, b in the form:67

p(b) ∝
1

s
e−

1

2
φ(( b

s
)2) (2)
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where ∝ denotes the equality up to a factor, and s is the scale of the noise.68

With the Maximum-Likelihood Estimation (MLE) method, the problem of69

estimating the linear model (1) under noise (2) is set as the minimization70

w.r.t. A of the error:71

eR(A) =
1

2

i=n
∑

i=1

φ((
yi − X t

iA

s
)2). (3)

To solve this problem, as in the Half-Quadratic approach [4, 7], φ(t)72

should fulfill the following hypotheses:73

• H0: φ is defined and continuous on [0, +∞[ as well as its first and74

second derivatives,75

• H1: φ′(t) > 0 (thus φ is increasing),76

• H2: φ′′(t) < 0 (thus φ is concave).77

Specifically for the derivation of the MRLS algorithm, a fourth hypothesis78

on φ(t) is required:79

• H3: φ′(t) ≤ 1 (φ′ is bounded).80

As stated in [2], the role of φ is to saturate the error in case of a large81

scaled residual |bi| = |yi−X t
iA|, and thus to lower the importance of outliers.82

The scale parameter, s, sets the residual value from which noisy data points83

have a good chance of being considered as outliers.84

The Lagrangian formulation consists in first rewriting the problem as a85

constrained optimization problem that is solved by the search for a saddle86

point of the associated Lagrange function. Then, the algorithm is obtained87

by alternated minimizations of the dual function. As we will see, for (3),88
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two algorithms can be derived: the first derived algorithm corresponds to the89

well-known algorithm named Iterative Re-weighted Least Squares (IRLS) see90

Section 2.1, and the second known as the somewhat less popular Modified91

Residuals Least Squares (MRLS) see Section 2.2.92

2.1. Iterative Re-weighted Least Square (IRLS)93

First, we rewrite the minimization of eR(A) as the maximization of −eR.94

This will allow us later to write −eR(A) as the extremum of a convex function95

rather than a concave one, since the negative of a concave function is convex.96

Second, we introduce the auxiliary variables wi = (
yi−Xt

i A

s
)2. These variables97

are needed to rewrite −eR(A) as the value achieved at the minimum of a98

constrained problem. This apparent complication is in fact valuable since it99

allows us to introduce a Lagrange function. Indeed using H1, −eR(A) can100

be seen as the value achieved by the minimization w.r.t. W = (wi)1≤i≤n of:101

EIRLS(A,W ) =
1

2

i=n
∑

i=1

−φ(wi),

subject to n constraints wi − (
yi−Xt

i A

s
)2 ≤ 0, for any A. This sub-problem is102

well-posed because it is a minimization of a convex function subject to linear103

constraints. Therefore using Kuhn and Tucker’s classical theorem [14], if a104

solution exists, the minimization of EIRLS(A,W ) w.r.t. W is equivalent to105

search from the unique saddle point of the Lagrangian:106

LIRLS(A,W, λi) =
1

2

i=n
∑

i=1

−φ(wi) + λi(wi − (
yi − X t

iA

s
)2),

where λi are Kuhn-Tucker multipliers (λi ≥ 0).107
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The derivatives of the Lagrange function LIRLS(A,W, λi) w.r.t. the auxil-108

iary variables W , the unknown variables A, and the Khun-Tucker multipliers109

λi are set to zero to obtain the IRLS algorithm:110

1. Initialize A0, and set k = 1,111

2. For all 1 ≤ i ≤ n, compute the auxiliary variables wk
i = (

yi−Xt
i Ak−1

s
)2

112

and the weights λk
i = φ′(wk

i ),113

3. Solve the linear system
∑i=n

i=1 λk
i XiX

t
iA

k =
∑i=n

i=1 λk
i Xiyi,114

4. If ‖Ak − Ak−1‖ > ǫ then increment k and go to 2, else AIRLS = Ak.115

As detailed in [13], this algorithm can be derived rigorously from the al-116

ternated minimization of the dual error associated to the Lagrange function117

LIRLS(A,W, λi). Moreover, it can be shown that such an algorithm always118

strictly decreases the dual function if the current point is not a stationary119

point (i.e. a point where the first derivatives are all zero) of the dual func-120

tion [15].121

2.2. Modified Residuals Least Squares122

The IRLS algorithm is into a multiplicative form, but there also exists an123

algorithm based on an additive Half-Quadratic development called Modified124

Residuals Least Squares (MRLS), which can be convenient for particular ap-125

plications as illustrated in Section 3.2. The Lagrangian formulation can also126

be used to derive the MRLS algorithm and to prove its convergence towards a127

local minimum. Again, we introduce auxiliary variables and rewrite eR(A) as128

the value achieve as the search for a saddle point of the associated Lagrange’s129

function. Then, the algorithm is obtained by alternated minimization of the130

dual function.131
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Let us introduce function f(b) = b2 − φ(b2) defined on [0, +∞[, and thus132

rewrite eR(A) as:133

eR(A) =
1

2

i=n
∑

i=1

(
yi − X t

iA

s
)2 − f(|

yi − X t
iA

s
|).

This will allow us to later write eR(A) as the value achieved at the mini-134

mum of a convex function for any A. First, we have f ′(b) = 2b(1 − φ′(b2))135

and thus f is increasing as required by H3. Moreover, we have f ′′(b) =136

2(1 − φ′(b2) − 2φ′′(b2)b2), and thus f ′′(b) ≥ 0 using H2 and H3. Second, we137

introduce the auxiliary variables ωi = |
yi−Xt

i A

s
|. These variables are needed to138

rewrite eR(A) as the value achieved at the minimum of a constrained problem.139

Indeed, using the fact that f is increasing, the second term
∑i=n

i=1 f(|
yi−Xt

i A

s
|)140

of eR(A) can be seen as the value achieved at the minimization with re-141

spect to Ω = (ωi)1≤i≤n of EMRLS(A, Ω) =
∑i=n

i=1 f(ωi), subject to n con-142

straints |
yi−Xt

i A

s
| − ωi ≤ 0. This last sub-problem is well-posed because it is143

a minimization of a convex function subject to linear constraints w.r.t. Ω.144

Therefore using the classical Kuhn and Tucker’s theorem [14], if a solution145

exists, the minimization of EMRLS(A, Ω) with respect to Ω is equivalent to146

the search of the unique saddle point of the Lagrangian of the sub-problem:147

LMRLS(A, Ω, λi) =
i=n
∑

i=1

f(ωi) + λi(|
yi − X t

iA

s
| − ωi)

More formally, we have proved for any A:148

i=n
∑

i=1

f(|
yi − X t

iA

s
|) = min

ωi

max
λi

LMRLS(A, Ω, λi). (4)

Using the saddle point property, we can change the order of variables ωi149

and λi in (4). LMRLS(A, Ω, λi) being convex with respect to Ω, it is equivalent150
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to search for a minimum of LMRLS(A, Ω, λi) with respect to Ω and to have151

its first derivatives zero. Thus, we deduce λi = f ′(ωi). Recalling that f ′ is152

increasing, this last equation can be used to substitute ωi in L:153

i=n
∑

i=1

f(|
yi − X t

iA

s
|) = max

λi

LMRLS(A, f ′−1
(λi), λi) (5)

Therefore, we deduce that the original problem is equivalent to the following154

minimization:155

min
A

eR(A) =
1

2
min
A,λi

i=n
∑

i=1

(
yi − X t

iA

s
)2 − LMRLS(A, f ′−1

(λi), λi)

The function E(A, λi) = 1
2

∑i=n

i=1 (
yi−Xt

i A

s
)2 − 1

2
LMRLS(A, f ′−1(λi), λi) is156

the dual error of the original problem. Notice that the dual error E is rather157

simple with respect to A, contrary to the original error eR. Indeed, the dual158

error can be rewritten as:159

E(A, λi) =
1

2

i=n
∑

i=1

(|
yi − X t

iA

s
| −

λi

2
)2 + ξ(λi)

with ξ(λi) = −
λ2

i

4
− f(f ′−1(λi)) + λif

′−1(λi)160

Taking its second derivatives, we deduce that E is convex with respect to161

A. E is also convex with respect to λi since f is convex and ∂2E

∂λ2

i

= 1
f ′′(f ′−1(λi))

≥162

0. However, when eR(b2) is not convex, E may not be convex with respect to163

both A and λi. In such a case, E(A, λi) does not have a unique minimum.164

An alternate minimization of the dual error E , with respect to A and165

each λi, involves the sign of yi − X t
iA, and leads to the modified residual166

iterative algorithm, already derived in the Half-Quadratic and M-estimators167

approaches:168
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1. Initialize A0, and set k = 1,169

2. For all 1 ≤ i ≤ n, compute the auxiliary variables ωsign,k
i =

yi−Xt
i Ak−1

s
170

and the weights λsign,k
i = ωsign,k

i (1 − φ′(ωsign,k
i

2
)),171

3. Solve the linear system
∑i=n

i=1 XiX
t
iA

k =
∑i=n

i=1 Xi(yi − sλsign,k
i ),172

4. If ‖Ak − Ak−1‖ > ǫ then increment k and go to 2, else AMRLS = Ak.173

In this algorithm we introduce the two notations ωsign,k
i = ωk

i sign(yi −174

X t
iA

k−1) and λsign,k
i = λk

i sign(yi − X t
iA

k−1), which are signed version of the175

auxiliary variables ωi and λi. Like in the previous section, it can be shown176

that this alternate minimization of E always strictly decreases the dual func-177

tion, if the current point is not already a stationary point [15]. Following the178

lines of [12], it can then be deduced that the proposed algorithm is globally179

convergent, i.e., it converges towards a local minimum of eR(A) for all initial180

A0’s which are not a maximum or a saddle point of eR(A).181

2.3. Non-Gaussian Noise Model182

We are interested in a parametric family of functions for noise modeling,183

in the form of (2) that allows a continuous transition between different kinds184

of useful probability distributions. We thus focus on a simple parametric185

probability density functions (pdf) of the form:186

Sα,s(b) ∝
1

s
e−

1

2
φSα (( b

s
)2) (6)

where the associated φ function is φSα
(t) = 1

α
((1 + t)α − 1). This is the187

so-called Smooth Exponential Family (SEF) introduced in [12, 16, 17] which188

is suitable for the IRLS and MRLS algorithms, since (for α < 1) it satisfies189

the four hypotheses H0, H1, H2 and H3.190
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Figure 1: SEF noise models, Sα,s for s = 1 and different values of α. Notice how tails are

getting heavier as α decreases.

The parameter α allows a continuous transition between well-known sta-191

tistical laws such as Gauss (α = 1), smooth Laplace (α = 1
2
) and Geman &192

McClure [18] (α = −1). These laws are shown on Figure 1. Note that, for193

α < 0, Sα,s can be always normalized on a bounded support, so it can still194

be considered as a pdf. In the smooth exponential family, when α is decreas-195

ing, the probability to observe large, not to say very large errors (outliers),196

increases.197

In the IRLS and MRLS algorithms, the weights λi are a function of φ′(t).198
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For the SEF, this function is simply φ′
Sα

(t) = (1 + t)α−1. Notice that while199

the pdf is not defined when α = 0, the corresponding φ′(t) does and that it200

corresponds in fact to the Cauchy distribution or Student’s t-distribution [17].201

It can be shown, see [12, 17], that the breakdown point of SEF estimators202

is increasing towards the maximum achievable value, that is 50%, as α ∈203

]0, 0.5] decreases. The maximum goes to 50% when α → 0.204

2.4. Graduated Non-Convexity (GNC)205

The function φ′(t), used in the IRLS and MRLS algorithms, becomes206

more sharply peaked and heavily tailed as α decreases. As a consequence,207

the lower the α, the lower the effect of outliers on the result. Therefore,208

the algorithm produces a more robust fitting. However, when α decreases,209

the error function eR(A) becomes less and less smooth. If α = 1, the cost210

function is a paraboloid and thus there exists a unique global minimum. For211

α between 1 and 0.5, the cost function is convex w.r.t. A and thus there still212

exists a unique global minimum. By decreasing α to values lower than 1
2
,213

local minima appear. This is illustrated in Figure 2 where the error function214

eR(A) is shown for four decreasing values of α.215

Following the principle of the GNC method [19], the localization property216

of the robust fit w.r.t. the decreasing parameter α can be used to converge217

toward a local minimum close to the global one. Convexity is first enforced218

using α = 1 or α = 0.5. Then, a sequence of fits with a stepwise decreasing219

α is performed in continuation, i.e. each time using the current output fit220

as an initial value for the next fitting step. Of course, as detailed in [20],221

α must be decreased slowly, otherwise the curve fitting algorithm might be222

trapped into a shallow local minimum far from the global one.223
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Figure 2: The error function eR(A) for an example of scalar data with two clusters, for

different values of α. Notice the progressive appearance of the second minimum while α

decreases.

3. Applications and extensions in road scene analysis224

3.1. Lane-markings Fitting225

In our approach of lane marking detection, road marking elements are226

first extracted from a road scene image using one of the algorithm compared227

in [21]. Then, the centers of marking elements are fitted with a curve using228

an IRLS algorithm. As explained in [22], it is possible to use different curve229

families to model the shape of a lane marking, such as polynomial curves230
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or hyperbolic polynomial curves, which better fit road edges on long range231

distances.232

Figure 3: Fitting on a real image assuming (from left to right, up to down) Gauss, smooth

Laplace, Cauchy, and Geman & McClure [18] noise pdfs. Data points are shown in blue,

yellow lines are the initial A0 and green lines are the fitting results.

Figure 3 illustrates the importance of robust fitting in images with many233

outliers. The yellow line depicts the initial A0 obtained from the previous234

image. The green ones are the fitting results AIRLS, assuming respectively235

Gauss, smooth Laplace, Cauchy, and Geman & McClure [18] noises (as de-236

fined in Section 2.3). A correct fit is achieved only with the last two pdf’s,237

which correspond to non-convex errors eR(A). The scale s is fixed to 4 pixels238
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from the analysis of the residuals on a ground-truth database.239

Figure 4: Fitting of two lines along a sequence with rain and visibility difficulties.

As visible on Figure 3, several lane markings can be seen in a road image.240

We formulate the problem of robustly estimating in a simultaneous fashion241

m linearly parameterized curves Aj, whose parameters may be concatenated242

in a single vector A = (Aj)j=1...m, as the optimization of:243

eMR(A) = −

i=n
∑

i=1

log

j=m
∑

j=1

e−
1

2
φ((

yi−Xt
i Aj

s
)2). (7)

The Lagrangian formalism eases deriving from the minimization of (7) the244

so-called Simultaneous Robust Multiple Fitting (SRMF) algorithm [12]:245

1. Choose an initial estimate A0, and initialize loop index to k = 1.246
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2. For each 1 ≤ j ≤ m, compute vector W k
j = 1

s
(X tAk−1

j − Y )247

and matrix Bk
j = diag

{

e
−φ(wk

ji)
Pj=m

j=1
e
−φ(wk

ji)
φ′

(

wk
ji

)

}

i=1...n

.248

3. For each 1 ≤ j ≤ m, solve XBk
j X tAk

j = XBk
j Y .249

4. If ‖Ak − Ak−1‖ > ǫ then increment k and go to 2, else ASRMF = Ak.250

With notations X = (Xi)1≤i≤n, Y = (yi)1≤i≤n and W k
j = (wk

ji)1≤i≤n. More251

details on the derivation and on the use of the SRMF algorithm may be found252

in [12], where the convergence to a local minimum is proved. Notice that the253

IRLS algorithm may be seen as a special case of the SRMF algorithm with254

m = 1. Moreover, note that the SRMF weights incorporate a probability255

ratio, which is customary used in classification algorithms as a membership256

function.257

The tracking of several curves along a sequence of images is performed258

by embedding the SRMF algorithm within a Kalman filter (see [13, 16, 23]259

for details) as illustrated in Figure 4.260

3.2. Appearance-based road sign detection and recognition261

Appearance-based models have met unquestionable success in the field of262

object detection and recognition, since the early 1990s [24]. In such mod-263

els, objects are represented by their raw brightness or color vector, without264

any feature extraction. To capture non-linear appearance variations while265

using a linear generative model, we proposed in [25, 26] an approach based266

on probabilistic principal component analysis [27]. More specifically, any ob-267

served image y may be reconstructed on a relatively low-dimensional basis of268

functions, that span the eigenspace of the covariance matrix obtained from269

a set of representative images: y = µ+X tA+ b, where µ is the sample mean270
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of the learning set. This is a special case of model (1) where the Xi’s are271

not analytical but statistical basis functions. Figure 5 shows an example of272

sample images and the corresponding basis vectors. Detection and recogni-273

tion tasks involve estimating the latent variable, A. Such a regression task274

may be performed robustly in the Half-Quadratic framework. In this par-275

ticular case, the scale variable, s, is fixed accordingly to a statistical study276

of the residuals obtained by reconstructing the (outlier-free) learning image277

samples [25]. As shown in Figure 5, robust estimation provides both a cor-278

rect reconstructed image and outliers map. Note that, in this particular case279

where X is orthogonal and the dimension of the eigenspace is typically about280

20, the MRLS algorithm is recommended since it can be more computation-281

ally efficient than the IRLS. We shown in [25] that enforcing a well-suited282

prior to the latent variable is beneficial to the quality of detection. Moreover,283

we proposed in [26] an original algorithm which handles both robust likeli-284

hoods and arbitrary non-parametric priors on A in the framework of Mean285

Shift [28] (which, besides, is also a Half-Quadratic algorithm [29]). This286

approach shows very good performance in recognition task on real images.287

3.3. Road profile 3D reconstruction288

Another application of our Lagrangian formalism is road profile recon-289

struction from stereovision, assuming a rectified geometry. In practice, the290

left and right views mostly contain the image of the road. The surface of291

the road in front of the vehicle defines a mapping between the two images.292

Assuming a polynomial model for the road profile [30], within the disparity293

space [31], this mapping between a point (u, v) in the left image and a point294
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Figure 5: First row: 7 of the N = 43 images used for learning. Second row: mean im-

age and first 3 eigenvectors obtained by principal component analysis from the learning

database. Third row: recognition experiment. From left to right: analyzed image, re-

construction from robustly estimated co-ordinates in eigenspace, outliers map, recognized

image.

(u′, v′) in the right image is:295

u′ = u + a0 + a1v + · · · + anv
n = u + X(v)tA

v′ = v







(8)

where X(v) = (1, v, v2, · · · , vn)t is the vector of monomials and A = (a0, · · · , an)296

is the vector of unknown parameters related to the vertical road profile.297

The 3D reconstruction of the road surface vertical profile needs horizontal298

correspondences between the edges on the road in the left and right images.299

Instead of performing first the matching and then the 3D reconstruction,300

we solve the problem by formulating it as the fitting of linear model A on301

the set of all possible horizontal correspondences ((u, u′), v). The robustness302
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of the IRLS estimator is thus of major importance, since many of these303

correspondences are wrong.304

More specifically, we formulate in [30] the estimation problem using a305

Generalized M-estimator as:306

eR(A) =
1

2

∑

(u,u′),v

d((u, u′), v)φ((
u + X(v)tA − u′

s
)2), (9)

where d((u, u′), v) measures the local similarity in terms of gray or color gra-307

dients between the two matched edge pixels (u, v) and (u′, v). The IRLS algo-308

rithm resulting from our Lagrangian derivation features an extra factor in the309

weights, which becomes in that case λ(u,u′),v = d((u, u′), v)φ′((u+X(v)tA−u′

s
)2)310

To improve convergence towards a local minima close to the global one,311

the optimization is iterated for several scales s. At the beginning, s is set to312

a large value and is then decreased step by step to 1 pixel. This is another313

kind of GNC based on the use of the scale s rather than on the use of α as314

described in Section 2.4.315

It is important to notice that, in the obtained algorithm, the matching316

is one-to-several rather than one-to-one. As experimented in [32], one-to-317

several correspondence provides better convergence towards an interesting318

local minimum, and thus outperforms Iterative Closest Point or other one-319

to-one correspondence algorithms. This improved convergence property is320

detrimental in terms of computational burden. To avoid penalizing the al-321

gorithm, we perform a matching decimation in the spirit of [32]: correspon-322

dences such as u+X(v)A−u′ is larger than 3s are discarded. This decimation323

is performed only one time at each scale s without a significant lost of accu-324

racy, see [30]. Figure 6 displays the edges of the right image obtained after325
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Figure 6: Edges of the right image obtained after alignment on the left image using road

profile fitting.

alignment on the left image, showing the quality of the 3D reconstruction of326

the road vertical profile on four consecutive images.327

3.4. Road region fitting328

Thanks to the Lagrange’s formulation, we proposed in [33] a new algo-329

rithm for region fitting which is robust to missing data. It assumes linearly330

parameterized borders and it is applied to the modeling of the road region in331

a road scene image. As in Section 3.1, we use polynomial or hyperbolic poly-332

nomial curves to model the borders of the road region. In vector notations,333
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Figure 7: From left to right, first row: original image, color segmentation of the road,

resulting region fit on the segmentation, second row: left part of the region, right part of

the region, complete resulting region.

right and left borders are thus written as ur = X(v)tAr and ul = X(v)tAl.334

This region fitting algorithm is obtained as the minimization of the fol-335

lowing classical least squares error:336

eRRF (Al, Ar) =

∫ ∫

Image

[P (u, v) −RAl,Ar
(u, v)]2 dudv (10)

between the image P (u, v) which corresponds to the probability of each pixel337

to belong to the “road” class and the function RAl,Ar
(u, v) between 0 and 1338

modeling the road region. The probability map is obtained by segmentation339

of the road colors as detailed in [34], see second image, first row in Figure 7 for340

an example. This road region is parameterized by Al and Ar, the parameters341

of the left and right border curves. Noticing that function u − X(v)tA is342

defined for all pixel coordinates (u, v), this function is negative on the left343

of the curve and positive on its right. We thus can use it to define region344
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RAl,Ar
as:345

RAl,Ar
(u, v) =

(

g

(

X(v)tAl − u

s

)

+
1

2

) (

1

2
− g

(

X(v)tAr − u

s

))

(11)

where g is an increasing odd function with g(+∞) = 1
2
. The s parameter346

tunes the strength of smoothing on the road region borders. The second row347

in Figure 7 display an example of the first factor in (11), of the second term,348

and of the result RAl,Ar
.349

By substitution of the previous model in (10), we rewrite it in its discrete350

form as:351

eRRF (Al, Ar) =
∑

ij∈Image

[

Pij −

(

g

(

Xt
i Al − j

s

)

+
1

2

) (

1

2
− g

(

Xt
i Ar − j

s

))]2

(12)

Again, we apply the Lagrange’s formulation, which allows us to derive the as-352

sociated iterative algorithm. As detailed in [33], to introduce constrains, the353

even function g2 of the left and right residuals is rewritten as g2(t) = h(t2), af-354

ter expansion of the square in (12). Thus auxiliary variables ωl
ij =

(

Xt
i Al−j

s

)

,355

ωr
ij =

(

Xt
i Ar−j

s

)

, νl
ij =

(

Xt
i Al−j

s

)2

and νr
ij =

(

Xt
i Ar−j

s

)2

are introduced. The356

associated Lagrange function is:357

LRRF =
∑

ij

[

h(νl
ij)h(νr

ij) + 1
4
(h(νl

ij) + h(νr
ij)) + (2Pij − 1)g(ωl

ij)g(ωr
ij)

+(Pij − 1/4)
[

−g(ωl
ij) + g(ωr

ij)
]

−h(νl
ij)g(ωr

ij) + h(νr
ij)g(ωl

ij)
]

+
∑

ij λl
ij

(

ωl
ij −

Xt
i Al−j

σ

)

+ λr
ij

(

ωr
ij −

Xt
i Ar−j

σ

)

+
∑

ij µl
ij

(

νl
ij −

(

Xt
i Al−j

σ

)2
)

+ µr
ij

(

νr
ij −

(

j−Xt
i Ar−j

σ

)2
)

(13)

The derivatives of (13) w.r.t.: the auxiliary variables, the unknown variables358

Al and Ar, and the Khun-Tucker multipliers λl
ij, λr

ij, µl
ij µr

ij are set to zero to359

obtain the algorithm. Like in the previous section, to improve convergence360
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towards a local minima close to the global one, the optimization is iterated361

for several scales s.362

The last images in first and second rows of Figure 7 show the resulting363

fit. We observed that fitting algorithms based on a region model are more364

robust to outliers compared to algorithm based on edges.365

4. Conclusion366

We presented the Lagrange’s formulation of Half-Quadratic approach and367

showed how it can be used to derive the classical IRLS and MRLS algorithms368

for robustly estimating the parameters of a linear generative model, and to369

prove their convergence. Examples taken from road scene analysis illustrated370

the interest of these algorithms in difficult real-world applications such as371

lane marking detection and tracking or road sign detection and recognition.372

Other examples, namely simultaneous multiple lane fitting, road profile re-373

construction and road region detection, demonstrated the flexibility of our374

framework which helps in the derivation of new algorithms. The obtained375

algorithms are quite fast: it takes around 0.2 s to fit simultaneously multiple376

lanes, around 0.5 s to reconstruction the road profile, and around 3 s to fit377

the road region, using a Core2 Duo processor on images of size 640 × 512.378

One may notice that the Lagrange’s formulation of Half-Quadratic ap-379

proach has interesting connections with the Expectation Maximization (EM)380

approach which will be interesting to investigate more in the future.381

One difficulty remains to be solved, which is of practical importance in382

the context of road scene analysis since correlation matrices are useful for383

validating the fits. In all our derivation, we supposed independent noise.384
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Our experience is that this assumption, which seems sufficient as long as only385

fitting is concerned, is not pertinent any more when estimating the correlation386

matrix of fits in practical applications. So the question is: how would it be387

possible to introduce correlated noise with heavy-tailed distribution within388

the Half-Quadratic approach?389
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