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a b s t r a c t

We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic
contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we
observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of
motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov
model for the characterization of motion textures from which a set of 13 parameters is extracted as
the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using
the conditional Kullback–Leibler (KL) divergence between mixed-state probability densities, which
allows us to estimate the position using a statistical matching approach.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the context of visual motion analysis, dynamic or motion tex-
tures (Nelson and Polana, 1992; Doretto et al., 2003; Bouthemy
et al., 2006; Crivelli et al., 2006) are dynamic video contents that
exhibit some type of stationarity or regularity, both in the spatial
and temporal dimension, and have an indeterminate spatio-tem-
poral extent. Mostly, they refer to dynamic video contents dis-
played by natural scene elements such as rivers, sea-waves,
smoke, moving foliage, fire, etc. They also encompass any dynamic
visual information that, from the observer point of view, can be
classified as a texture with motion (Fig. 1). For example, consider
a walking person. This activity can be analyzed as attached to an
articulated motion; however a group of persons or a crowd walk-
ing, observed from a wide angle may show a repetitive motion pat-
tern, more adequate to be considered as a motion texture.

In this work we are interested in the modeling and tracking of
motion textures. Critical vision-based surveillance applications
such as fire or smoke detection or tracking an agitated crowd of
people need for a compact representation of this type of dynamic
phenomena. Here, we focus on the temporal modeling of the
apparent motion maps depicted by motion textures and study
the ability of the proposed model to be used as a powerful repre-
sentation for tracking applications.

As pointed out in (Bouthemy et al., 2006), we observe that such
motion maps exhibit values of a mixed type: a discrete component
ll rights reserved.
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at zero (null motion) and continuous motion values (Fig. 1). Motion
observations are then modeled using mixed-state random variables.

In this context, we introduce a mixed-state Markov chain (MS-
MC) model for the statistical characterization of motion textures
from which a set of 13 parameters is extracted as the descriptive
feature of the dynamic content. Then a motion texture tracking
strategy is proposed based on the computation of the conditional
Kullback–Leibler (KL) divergence between mixed-state probability
densities. This solves the problem of matching and thus it allows us
to estimate the displacement of a motion texture.

1.1. Related work

Although 2D spatial textures have been vastly analyzed in the
computer vision literature, temporal or dynamic textures have at-
tracted an increasing interest in the last few years. A first distinction
between different approaches, resides on the type of image features
extracted from the image sequence. Doretto et al. (2003) have pro-
posed the use of ARMA models directly applied to image intensities
with convincing results on dynamic texture synthesis. This model-
ing approach has resulted in several variations and improvements
(Vidal and Ravichandran, 2005; Chan and Vasconcelos, 2009).

Other approaches are based on extracting motion features from
the image sequence instead of considering pixel-wise intensity val-
ues (Bouthemy et al., 2006; Crivelli et al., 2006; Fazekas et al., 2009).
Particularly, normal flow is a very efficient and natural way of locally
characterizing a dynamic texture (Fazekas and Chetverikov, 2005).

More related to the theoretical aspect of this paper, we can also
mention other models that exploit the interaction between dis-
crete and continuous values in computer vision problems. Starting
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Fig. 1. Top row: sample images from videos of dynamic textures of different kind (grass, crowd, steam, water and river). Middle row: scalar motion map based on normal flow
computation and obtained using two consecutive frames of the sequence, which we call a motion texture. Bottom row: motion histograms from a motion texture. Motion
values display two components: a discrete value at zero and a continuous distribution for the rest.
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with the seminal paper of Geman and Geman (1984) with the
introduction of a line process for modeling edges between homoge-
neous image regions to be restored from different types of degra-
dations. Then, it is worth mentioning previous works on fuzzy
pixel classification as Salzenstein and Collet (2006). These authors
introduce a class of fuzzy Markov models where each state vari-
able, or classification variable, xi 2 [0,1] represents a classification
rate with hard (xi = 0 or xi = 1) and soft (xi 2 (0,1)) classification
states following a continuous distribution. Finally we have the re-
cently formulated mixed-state Markov random fields model that
has been applied with promising results to modeling, segmenta-
tion and classification of motion textures (Bouthemy et al., 2006;
Crivelli et al., 2006).

Here, we follow the same type of approach than Bouthemy et al.
(2006) and Crivelli et al. (2006) but we extend it to temporal mod-
eling, and consequently, we introduce causal mixed-state Markov
models. We will exploit them for motion texture tracking. Indeed,
efforts have been devoted mainly to modeling, classification and
segmentation of dynamic textures, but the particular problem of
dynamic texture tracking is still an open issue of great relevance.

2. Motion texture characterization by local motion
measurements

We now define the motion measurement process that charac-
terizes a motion texture. The so-called Normal flow is the compo-
nent of the velocity vector at a point in the direction of the
intensity gradient. It has been reported as effective for describing
dynamic textures (Fazekas and Chetverikov, 2005) and in general,
complex dynamic video contents (Fablet et al., 2002) as it gives a
good compromise between quality of estimation and simplicity
of calculation. It is derived from the optical-flow constraint (Horn
and Schunck, 1981), and in vector form it is defined as

V ðnÞi ðtÞ ¼ �
@IiðtÞ
@t

k$IiðtÞk
n̂ with n̂ ¼ $IiðtÞ

k$IiðtÞk
; ð1Þ

where $Ii(t) is the spatial intensity gradient at location i of the im-
age and @IiðtÞ

@t is approximated by Ii(t) � Ii(t � 1). Here, we adopt the
normal-flow-based motion measurement introduced in (Crivelli
et al., 2006). First, we compute (1) for each image point, using
two consecutive frames of the sequence. Then, in order to smooth
out noisy measurements and enforce reliability, we apply a
weighted vectorial average of V ðnÞi ðtÞ over a window W of 3 � 3
points to obtain

V ðnÞi ðtÞ ¼
P

j2W V ðnÞj ðtÞk$IjðtÞk2

max
P

j2Wk$IjðtÞk2
;g

� � : ð2Þ

The magnitude of the gradient determines the relative weight of
each point given that regions with large spatial intensity variation
are more reliable for extracting motion information. Given that
k$IjðtÞk can be very small, g is a regularization term fixed to
g = 10�4.

V ðnÞi ðtÞ is then a smoothed normal flow vector. Next, it is pro-
jected over the intensity gradient direction giving rise to the scalar
motion observation

xi;t ¼ V ðnÞi ðtÞ � n̂ 2 ð�1;þ1Þ: ð3Þ

Keeping the scalar component instead of the complete vectorial
normal flow, reduces the dimension of the data to be modeled and
still provides a meaningful quantity for dynamic content character-
ization. In Fig. 1 we see some examples of the scalar normal flow
motion maps obtained between two consecutive frames of a mo-
tion texture video sequence.
2.1. Statistical properties of motion measurements

Experiments obtained from computing the proposed motion
quantities for several different dynamic textures have shown that,
if we observe the corresponding scalar motion histograms (Fig. 1),
we note that the statistical distribution of the motion measure-
ments has two elements: a discrete component at the null value
xi,t = 0, and a continuous distribution for the rest of the motion
values.

The observation of a null value appears repeatedly in the
motion maps, also following a textured pattern as well as it occurs
for the rest of the motion values (Fig. 2). This is a typical struc-
tural characteristic of the motion measurements extracted from
motion textures. As such, discrete and continuous values are not



Fig. 3. Temporal neighborhood structure for the mixed-state Markov chain. At a
given time instant t the motion values within xt are considered conditionally
independent given xt�1.
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independently distributed in space and time, indeed displaying
mixed-state texture patterns.

3. Modeling motion textures with mixed-state Markov chains

3.1. Mixed-state statistical framework

A mixed-state random variable is constructed as follows: with
probability q 2 (0,1), set x = 0, and with probability = 1 � q, x fol-
lows a continuous probability density in R, say pc(x). It results in
a mixture of a discrete and a continuous random variable which
is described by a mixed-state probability density function

pðxÞ ¼ q10ðxÞ þ ð1� qÞ1�0ðxÞpcðxÞ; ð4Þ

where 10(x) is the indicator function of the discrete value 0 and
1�0ðxÞ ¼ 1� 10ðxÞ its complementary function. This mixed-state
p.d.f. is given with respect to the reference measure m(dx) =
m0(dx) + k(dx) where m0 is the discrete measure for the value 0 and
k the Lebesgue measure on R, so that

R
pðxÞmðdxÞ ¼ 1. Such a mea-

sure has also been used in (Salzenstein and Collet, 2006) for simul-
taneous fuzzy-hard image segmentation and Crivelli et al. (2008)
for motion detection and background reconstruction.

3.2. Mixed-state Markov chains

A motion texture computed at time t of the video sequence
using Eq. (3) is then a field of mixed-state random variables, i.e.
xt = {xi,t}i2S with S = {1,2, . . .,N} the set of image locations. We pro-
pose to model a sequence of motion textures X = {xt}t:0� � �T as a sta-
tionary Markov chain, i.e. pðXÞ ¼ pðx0Þ

QT
t¼1pðxt jxt�1Þ. The chain is

described by the transition kernels p(xtjxt�1). Here we study a cau-
sal temporal model, for which a first assumption is to consider spa-
tial conditional independence within a motion texture for time t

pðxtjxt�1Þ ¼
Y
i2S

pðxi;tjxt�1Þ: ð5Þ

The second assumption is that, given xt�1, xi,t depends only on a
local neighborhood Ni;t�1 of ‘past’ random variables at time t � 1
(Fig. 3), namely xNi;t�1

:

pðxi;t jxt�1Þ ¼ pðxi;t jxNi;t�1
Þ: ð6Þ

In our case, we will assume that the temporal neighborhood is
a 9-point set which includes the previous (at t � 1) center, diag-
onal, anti-diagonal, horizontal and vertical neighbors for a point
Fig. 2. (a) Sample images from motion textures. (b) The scalar motion values are spatially
to the range of gray [0,255] where 128 corresponds to null motion. (c) The binary zero
motion value different from zero.
at time t as depicted in Fig. 3. Considering this type of causal tem-
poral neighborhoods against spatial and non-causal interaction
(e.g. in the form of Markov random fields (Crivelli et al., 2006;
Bouthemy et al., 2006)) simplifies enormously not only the theo-
retical formulation of the model but also practical aspects as
parameter estimation. Moreover, from a physical point of view,
the assumption of causal interaction (instead of spatial interac-
tion) is still valid as one can consider that the motion textures be-
tween consecutive time instants are statistically equal. See Fablet
et al. (2002) as another example on the use of temporal
neighborhoods.

3.3. Gaussian mixed-state Markov chains (MS-MC)

Following the aforementioned assumptions, the mixed-state
Markov chain motion texture model is defined by specifying the
conditional densities pðxi;t jxNi;t�1

Þ. They are chosen to be mixed-
state conditional densities with Gaussian continuous part as sug-
gested by Fig. 1, that is,

pðxi;t jxNi;t�1
Þ ¼ qi;t10ðxi;tÞ þ q�i;t1

�
0ðxi;tÞ

1ffiffiffiffiffiffiffi
2p
p

ri;t

e
�
ðxi;t�mi;t Þ

2

2r2
i;t ; ð7Þ

where qi;t ¼ Pðxi;t ¼ 0jxNi;t�1
Þ; mi;t � mðxNi;t�1

Þ and r2
i;t � r2ðxNi;t�1

Þ,
are now functions of xNi;t�1 . The Gaussian mixed-state Markov chain
model is then described by these three parameters and how they
depend on the neighbors. We make the following considerations:

– An interesting case for motion texture modeling is given
when the mean mi,t is a weighted average of its past
neighbors,
distributed forming a textured pattern. Here we mapped the motion measurements
/non-zero map also is distributed following a textured pattern. White represents a
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mi;t ¼ c þ
X

j2Ni;t�1

hjxj;t�1; ð8Þ
and r2
i;t ¼ r2 is a constant for every point. This enforces local

correlation, captures important properties such as the orien-
tation of the texture, and at the same time, keeps the model
simple and with a limited number of parameters. A constant
variance also assures that effectively the marginal density
p(xi) has Gaussian continuous part in accordance with the
motion histograms in Fig. 1.

– Regarding the conditional probability of the null value, qi,t,
one intuitively expects that when most of the neighbors
are null (non-null), qi,t increases (decreases). This responds
to a cooperative model (Besag, 1974). In like manner, larger
motion values of the neighbors should make qi,t to decrease.
Following the ideas of Crivelli et al. (2006) for purely (non-
causal) spatial models, the conditional probability of the null
value takes the form
qi;t ¼
1

1þ
ffiffiffiffiffiffiffi
2p
p

ref ðxNi;t�1
Þ : ð9Þ
The function f ðxNi;t�1
Þ depends on the neighbors and controls

the value of qi,t. It is chosen in order to obtain the desired
cooperative behavior as explained in the previous paragraph.
It is defined as
f ðxNi;t�1
Þ ¼ aþ

X
j2Ni;t�1

bj1
�
0ðxj;t�1Þ þ

m2
i;t

2r2 ð10Þ
where we have three terms. A constant term which deter-
mines a baseline for the conditional probability of the null va-
lue, independent of the neighbors. Then we have a term
related to the discrete states which is an increasing function
of the non-zero neighbors and finally a continuous term
which is an increasing function of the continuous values of
the neighbors (through Eq. (8)). This makes qi,t increase or de-
crease as expected.

– Finally from (8) and (9) we identify a set of 13 parameters
(considering the five interacting directions described before)
that define the Gaussian MS-MC model, which are
u = {r2,a, {bj},c, {hj}}. Note that we are assuming spatial
homogeneity as for every point xi,t the same set of parame-
ters applies.

Well known estimation techniques can be applied in order to
estimate the parameters u = {r2,a, {bj},c, {hj}} that define the con-
ditional distributions of Eq. (7). As we assume a spatially homoge-
neous and temporal stationary model, the parameters can be
efficiently estimated from a single pair of consecutive motion tex-
tures when the number of points in S is sufficiently large, by max-
imizing the likelihood pðxt jxt�1;uÞ ¼

Q
i2Spðxi;tjxNi;t

;uÞ.

4. Matching of mixed-state models

In any tracking application, one needs to estimate the position
of the tracked object at each instant. For doing this it is necessary
to detect it and this usually involves searching the position in the
image that best matches the object features.

For motion texture tracking, the object features will be the
mixed-state model parameters and we propose to use the condi-
tional Kullback–Leibler divergence (Cover and Thomas, 1991) be-
tween the mixed-state conditional distributions p(xtjxt�1) in Eq.
(5) as the matching cost. As a matter of fact, it is more formally cor-
rect to compute KL for the joint distribution p(xt,xt�1), but this in-
volves knowing p(xt�1) which is in fact, a correlated spatial field. A
more complex (non-causal) model is required, which will be
analyzed elsewhere. See Crivelli et al. (2006) for the case of purely
spatial mixed-state Markov random fields that are plausible to be
combined with the approach presented here. Moreover, this more
complex formulation implies an increase in the number of motion
texture parameters, which is not desirable, nor necessary as for the
application at hand.

Given two sets of mixed-state model parameters, say u1 and u2,
the conditional KL divergence from the density p1 = p(xtjxt�1,u1) to
the density p2 = p(xtjxt�1,u2) is defined as (Cover and Thomas,
1991)

KLðp1jp2Þ ¼ Eu1
log

p1

p2

� �
¼
Z

log
pðxt jxt�1;u1Þ
pðxt jxt�1;u2Þ

pðxt ; xt�1ju1Þdm;

ð11Þ
which is independent of the measure m. This is not strictly a dis-
tance as it is not symmetric. Define then the symmetrized KL diver-
gence as dKLðp1;p2Þ ¼ 1

2 ½KLðp1jp2Þ þ KLðp2jp1Þ�. We now compute
this quantity.

Eq. (7) can be more conveniently expressed in the form
pðxi;t jxNi;t�1

Þ ¼ exp Q i;tðxi;t ; xNi;t�1
Þ=ZiðuÞ where Zi(u) is a normaliz-

ing factor and:

Qi;tðxi;t ; xNi;t�1
Þ ¼ �

x2
i;t

2r2 þ c
xi;t

r2 þ
X

j2Ni;t�1

hj

r2 xi;txj;t�1 þ a1�0ðxi;tÞ

þ
X

j2Ni;t�1

bj1
�
0ðxi;tÞ1�0ðxj;t�1Þ þ log qi;t: ð12Þ

Then, log pðxtjxt�1;ukÞ ¼
P

iQ
ðkÞ
i;t ðxi;t ; xNi;t�1

Þ � log ZiðukÞ for k =

1,2. Define DQi;tð�Þ ¼ Q ð2Þi;t ð�Þ � Q ð1Þi;t ð�Þ so that log p1
p2
¼
P

i� DQi;tð�Þþ
log Ziðu2Þ

Ziðu1Þ
, and

dKLðp1; p2Þ ¼
1
2

X
i

Eu2
½DQi;tð�Þ� � Eu1

½DQi;tð�Þ�; ð13Þ

where log Ziðu2Þ
Ziðu1Þ

cancels from both terms. Observing the expression of

Q ðkÞi;t ð�Þ in Eq. (12), we note that dKL(p1,p2) can be computed by esti-
mating the following expectations with respect to each model uk:

Euk
½1�0ðxi;tÞ� ¼ Puk

½xi;t–0�; Euk
½1�0ðxi;tÞ1�0ðxj;t�1Þ�;

Euk
½xi;t�; Euk

½x2
i;t�; Euk

½xi;txj;t�1�; Euk
½log qð1Þi;t =q

ð2Þ
i;t �;

ð14Þ

where qðkÞi;t is as in (9), using the corresponding parameters uk. As we
assume that we have a spatially homogeneous model, the latter
expectations involved in Eq. (14) are equal for each site of the motion
field, and thus, they can be efficiently estimated by simple averaging
from the observed data and using the estimated parameters.

5. Application to motion texture tracking

Let us observe the example depicted in Fig. 5. We see a fire
flame that moves towards the left due to the movement of the
camera. The objective is to track and follow this motion texture
using the proposed mixed-state model.

We first consider that the initial position of the motion texture
is given or set manually by defining a starting window Wo of a gi-
ven size centered at initial location o. Then the motion fields x0 and
x1 are obtained (Eq. (3)) for that window (for t = 0) using three con-
secutive frames and a motion texture model is estimated. We thus
obtain a reference model uref that characterizes the dynamic con-
tent we want to track. Let qt be the position of the window at time
t. Then we estimate qt by applying the following rule:

q̂t ¼ argmin
qt2Kqt�1

dKLðWo;Wqt
Þ; ð15Þ

where we denote dKLðWo;Wqt
Þ the KL divergence (Eq. (13)) between

the reference motion texture model estimated in Wo and that



2290 T. Crivelli et al. / Pattern Recognition Letters 31 (2010) 2286–2294
estimated in Wqt
. Kqt�1 is a search area around the previously esti-

mated position. At this point any search strategy can be used with
a compromise between accuracy and speed, for obtaining the q̂t that
minimizes dKL. We have chosen the diamond search algorithm (Zhu
and Ma, 2000) among other standard search algorithms for block-
matching, based on comparative results that will be presented in
the next section. For each possible location qt tested by the search
algorithm we obtain the motion texture in Wqt

, estimate the corre-
sponding parameters and compute dKLðWo;Wqt

Þ. For that we need
to extract the expectations defined in (14) from Wo and the candi-
date Wqt

. Note that except for Euk
log qð1Þi;t =q

ð2Þ
i;t

h i
in (14), all the

remaining expectations need to be computed only once for the ref-
erence model, at the initialization step.

The computed position q̂t can be noisy around the true motion
texture position. Thus, we apply a simple Kalman filter (Anderson
and Moore, 1979) to the measurement process in order to enforce
reliability and smoothness of the estimated paths. Here, we have
considered a constant velocity state model. Finally, once a filtered
position is obtained, the window is moved to the new position and
the process starts again.

We have chosen a simple tracking algorithm by window match-
ing while exploiting the motion texture mixed-state model that
permits to accurately characterize this class of video contents.
More sophisticated tracking approaches can be applied as well,
also exploiting the motion features introduced here, which for
example involve more complex filtering techniques (Pérez et al.,
2002). We now report comparative experimental results of motion
texture tracking.
5.1. Experimental results

In the experiments that follow, we have considered three meth-
ods for window matching:

I. Pixel-wise intensity matching by minimizing the Sum of
Squared Differences (SSD).

II. Intensity histogram matching by minimization of a Bhatta-
charyya-coefficient-based distance
Fig. 4. (a–c) Synthetic paths generated for testing the motion texture tracking algorithm. (d) ‘‘W
background was generated by applying a global random motion to a static image. The tracke
background but different motion. (f) ‘‘Fountain on steam” composition. The brightness of the sm
dðt1; t2Þ ¼ 1�
XN

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1ðnÞt2ðnÞ

p !1
2

; ð16Þ
where tk(n) k = 1,2 are the N-bin intensity histograms to
match, as in (Pérez et al., 2002).

III. Our method: mixed-state motion texture model matching
by minimizing the Kullback–Leibler divergence (13).

Method I tends to be more suitable for rigid motion where the
tracked objects keep a constant geometry while method II is much
more robust to pose variations and moderate deformations.

For all the three methods, the diamond search strategy (Zhu and
Ma, 2000) at each time instant was applied over a maximum dis-
placement of 15 pixels in both vertical and horizontal directions.

5.1.1. Synthetic motion texture sequences
In order to assess quantitatively the performance of our method

we have generated synthetic video sequences where the true mo-
tion texture trajectories are known. Three different simulated
paths were considered as depicted in Fig. 4a–c. For each path we
generated video sequences where a small window of a real motion
texture is displaced along the trajectory and over a real back-
ground. We analyzed three situations (Fig. 4d–f). (1) A motion tex-
ture window of water over a dynamic background of steam. (2) A
motion texture of water over a moving background of water gener-
ated by applying a global random motion to a static image. In this
case the tracked window and the background share the same spa-
tial intensity statistics but different motions. The last composition
corresponds to (3) a motion texture window of a fountain with
time-varying illumination over a motion texture of steam. The
images are of 720 � 576 pixels and the motion texture window
of 80 � 80 pixels.

In Table 1 we show the results of applying methods I (SSD), II
(histogram) and III (our method: MS-MC) to the 9 different combi-
nations of paths and compositions. We have computed (i) the Root
Mean Square (RMS) error of the trajectory, that is, the root of the
mean square distance between the true path and the estimated
path, (ii) its maximum deviation from the ground truth and (iii)
ater on steam” composition. (e) ‘‘Water on water” composition where the
d motion texture share the same spatial statistics of appearance with the

all window was varied along time.



Table 1
Tracking error for the synthetic motion texture sequences and for methods I (SSD), II
(histogram) and our method III (MS-MC).

Path–
composition

Method RMSE
(pixels)

Max error
(pixels)

Target
lost

A-1 SSD 392 647 t = 9
Histogram 2.25 6 –
MS-MC 3.12 7 –

B-1 SSD 402 482 t = 11
Histogram 3.38 10 –
MS-MC 3.29 7 –

C-1 SSD 311 479 t = 12
Histogram 19.8 60 –
MS-MC 18.98 32 –

A-2 SSD 318 563 t = 12
Histogram 316 557 t = 11
MS-MC 7.17 11 –

B-2 SSD 113 277 t = 28
Histogram 128 267 t = 13
MS-MC 7.34 12 –

C-2 SSD 181 474 t = 23
Histogram 163 412 t = 10
MS-MC 21.33 29 –

A-3 SSD 303 446 t = 5
Histogram 126 228 t = 37
MS-MC 3.81 6 –

B-3 SSD 306 465 t = 5
Histogram 112 332 t = 38
MS-MC 3.65 7 –

C-3 SSD 138 232 t = 6
Histogram 106 333 t = 34
MS-MC 13.41 19 –
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we also indicate if the algorithm looses the track and if so, at which
frame. We consider that the target is lost if for some t the esti-
mated window falls completely outside the true motion texture
window search area.
Fig. 5. (a) Results of tracking the fire flame with methods I (green), II (blue) and our me
Content of the tracked window for method I (left), method II (right). (d) Content of the
references to colour in this figure legend, the reader is referred to the web version of th
For Composition 1 and every path (A-1,B-1,C-1), histogram
and MS-MC methods are able to track the motion texture with
similar performance as shown by the RMS values without loosing
the target. The intensity spatial statistics of the tracked content
and the background are different enough for the histogram meth-
od to perform well. However for the SSD method, the deformable
dynamic content makes the algorithm fail early in the sequence.
As said before, in Composition 2 the spatial statistics of the mo-
tion texture window and the background are equal, but they have
a different motion distribution. SSD and histogram fail completely
loosing the target at the beginning of the sequence for all paths
(A-2,B-2,C-2). Our method captures the dynamics of the motion
texture and thus distinguishes the tracked content from the back-
ground at each time instant, by means of modeling the spatio-
temporal distribution of motion. Finally for Composition 3, we
show that our algorithm is robust to illumination changes, basi-
cally due to the proposed motion measurements (3) which are
invariant to these variations. The other methods fail as soon as
the brightness difference between the learned content at the ini-
tial frame and the motion texture window at the current frame
becomes large.
5.1.2. Real motion texture sequences
In Fig. 5 we display the results for the real sequence ‘Fire Flame’

for different frames where the motion is given by a panning cam-
era. We see that the motion texture is far from being localized in
space and its extent is wider than the size of the tracked window,
which was set to 50 � 50 pixels. The method I (SSD method with
corresponding tracking results in green in Fig. 5a and b) is not able
to track the flame and tends to match the ascending smoke until it
breaks down. Method II (histogram method, blue track) is more
coherent with the expected trajectory but it does not keep the tar-
get correctly located at every frame. Our mixed-state causal model
method III (red track), performs very well, specially considering
that there is another motion texture of smoke that could disturb
thod III (red) for frames 1, 23, 53 and 116. (b) Estimated tracks for each method. (c)
tracked window for our method (III) at the four instants. (For interpretation of the
is article.)



Fig. 6. (a) Results of tracking fire (antorch) with methods I (green), II (blue) and our method III (red) for frames 1, 10, 28 and 49. (b) Estimated tracks for each method. (c)
Content of the tracked window for method I (left), method II (right) and (d) for our method III at the four instants. Note the large occlusion in the last frame. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the matching process. In Fig. 5c and d we display the content of the
tracked window for the different methods.

We observe the results for the ‘Antorch’ sequence in Fig. 6.
Again it corresponds to fire, but note that it is very different than
before. Moreover the flame is partially occluded in several frames.
Fig. 7. (a) Results of tracking a crowd with methods I (green), II (blue) and our method III
the tracked window for method I (left), method II (right) and (d) for our method III at the
reader is referred to the web version of this article.)
The rapid variations of the motion texture (in size and location)
may produce some perturbation on the smoothness of the esti-
mated trajectory, compared to what one would expect. Method II
(blue track in Fig. 6a and b) fails completely, loosing the target just
after the start of the sequence. Method I (green track) performs
(red) for frames 1, 36, 66 and 96. (b) Estimated tracks for each method. (c) Content of
four instants. (For interpretation of the references to colour in this figure legend, the



Table 2
Parameters estimated in the tracked window for the three tested sequences at four different time instants. t0 Corresponds to the reference model learned in the initialization step
(C: center, H: horizontal, V: vertical, D: diagonal, AD: anti-diagonal).

(2r2)�1 a c bC hC bH hH bV hV bD hD bAD hAD

Fire flame
t0 = 1 0.21 �3.28 �0.55 0.58 �0.12 0.63 �0.01 0.29 �0.07 0.34 0.02 0.24 0.02
t1 = 23 0.20 �1.65 �0.03 0.29 �0.06 0.31 0.02 0.16 �0.08 0.19 0.04 0.22 0.04
t2 = 53 0.17 �1.65 �0.23 0.44 �0.03 0.36 0.08 0.19 �0.08 0.07 0.06 0.19 0.07
t3 = 116 0.24 �1.41 0.11 0.48 �0.03 0.41 �0.01 0.18 �0.01 0.12 0.01 0.13 0.06

Antorch
t0 = 1 0.01 �2.12 1.36 0.92 �0.01 1.18 �0.01 0.46 0.00 0.31 �0.03 �0.19 �0.03
t1 = 10 0.10 �2.23 1.61 0.71 �0.07 0.63 �0.04 0.21 0.01 0.16 �0.01 �0.12 �0.01
t2 = 28 0.06 �2.16 0.47 0.49 �0.01 0.55 �0.03 0.35 0.01 0.05 �0.04 �0.14 �0.03
t3 = 48 0.01 �0.22 �9.12 �0.32 0.32 �0.48 0.23 �0.01 0.08 �0.33 0.70 �0.36 0.20

Crowd
t0 = 1 0.87 �3.44 �0.11 0.08 0.06 0.41 0.06 0.22 0.01 0.61 0.08 0.61 0.03
t1 = 36 1.85 �2.30 �0.03 0.30 0.07 0.46 0.15 0.35 0.09 0.52 0.14 0.42 0.08
t2 = 66 1.63 �2.04 �0.02 0.29 0.03 0.50 0.21 0.42 0.07 0.45 0.14 0.34 0.10
t3 = 96 1.96 �1.65 0.03 0.32 0.03 0.37 0.18 0.21 0.10 0.40 0.15 0.31 0.08
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better but still does not keep the target correctly located. With our
mixed-state causal model (red track), the flame is tracked satisfac-
torily even in the presence of great variations of shape and inten-
sity as seen in Fig. 6d. Note also the large occlusions in the last
depicted frame.

Finally, we have processed a challenging sequence (Fig. 7) of a
motion texture that corresponds to a crowd of people crossing a
street. Such a human motion, viewed from a long distance, can
be considered as a repetitive motion pattern. Note that this motion
texture is more sparse than the previous ones, showing many null
motion values between persons. This is explicitly modeled within
the mixed-state framework and exploited as a particular character-
istic of the dynamic content. The different individuals enter and
exit the texture, making it very difficult to track the group in a
compact way. However, our method (III, red track in Fig. 7a and
b) performs satisfactory, even when the tracked group blends with
the one that goes in the opposite direction. The estimated trajec-
tory shows some expected variations due to the complexity of
the scene, but it is globally correct. Method I (green track) also per-
forms satisfactory but it shows some deviations from the expected
trajectory, specially in the last depicted frame. Method II (blue
track) behaves erratically at the beginning as seen in the second
and third displayed frames, probably due to the fact that it is
invariant to the spatial distribution of intensity and thus the two
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Fig. 8. Position error in pixels of the search algorithms diamond search (DS), Simple and E
at each frame. Plots correspond to (a) fire flame, (b) antorch and (c) crowd. (d) Root Mea
approaching persons from behind are incorrectly included in the
tracked window, despite their distance from the rest.

In Table 2 we display the parameters estimated for the tracked
window at each of the four time instants depicted in Figs. 5–7. The
values should not be compared in the sense of the Euclidean dis-
tance, but by means of the KL divergence. Nevertheless, one can
observe that for each tested sequence the parameters show coher-
ent values for different instants. Note the coherency in the sign and
the order of magnitude. For the antorch sequence, the occlusion in
Fig. 6d at t3 is the cause of a noticeable difference in the parameters
with respect to the reference model.

The performance of other search algorithms compared to dia-
mond search (DS) (Zhu and Ma, 2000) was also tested on the three
real sequences. We have considered three additional methods for
block matching frequently used for implementing video coding
standards which we refer as: Exhaustive Search (ES), New Three
Step Search (NTSS) (Li et al., 1994) and Simple and Efficient Search
(SES) (Lu and Liou, 1997). First, we assume that the ES method
gives the lower trajectory estimation error as it tests every possible
displacement at each frame. We thus compute the position error of
each algorithm with respect to the estimate given by ES at each
time instant and also the average number of search windows
tested by each algorithm. Recall that we consider a search area of
31 � 31 pixels so ES always tests 961 possible windows. In
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n Square error of each algorithm w.r.t. ES and average number of search windows.
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Fig. 8a–c we plot the position error for each method and each se-
quence and in Fig. 8d we give the values of the Root Mean Square
(RMS) error and the number of search windows. DS gives the low-
est RMS error for the three sequences. SES has the worst perfor-
mance but takes less searches. NTSS takes a similar number of
searches compared to DS but has a higher error. SES was discarded
as the error is notably higher despite it is faster. Between NTSS and
DS, DS was considered as the best choice for it is closer to ES.

6. Conclusions

We have proposed a new approach to dynamic texture model-
ing and tracking, based on a temporal statistical parametric model
of the apparent motion extracted from video sequences. The
mixed-state motion texture model has shown to be a powerful
non-linear representation for describing complex dynamic content
with only a few parameters.

We have developed a motion texture matching strategy by
means of the computation of the Kullback–Leibler divergence be-
tween mixed-state densities. This allowed us to deal with the prob-
lem of motion texture tracking.

The results obtained so far are very encouraging, showing a
good performance of the method when applied to complex scenes,
not only related to natural motion textures (e.g. fire), but also to
textured motion patterns as a crowd of people.

As for future work, we are investigating a more sophisticated
way of tracking motion textures, that takes into account that their
spatial extent can vary considerably with time. Thus it is necessary
to deal with a deformable tracked window, that may change in size
and shape.

Finally, the concept of a mixed-state random field opens a door
to consider the introduction of several discrete states, in particular
symbolic abstract labels. The theoretical results presented here on
mixed-state Markov chains for numeric discrete states, can be ex-
tended to more general situations as simultaneous decision-
estimation problems, without much effort as shown in (Crivelli
et al., 2008).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.patrec.2010.06.016.
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