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Abstract: In this work we review the basic principles of stochastic logic and propose 

its application to probabilistic-based pattern-recognition analysis. The proposed 

technique is intrinsically a parallel comparison of input data to various pre-stored 

categories using Bayesian techniques. We design smart pulse-based stochastic-logic 

blocks to provide an efficient pattern recognition analysis. The proposed architecture 

is applied to a specific navigation problem. 
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1. Introduction 

Stochastic logic is the result of applying probabilistic laws to logic cells (Gaines, 1968) 

where variables are represented by random pulse streams. Stochastic computing makes use 

of digital technology to perform arithmetic operations with the advantage of requiring a 

reduced number of gates. Stochastic logic uses pulsed signals that represent different 

quantities depending on its switching probability. Pulses can be converted to binary 

numbers by using digital counters (P2B converters) while binary numbers can be translated 

to stochastic signals by combining a random (or a pseudo-random) number generator and a 

comparator (B2P converters) (see the work of Kim and Shanblatt, 1995). Recently 

stochastic pulse sequences have been used to implement a deterministic logic (Bezrukov 

and Kish 2009). 

Stochastic computing is useful for those applications requiring parallel-processing 

techniques. Traditional parallel processing architectures have the shortcoming of requiring 

a large amount of hardware and computation tasks are relatively extensive in complexity. 

Therefore, the number of tasks that are executed in parallel is reduced in number. 

Stochastic computing could represent a solution to this problem since the hardware 

associated to each task is reduced in size if compared to traditional digital implementations. 

Therefore, more complex tasks can be executed in parallel when using stochastic 

computing elements.  

In this work we present a low cost methodology for pattern-recognition. For this purpose 

we selected stochastic logic due to the low number of gates needed with respect to the 

complexity of operations being involved (such as arithmetic multiplication, addition, 

division, ...). The probabilistic nature of stochastic logic is ideal to perform pattern 

recognition using bayesian techniques (Bishop, 2006). The proposed approach is verified 



showing a simple example and also applying the method to the navigation of an 

autonomous vehicle.  The autonomous vehicle is able to measure the distance to nearest 

objects and, using stochastic computing, recognize the environment.  

This paper is organized as follows: in Section 2 we briefly explain the stochastic computing 

concept, in Section 3 we show a methodology to apply stochastic logic for pattern 

recognition. In Section 4 we apply the proposed solution to the motion of an autonomous 

vehicle, and finally we expose the conclusions in Section 5.  

2. Basic Principles of Stochastic Logic 

2.1 Introduction to Stochastic Logic   
 
In stochastic-based computations a global clock provides the time interval during which all 

stochastic signals are stable (settled to 0 or 1). During a clock cycle, each node has a 

probability p of being in the HIGH state (see Fig. 1). This probabilistic-based coding 

provides a natural way of operating with analogue quantities (since probabilities are defined 

between 0 and 1) using digital circuitry. 

Pulsed signals follow probabilistic laws when they are evaluated through logic gates. As an 

example, the AND gate provides at the output the product of their inputs (that is, the 

collision probability between signals), and a NOT gate converts the probability p at the 

input to the complementary 1-p at the output. The sum of two switching signals may be 

implemented using a multiplexer while the division of two numbers can be obtained by 

using an up/down counter and a binary to pulse converter (B2P) to iteratively estimate the 

pulsed signal h=p/q such that h•q=p (see Fig. 2).  

One of the requirements of stochastic computing is that signals must be un-correlated at 

different clock cycles. In Fig. 3 we show the importance of the temporal un-correlation 

when cascading arithmetic functions (we use the example of implementing f(p)=p(1-p)). In 



the first circuit the output is always equal to zero since signals p and 1-p at the inputs of the 

AND gate are correlated and therefore the output has always a LOW value. Such a 

correlation can be eliminated using shift registers to delay signals from one arithmetic level 

to the next as is shown in Fig. 3. In the correct case, the AND gate always evaluates the 

product between p and a delayed (and therefore uncorrelated) value of 1-p. 

2.2 Evaluating time and error estimation in signal translation 
 
 
Pulsed signals can be converted to binary numbers using counters. We define a pulse to 

binary converter of order N (a P2B(N)) as those circuits that evaluate the number of HIGH 

values provided by a stochastic signal during N clock cycles. The output of a P2B(N) block 

is an n-bit number that changes every N cycles so that the evaluation time is TEVAL=N •T 

(where T is the clock cycle).   

An error is always present during conversions that can be probabilistically estimated. We 

define PN(x) as the probability of the P2B(N) output to be equal to the binary number x. 

This probability follows a binomial distribution: 
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where parameter ‘p’ is the switching probability of the input signal. The mean value 

provided by the converter is <x>=Np (the desired result) while the standard deviation of 

the distribution is σ2=Np(1-p). Defining the relative error during each conversion as 

Error≡2σmax/N, and considering that the maximum deviation (σmax) happens when p=1/2, 

then Error~1/N1/2. The relationship between error and conversion time (TEVAL) is therefore 

given by the next expression: 
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Equation (2) implies a trade-off between conversion time and error. Small errors imply 

large conversion times and inversely fast conversions imply large errors.  

3. Stochastic-Based Pattern Recognition 

The probabilistic nature of stochastic logic is an advantage for the implementation of 

probabilistic-based pattern recognition methodologies. The purpose is to compare signals 

coming from different sensors (the features) with reference values that represent different 

categories. Two parameters (the mean and the sigma value) are required to define each 

category zone assuming a normal probability density function (that is, the likelihood 

function of the category with respect to the input signal). Fig. 4 shows a stochastic circuit 

used to generate a normal probability density function with mean value η and a dispersion 

σref dependent on the integration time N. A pulsed signal, (the feature signal) is evaluated 

through a P2B(N) converter. Since the output of such digital block follows the binomial 

distribution (1) the probability of coincidence between the output of the block and the mean 

value also follow a binomial distribution (equivalent to a normal distribution if N is 

sufficiently large). Therefore, the switching activity at the output of the comparator in Fig.4 

is proportional to the probability of the feature to be within the category defined by a 

binomial distribution centred at the reference signal (η) (see the two cases shown in Fig. 4). 

From basic theory of probabilities, the relative dispersion of the distribution (σref/N, similar 

to the relative error computed in the previous section) is found to be inversely proportional 

to the square root of the value selected for N (σref/Ν≈p(1-p)/√N). Therefore high (low) 

values of N imply a low (high) relative dispersion.  

If we are interested in the generation of the a posteriori probability function we must 

implement the Bayes formula: 
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where P(Ci|x) is the a posteriori probability, that is the probability of being of class Ci 

given we measure x. P(Ci) are the a priori probability of class Ci and P(x|Ci) are the known 

likelihood functions of Ci with respect to x (probability of measuring ‘x’ given is of the 

class Ci). 

A simple example of two-class problem has been applied using the stochastic circuit shown 

in Fig. 5. Starting with the measurement ‘x’ (a pulsed signal) we generate the likelihood 

PDF functions P(x|A) and P(x|B) that are operated with the a priori probability of classes 

P(A) and P(B)=1-P(A) to estimate the a posteriori probability function P(A|x) using the 

Bayes formula: 
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Results of the circuit implemented are shown in Fig. 6 where we compare circuit 

measurements (symbols) and the expected behaviour (lines) for ηA=0.5, ηB=0.3, 

σA=σB=0.08 and P(A)=0.5. 

The extrapolation to more than one feature (implementation of the joint probability 

distribution function) can be done using different normal PDF generators working in 

parallel (one for each sensor signal that are assumed to be independent). We define those 

blocks as “Multi-dimensional Stochastic Classifiers” (MSCs). In Fig. 5 we show an 

example of those MSC blocks. Note that an MSC bloc would provide a stochastic signal 

with a switching activity proportional to the suitability of the n-dimensional feature vector 

of being included in a given category (that is, the likelihood  function of Ci with respect to x 



P(x|Ci)). We use as many MSC blocks in parallel as categories are defined in the system. 

We assumed the case in which the a priori probabilities of classes are equal and therefore 

the recognition of classes are only dependent on the likelihood PDF functions (thus further 

simplifying the circuit). The MSC blocks are constructed following a competitive scheme 

so that when the internal counter of an MSC block arrive to the end (xi=1) then the internal 

counters of the other MSC blocks (of the other categories) are reset. 

We can compare the performance of the proposed methodology (implementing it in an 

FPGA) with respect to software solutions (use of a microprocessor) and the use of classical 

digital electronics (using an FPGA). In Table 1 we show the comparison between the three 

methodologies. We implemented the comparison between two different classes using 1-

dimensional MSC blocks (with only one feature). Due to the low cost in terms of gates of 

the proposed stochastic solution we can implement since 650 different 1-dimensional 

comparators in an ALTERA STRATIX II EP2S60 IC. Using traditional digital electronics 

we must implement the comparison using different multipliers, dividers, adders and 

comparators along with an embedded memory (to implement a look-up table for the 

exponential function in order to implement the Gaussian likelihood PDF functions). In the 

selected IC we can only implement one single digital comparator in the whole IC. Although 

being faster than the stochastic solution (about 70 times faster), the total performance of the 

proposed solution is one order of magnitude faster than classical implementation due to the 

advantages of parallelism. A higher performance improvement is observed (a factor of 

3000) when compared with software solutions, where computations must be performed 

sequentially.  



4. Results 

We verified the proposed patter-recognition technique to orient an autonomous vehicle in a 

known environment. At each time step, the vehicle computes the distance to the nearest 

walls (parameters n,s,e and w, in Fig. 8). These parameters are the inputs of seven MSCs 

(one for each zone of the plane) configured with specifics mean and sigma values 

(parameters η and N in Fig. 4). Once the vehicle recognizes the environment (the class 

recognized is the zone where it is the vehicle), a predefined movement is selected with the 

objective to reach zone A (see Fig. 8). In different experiments were the vehicle was placed 

randomly in the plane, the time steps needed to reach zone A were computed. In all cases, 

the vehicle was able to reach zone A with a nearly minimum trajectory. In Fig. 9 we 

compare the time steps required to reach zone A (symbols) with the optimum number of 

time steps (solid line). Results show that the itinerary followed by the vehicle is very close 

to the optimum trajectory thus demonstrating that the stochastic system is able to recognize 

the zones at each point of the path followed.   

5. Conclusions 

In this paper we reviewed the main characteristics of stochastic logic. The associated error 

for stochastic-to-binary conversions has been estimated and a methodology to implement 

stochastic computations in cascade has been presented. A complete scheme of a stochastic 

divider is presented for the first time and also a new methodology of probabilistic-based 

pattern recognition analysis using stochastic computing. The proposed methodology may 

represent a low-cost solution for an efficient hardware implementation of pattern 

classification since massive parallel-connected stochastic structures can be built on a single 

chip. The new pattern recognition methodology has been applied to the navigation of an 

autonomous mobile vehicle. 
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Figure captions: 

Fig. 1. Basic concepts for stochastic signals 

Fig.2. Simple logic gates can be used to perform arithmetic computations when using 

stochastic signals 

Fig. 3. Signal correlation impact on stochastic arithmetic blocks 

Fig. 4. General design of a stochastic normal PDF generator 

Fig. 5. Circuit used to estimate the a posteriori PDF function 

Fig. 6. Results of the simple stochastic Bayesian estimator 

Fig. 7. Multi-dimensional stochastic comparator (MSC). Output signal “Category (i)” is 

equal to ‘1’ if sensor signals are within the i-th category. 

Fig. 8. Plane and movement map of the autonomous vehicle 

Fig. 9. Time steps needed by the vehicle to reach zone ‘A’ from different points of the 

plane. 
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Table captions: 

Table 1. Comparison between stochastic, classical digital electronics and software 

implementations. The proposed method is three orders of magnitude faster than software 

and one order of magnitude faster than classical implementation. 
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Table 1: 
 

 

Stochastic methods using 

FPGAs

Classical digital electronics 

using FPGAs
Microprocessor

IC Stratix II EP2s60 Stratix II EP2s60 Intel Q9400 

Technology 90nm 90nm 45nm

Operating Frequency 

(GHz) 0,45GHz 0,45GHz 2,66GHz

Cost 1325,00 USD 1325,00 USD 260,00 USD

Numumber of Processing 

Elements per chip 650 1 1µP

Propagation delay per 

computation (µs) 7 0,113 30,55

Performance (Millions of 

Comparisons per secon) 92,86 8,85 0,03


