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Abstract

The fundamental matrix (FM) describes the geometric relations that exist between two images of the same
scene. Different error criteria are used for estimating FMs from an input set of correspondences. In this
paper, the accuracy and efficiency aspects of the different error criteria were studied. We mathematically
and experimentally proved that the most popular error criterion, the symmetric epipolar distance, is biased.
It was also shown that despite the similarity between the algebraic expressions of the symmetric epipolar
distance and Sampson distance, they have different accuracy properties. In addition, a new error criterion,
Kanatani distance, was proposed and was proved to be the most effective for use during the outlier removal
phase from accuracy and efficiency perspectives. To thoroughly test the accuracy of the different error
criteria, we proposed a randomized algorithm for Reprojection Error-based Correspondence Generation (RE-
CG). As input, RE-CG takes an FM and a desired reprojection error value d. As output, RE-CG generates
a random correspondence having that error value. Mathematical analysis of this algorithm revealed that
the success probability for any given trial is 1− (2/3)2 at best and is 1− (6/7)2 at worst while experiments
demonstrated that the algorithm often succeeds after only one trial.
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1. Introduction

The fundamental matrix (FM) relating two images
(I, I ′) is estimated from a number of correspondences
between I and I ′. A correspondence is a pair of
points (p, p′) on the two images (I, I ′) that are be-
lieved to be projections of the same 3D point. Au-
tomatic algorithms for identifying correspondences
not only introduce errors in the computed locations
of the points (localization errors), but also produce
totally false matches (outliers) (Zhang and Kanade,
1998). To get acceptable results, FM estimation usu-
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ally starts by removing these outliers. Then, a one-
step FM estimation technique such as the eight-point
algorithm (Hartley and Zisserman, 2004; Zhang and
Kanade, 1998) is used to obtain a better estimate of
the FM by taking into account the effect of all the in-
liers rather than just a small, 7-point subset. Finally,
the result obtained by the one-step method is refined
using an iterative technique. FM error criteria play
a vital role in the process of the FM estimation. An
FM error criterion is a real-valued function that mea-
sures the amount of deviation of a given correspon-
dence from the epipolar constraint parameterized by
a given FM. FM error criteria are used in three dif-
ferent situations:

1. During the outlier removal phase of the FM es-
timation, an error criterion is used as a distance
function to measure the proximity of each corre-
spondence to the current FM hypothesis.
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2. During the iterative refinement of the FM, an
error criterion is used as a cost function to be
minimized over the space of rank-2 matrices.

3. An error criterion can also be used as an accuracy
measure to compare different solutions obtained
by different estimation methods.

The evaluation of the FM error criteria can be
thought of as a primitive operation that is performed
many times throughout the process of the FM es-
timation. Assuming that the outlier removal phase
performs L iterations over a set of N correspondences
that consist of n inliers and N − n outliers, the error
criterion is evaluated LN times. Also, if the iter-
ative refinement runs M iterations, the error crite-
rion is evaluated at least Mn times. If the iterative
refinement phase uses a 7-tuple parameterization of
the FM and forward difference is used to estimate
the Jacobian of the residual vector, the error crite-
rion needs to be evaluated 7Mn additional times.
Hence, the evaluation of the error criterion should
be as efficient as possible. This is more crucial when
it is desired to compute the FM for each pair of im-
ages in an unorganized collection of thousands of im-
ages as in (Snavely et al., 2008). In this paper, the
different FM error criteria were studied from both
the accuracy and efficiency perspectives. We math-
ematically and experimentally proved that the most
popular error criterion, the symmetric epipolar dis-
tance, is biased and that its accuracy properties are
different from those of Sampson distance despite the
similarity of the algebraic expressions of both crite-
ria. In addition, we proposed a new error criterion,
Kanatani distance, and it was shown experimentally
that it is the most effective criterion for use during
the outlier removal phase. We evaluated the accu-
racy and efficiency of the different error criteria in
approximating the gold standard error criterion, the
reprojection error, using different values of the re-
projection error. To permit this evaluation, we in-
troduced a new randomized algorithm for RE-based
Correspondence Generation (RE-CG). RE-CG takes
a reprojection error value and an FM at input and
produces at output a randomly generated correspon-
dence having that reprojection error value. The RE-
CG algorithm is mathematically analyzed and it is

shown that the success probability for any given trial
is 1− (2/3)2 at best and 1− (6/7)2 at worst. Exper-
iments revealed that the algorithm usually succeeds
after just one trial. The remainder of this paper is
organized as follows. The relevant related work is
reviewed in Section 2. The mathematical notations
adopted in this paper are presented in Section 3. Sec-
tion 4 presents the existing FM error criteria. Section
5 mathematically proves that the symmetric epipolar
distance (SED) is biased and that SED is dissimilar
from Sampson distance despite the similarity between
their algebraic expressions. Section 6 proposes the
Kanatani distance criterion. Section 7 proposes the
RE-CG algorithm and analyzes its success probabil-
ity. The experimental evaluations are described and
their results are discussed in Section 8. Finally, the
research is concluded in Section 9.

2. Related Work

The algebraic distance (R) was the first error cri-
terion to appear in the FM literature (Hartley, 1992;
Olsen, 1992; Shashua, 1992). It was used to esti-
mate the FM from a number of noisy correspondences
by minimizing the sum of squares of algebraic dis-
tances (

∑
i R2

i ). The advantage of this formulation is
that the cost function to be minimized is quadratic
in the FM coefficients and hence can be solved in
one step (linear least-squares problem) (Forsyth and
Ponce, 2002; Hartley and Zisserman, 2004; Zhang and
Kanade, 1998). Luong et al. (1993) showed that R
is biased. As alternatives, they introduced the sym-
metric epipolar distance (SED) and also adapted the
Sampson distance (RE1) for use in the FM estima-
tion. In their FM estimation experiments over syn-
thetic data, they concluded that the cost functions∑
i SED2

i and
∑
i RE12i give similar results but su-

perior to those obtained by minimizing
∑
i R2

i using
the eight point algorithm. However, the way they
utilized in their experiments to evaluate the differ-
ence between the exact (ground truth) FM and the
estimated FM was not precise enough and so their
conclusions are arguable. This is because the way
they used to evaluate the difference between two FMs
measured only the difference between the exact and
estimated locations of the epipoles while ignoring the
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differences introduced by the other 3 parameters of
the FM. A seemingly better way of measuring the dif-
ference between FMs was used by Zhang and Kanade
(1998) and it was found that the cost function de-
fined by SED gives slightly inferior results to those
obtained by RE1 and RE. Their experiment was per-
formed on a single stereo pair of real images where
the ground truth FM was known a priori. Based on
this result alone, Hartley and Zisserman (2004) ad-
vised to avoid using SED as cost functions for FM
iterative refinement. Torr and Murray (1997) found
in their experiments that RE1 agrees with RE for up
to the fourth or fifth significant digit. However, they
did not report whether this is true however large RE
is. In this paper, we verified that RE1 starts to lose
accuracy as RE exceeds 100 pixels. The similarity
between the algebraic expressions of RE1 and SED
was observed in different studies (Luong et al., 1993;
Torr and Murray, 1997; Torr et al., 1998). This ob-
servation led to the belief that RE1 and SED are
similar. However, we mathematically proved that
SED2 ≥ 2RE12 which means that SED and RE1 give
dissimilar values. In addition, the experimental re-
sults obtained in this paper confirm that SED and
RE1 behave differently. For example, our experimen-
tal results show that SED tends to over-estimate RE
whereas RE1 tends to under-estimate RE for large
values of RE. For small values of RE, SED over-
estimates RE whereas RE1 well-estimates RE. Being
immediately physically intuitive, SED has been the
most popular error criterion in use in prominent com-
puter vision libraries such as OpenCV (Bradski and
Kaehler, 2008; OpenCV: Open Computer Vision Li-
brary, 2009), VxL (VxL, 2009), and Bundler (Snavely
et al., 2008). Many recent books in computer vision
still present the iterative refinement of the FM using
SED (Faugeras et al., 2001; Forsyth and Ponce, 2002;
Ma et al., 2004). Furthermore, most of the compar-
ative studies used SED as an accuracy measure to
compare the accuracy of the FMs estimated by differ-
ent methods (Armangué and Salvi, 2003; Forsyth and
Ponce, 2002; Hartley and Zisserman, 2004). However,
we mathematically and experimentally proved that
SED2 is a biased estimator of the gold standard er-
ror measure RE2. Consequently, the values obtained
by SED2 should not be used to judge the relative

accuracy of different FM estimates.

3. Mathematical Notations

In the rest of this paper, the homogeneous coordi-
nate vector of a 2D Euclidean point p = ( x y )T

is denoted by p̃ = ( x y 1 )T . The point p̃ lies on
the homogeneous line l = ( l1 l2 l3 )T if it satis-
fies the line equation lT p̃ = p̃T l = l1x+ l2y + l3 = 0.
The function n(l) = ( l1 l2 )T gives the inhomoge-
neous coordinates of the vector normal to l, whereas
u(l) = R(−π2 )n(l) = ( l2 −l1 )T gives the inhomo-
geneous coordinates of the vector tangent to l. The
signed distance d(q, l) of a point q = ( x y )T from
a line l is given by

d(q, l) = lT q̃
|n(l)| =

lT q̃√
l21 + l22

(1)

The reader is referred to (Fathy, 2010; Hartley and
Zisserman, 2004) for more details about homogeneous
representations. Let I and I ′ be two perspective im-
ages of the same scene, F be the 3x3 fundamental
matrix (FM) relating I and I ′, and p̃ and p̃′ be the
image projections of some 3D point P on I and I ′.
The epipolar constraint can then be written as fol-
lows

p̃TF p̃′ = 0 (2)

The epipolar constraint function R: R4 → R can also
be written in the following equivalent ways:

R(B) = R(p, p′) = R(x, y, x′, y′) (3)

= p̃TF p̃′ (4)

= p̃T l = l1x+ l2y + l3 (5)

= l′T p̃′ = l′1x
′ + l′2y

′ + l′3 (6)

where l = F p̃′ is the epipolar line in I that corre-
sponds to p̃′ and l′ = (p̃TF )T = FT p̃ is the epipolar
line in I ′ that corresponds to p̃ (Forsyth and Ponce,
2002; Hartley and Zisserman, 2004). The epipolar
constraint may be interpreted in a number of differ-
ent ways. These interpretations provide the bases for
some FM error criteria such as SED and RE. It may
be interpreted as a line constraint that tests the in-
cidence of the point p′ on the line l′ = FT p̃ or the
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incidence of the point p on the line l = F p̃′. This is
the point-on-line interpretation of the epipolar con-
straint. It may also be interpreted as testing the
incidence of the correspondence B = (x, y, x′, y′) =
(p, p′) ∈ R4 on the hyper-surface S implicitly de-
fined by the epipolar constraint R(B) = 0 (we call S
as the epipolar hyper-surface). This is the point-on-
surface interpretation of the epipolar constraint. The
reader is referred to (Faugeras et al., 2001; Forsyth
and Ponce, 2002; Hartley and Zisserman, 2004) for
more details about epipolar geometry.

4. Existing FM Error Criteria

The most-widely used error criteria are reviewed
in this section. We started by describing the gold
standard criterion, which is the reprojection error
(RE). Next, the algebraic distance (R), the symmet-
ric epipolar distance (SED), and Sampson distance
(RE1) are presented. In the following discussion, it
is assumed that (pi, p

′
i) is the correspondence whose

error is to be evaluated, F is the fundamental ma-
trix, and l = F p̃′i and l′ = FT p̃i are the homoge-
neous coordinate vectors of the epipolar lines in the
two images.

4.1. Reprojection Error (RE)

The reprojection error (RE) is defined as the
orthogonal distance in the 4D space defined by
(x, y, x′, y′) between the correspondence (pi, p

′
i) and

the 4D quadric S implicitly defined by the equation
ũTF ṽ′ = 0. It is computed by solving the following
optimization problem:

RE2
i = min

p̂i,p̂′i
d2(pi, p̂i) + d2(p′i, p̂

′
i) (7)

subject to ˜̂pTi F
˜̂p′i = 0

RE measures the minimum distance needed to bring
(pi, p

′
i) into perfect correspondence. The perfect

correspondence (p̂i, p̂
′
i) that minimizes (7) is called

the optimally-corrected correspondence. It can be
computed using Hartely-Sturm triangulation (Hart-
ley and Sturm, 1997). Assuming the errors in the four
measured coordinates (x, y, x′, y′) are independent
and identically-distributed random variables from

a zero-mean Gaussian distribution, the optimally-
corrected points (p̂i, p̂

′
i) are the maximum likelihood

estimate of the true correspondence (p̄i, p̄
′
i) (Hartley

and Zisserman, 2004; Kanatani et al., 2008). As a re-
sult, RE is regarded as the perfect error criterion and
is considered the gold standard (Hartley and Zisser-
man, 2004). Finding the rank-2 FM that minimizes
the sum of squares of reprojection errors is possi-
ble using non-linear least squares methods such as
Levenberg-Marquardt (Hartley and Zisserman, 2004;
Zhang and Kanade, 1998). However, Hartley-Sturm
triangulation involves finding the roots of a polyno-
mial of degree 6, making RE relatively expensive to
compute (Hartley and Sturm, 1997; Hartley and Zis-
serman, 2004; Kanatani et al., 2008). If we take into
consideration the frequency in which the error crite-
rion is evaluated, it is necessary to find efficient, yet
accurate, alternatives to RE. In this paper, we used
RE as a gold standard against which other error cri-
teria were evaluated.

4.2. Algebraic Distance (R)

The algebraic distance or epipolar error is the sim-
plest criterion. It is defined as

Ri = R(pi, p
′
i) = p̃Ti F p̃

′
i (8)

The algebraic distance does not have a physical
meaning. It is proportional to the distance of a point
from the epipolar line defined by the corresponding
point:

p̃Ti F p̃
′
i = λd(pi, l) = λ′d(p′i, l

′) (9)

where l = F p̃′i and l′ = FT p̃i are the homogeneous
coordinate vectors of the epipolar lines in the two im-
ages, and λ =

√
l21 + l22 and λ′ =

√
l′21 + l′22 . It was

proved that λ and λ′ introduce a bias and tend to
bring the epipoles towards the image center (Luong
et al., 1993; Zhang and Kanade, 1998). Due to this
reason, it is used neither as a distance function for the
outlier removal phase nor as an accuracy measure.
The eight-point FM estimation method employs the
sum of squared algebraic distances

∑
i R2

i as a cost
function where the solution is forced to be rank-2
in a post-processing step (Forsyth and Ponce, 2002;
Hartley and Zisserman, 2004; Zhang and Kanade,
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1998). Even though it is not very accurate, the eight-
point method has the advantage of being a one-step
method. So, it is usually used after outlier-removal
to obtain an initial estimate of the FM that takes
into account the whole set of inliers rather than just
a seven-point sample. This initial estimate is then
fed into an iterative refinement procedure to obtain
a more accurate solution by minimizing a more accu-
rate error criterion.

4.3. Symmetric Epipolar Distance (SED)

An alternative error measure that attempts to
eliminate the bias introduced by the algebraic dis-
tance is the symmetric epipolar distance SED:

SED2
i = d2(pi, l) + d2(p′i, l

′)

=

(
1

l21 + l22
+

1

l′21 + l′22

)
R2
i (10)

It measures the geometric distance of each point to its
epipolar line. Being immediately physically intuitive,
this is the most widely used error criterion in prac-
tice during the outlier removal phase (OpenCV: Open
Computer Vision Library, 2009; Snavely et al., 2008;
VxL, 2009), during iterative refinement (Faugeras
et al., 2001; Forsyth and Ponce, 2002; Snavely et al.,
2008), and in comparative studies to compare the ac-
curacy of different solutions (Armangué and Salvi,
2003; Forsyth and Ponce, 2002; Hartley and Zisser-
man, 2004; Torr and Murray, 1997). Besides being
physically intuitive, SED has the merit of being ef-
ficient to compute. However, we proved in Section
5.1 that SED provides a biased estimate of the gold
standard criterion RE.

4.4. Sampson Distance (RE1)

The Sampson distance RE1 is given by

RE12i = R2
i / |∇Ri|2

=
1

l21 + l22 + l′21 + l′22
R2
i (11)

RE1 provides a first-order approximation of RE (Lu-
ong et al., 1993; Torr and Zissermann, 1997; Torr
and Murray, 1997). It measures the distance between

the correspondence (pi, p
′
i) and its Sampson correc-

tion (Torr and Zissermann, 1997). Although the alge-
braic expressions of RE1 and SED look similar (Lu-
ong et al., 1993; Torr and Murray, 1997), we theoreti-
cally and experimentally proved that they have quite
different accuracy properties in Sections 5.2 and 8.2,
respectively. Although less popular than SED, RE1
has been used as a distance function during the out-
lier removal phase (Kovesi, 2009; Torr and Murray,
1997) and as an accuracy measure for comparing dif-
ferent methods (Torr and Murray, 1997). In addi-
tion to the Levenberg-Marquardt formulation, min-
imization of

∑
i RE12i as a cost function has been

formulated as an iterative eigenvalue problem us-
ing the Fundamental Numerical Scheme (FNS) and
its constrained variant (CFNS) (Chojnacki et al.,
2004; Zhang and Kanade, 1998). The (parameter-
ized) Levenberg-Marquardt and the CFNS formula-
tions yield a rank-2 matrix, whereas the FNS does
not necessarily yield a rank-2 matrix. So, the re-
sult of FNS must be post-processed to be rank-2.
Torr and Murray experimentally showed that the val-
ues obtained by RE1 agree with the values obtained
by RE on up to the 4th or even the 5th significant
digit (Torr and Murray, 1997). However, they did
not mention whether this is true for relatively small
as well as large values of RE. This is important since
if RE1 deviates from RE for large values, using RE1
during the outlier removal phase will be less recom-
mended. In Section 8, the accuracy of RE1 for small
values as well as large values of RE is experimentally
evaluated.

5. SED Relations to Other Criteria

In this section, we theoretically established the re-
lation between SED and the gold standard criterion
RE and its first-order approximation RE1. In par-
ticular, we showed that SED2 is a biased estimator
of RE2 in Section 5.1. In addition, we confirmed
that despite the similarity of the algebraic expres-
sions of SED2 (10) and RE1 (11), there is an inequal-
ity between SED2 and RE12 similar to the inequality
established between SED2 and RE2 in Section 5.1.
In the following discussion, it is assumed that F is
the fundamental matrix, Bi = (pi, p

′
i) ∈ R4 is the
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Figure 1: Symmetric epipolar distance SED is given by
SED2 = d2(p, q) + d2(p′, q′). Reprojection error RE is given
by RE2 = d2(p, p̂) + d2(p′, p̂′).

noisy correspondence whose error is to be evaluated,
Ai = (p̂i, p̂

′
i) is the closest perfect correspondence (i.e.

optimal correction) to Bi, and l = F p̃′i and l′ = FT p̃i
are the homogeneous coordinate vectors of the epipo-
lar lines corresponding to p′i and pi, respectively.

5.1. SED and RE

Despite the popularity of SED2 in computer vision
software libraries and literature, we mathematically
proved that SED2 provides a biased estimate of RE2.
Since Bi = (pi, p

′
i) is noisy, pi does not lie on the

epipolar line l. One way to correct Bi is to fix p′i and
replace pi by any other point lying on l. Suppose
we correct Bi = (pi, p

′
i) to Ci = (qi, p

′
i), where qi is

the orthogonal projection of pi onto l, as shown in
Fig. 1. It follows that q̃Ti l = q̃Ti F p̃

′
i = 0 and so the

correspondence Ci lies on the epipolar hyper-surface
S. Since Ai is the closest correspondence in S to Bi,
it follows that

d2(Bi, Ci) ≥ d2(Bi, Ai) (12)

d2(pi, qi) + d2(p′i, p
′
i) ≥ RE2

i (13)

d2(pi, l) ≥ RE2
i (14)

An alternative way to correct Bi = (pi, p
′
i) is to fix

pi and replace p′i by any other point on l′. Suppose
we correct Bi = (pi, p

′
i) to Di = (pi, q

′
i) where q′i is

the orthogonal projection of p′i onto l′. So, l′T q̃′i =
p̃Ti F q̃

′
i = 0 and it follows that the correspondence Di

lies on the epipolar hyper-surface S. Thus,

d2(Bi, Di) ≥ d2(Bi, Ai) (15)

d2(pi, pi) + d2(p′i, q
′
i) ≥ RE2

i (16)

d2(p′i, l
′) ≥ RE2

i (17)

From (14) and (17), we have

d2(pi, l) + d2(p′i, l
′) ≥ 2RE2

i (18)

SED2
i ≥ 2RE2

i (19)

SED2
i = 2RE2

i + 2b2i →
SED2

i

2
= RE2

i + b2i (20)

where b2i is a bias term. Our experimental results
showed that b2i is a non-constant whose value de-
pends on the coordinates of the correspondence Bi
and the FM F . That is, if Mi and Mj are two cor-
respondences having the same squared reprojection
error RE2, SED2 may prefer Mi to Mj by giving Mi

a higher bias b2i than the bias b2j which is given to
Mj . Therefore, estimating the FM by minimizing the
cost function

∑
i SED2

i may lead to sub-optimal (i.e.
biased) results. During the outlier removal phase,
correspondences that have the same RE2 with re-
spect to the same FM hypothesis should be given
the same classification as inliers or outliers. If SED
is adopted as the distance function during the outlier
removal phase, SED may penalize some of the corre-
spondences by giving them higher bias than the re-
maining correspondences even though they have the
same reprojection error (RE). In turn, this will lead
to inconsistent classification of some of the correspon-
dences as outliers (i.e., false outliers). Finally, SED
should not be used as an accuracy measure to com-
pare the accuracy of different solutions, since SED
may penalize one solution by giving it an overall bias
that is greater than the overall bias given to the other
solutions.

5.2. SED and RE1

Even though the algebraic expressions of SED2 and
RE12 look similar (Luong et al., 1993; Torr and Mur-
ray, 1997) at first glance, it should not be concluded
that they have the same accuracy properties. A more
thorough investigation of their algebraic expressions
reveals that there is a discrepancy between SED2 and
RE12 similar to the discrepancy that exists between
SED2 and RE2 as follows. Since

l21 + l22 + l′21 + l′22 ≥ l21 + l22 (21)
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it follows that

1

l21 + l22
≥ 1

l21 + l22 + l′21 + l′22
(22)

Similarly, we have

1

l′21 + l′22
≥ 1

l21 + l22 + l′21 + l′22
(23)

From (22) and (23), we have

1

l21 + l22
+

1

l′21 + l′22
≥ 2

l21 + l22 + l′21 + l′22
(24)

Multiplying both sides by 0.5R2 yields

1

2

(
1

l21 + l22
+

1

l′21 + l′22

)
R2 ≥ 1

l21 + l22 + l′21 + l′22
R2

(25)
Referring to (10) and (11), we can finally rewrite (25)
as follows

SED2

2
≥ RE12 (26)

Besides the discrepancy between SED2 and RE12 in-
dicated by (26), our experimental results indicated
another aspect of the difference between SED2 and
RE12: while SED2 tends to over-estimate RE2 for
all values of RE2, RE12 well-estimates RE2 for cor-
respondences having small values of RE2, and under-
estimates RE2 with correspondences having large val-
ues of RE2. This emphasizes that SED2 and RE12

have quite different accuracy properties.

6. Kanatani Distance (REK)

Recently, Kanatani et al. have proposed an
iterative triangulation technique (Kanatani et al.,
2008). It uses an iterative scheme to approximate the
optimally-corrected points (p̂, p̂′). The corrected cor-
respondence can then be fed into a one-step triangu-
lation technique such as the Direct Linear Transform
(DLT) to find the coordinate vector of the space point
that generates this correspondence (Hartley and Zis-
serman, 2004; Kanatani et al., 2008). Kanatani’s
iterative correction scheme can be used to define
a new error criterion which we call Kanatani dis-
tance (REK). REK proceeds by approximating the

optimally-corrected points (p̂, p̂′) using the iterative
correction scheme, and then measuring the squared
distance between (p̂, p̂′) and (p, p′) in the same way
as equation (7). Since one iteration of Kanatani’s
correction scheme is equivalent to Sampson correc-
tion (Kanatani et al., 2008), it follows that REK is
equivalent to RE1 if we apply only one iteration of
the iterative scheme. Further iterations of the iter-
ative scheme should give more accurate results than
those obtained by RE1. Our experimental results as-
sert that REK is the most accurate criterion to use
during the outlier removal phase. Even though it is
iterative, REK exhibits an adaptive nature. It in-
creases the number of iterations for large values of
the reprojection error in order to maintain the accu-
racy. Our experiments demonstrated that, for small
values of the reprojection error, REK executes just
a few iterations to converge. As the reprojection er-
ror increases, the number of iterations taken by REK
also increases, but at a lower rate. Correspondences
with coordinates corrupted with zero-mean Gaussian
noise and with standard deviations up to 10 pixels
were used to test the accuracy of Kanatani’s iterative
scheme (Kanatani et al., 2008). The results obtained
by Kanatani’s iterative correction scheme agreed, in
terms of accuracy, with those obtained by Hartley-
Sturm triangulation. However, Kanatani’s iterative
correction scheme took significantly lower process-
ing time than that taken by Hartley-Sturm triangu-
lation (Kanatani et al., 2008). For the purpose of
triangulation, it is sufficient to test with standard
deviations up to 10 pixels since it is assumed that
outliers have been removed before the triangulation
phase. If we wish to use REK during the outlier re-
moval phase, we must study the accuracy aspects of
REK when the noise levels exceed 10 pixels. This is
because the FM defined by a particular random sub-
set of the correspondences might not fit well all the
available correspondences. Consequently, some of the
error levels involved are expected to be rather high.
We took this into our consideration so that the ex-
periments tried very large (106 pixels) as well as very
small (10−6 pixels) values of the reprojection error.
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7. RE-Based Correspondence Generation
(RE-CG)

Later on, we shall test the relative accuracy of the
different error criteria at different levels of RE. So, we
must be able to specify a desired value of RE and ran-
domly generate a noisy correspondence B = (p, p′)
that has that value of RE. The algorithm described
below takes at input a desired RE value (say d), the
parameters of two cameras (C,C ′), and the corre-
sponding FM F . The algorithm returns a random
noisy correspondence B such that RE(B) = d, where
RE is measured with respect to the FM F given at
the input. For m trials, the algorithm has a success
probability of at least 1 − (6/7)2m. In practice, the
algorithm succeeds after just one trial.

7.1. The Randomized Algorithm

The correspondences that satisfy the epipolar con-
straint (perfect correspondences) can be thought of
as the points in the 4D space, defined by the coor-
dinates (x, y, x′, y′), that lie on the hyper-surface S
implicitly defined by

R(p, p′) = p̃TF p̃′ = 0 (27)

This way, we can restate our problem as that of gener-
ating a 4D point whose distance from the quadric S is
d. Our solution to this problem starts by randomly
generating a perfect correspondence A = (p̂, p̂′) for
which R(A) = 0. This can be performed by ran-
domly generating a 3D point P in front of both cam-
eras and finding its images on both cameras. Alterna-
tively, we can use the parametric form of the epipolar
hyper-surface proposed in Section 7.2. Then, we find
if there is a correspondence B = (p, p′) whose dis-
tance from the hyper-surface S is d and that has A
as the nearest point on S. If B exists, it follows that−−→
AB must be orthogonal to S at A and that

∣∣∣−−→AB
∣∣∣ = d:

B −A = ±d∇̂R(A) (28)

where

∇̂R(p̂, p̂′) =
1

|∇R(p̂, p̂′)|∇R(p̂, p̂′)

=
1√∣∣∣n(l̂)
∣∣∣
2

+
∣∣∣n(l̂′)

∣∣∣
2

(
n(l̂)

n(l̂′)

)

=
1√

l̂21 + l̂22 + l̂′21 + l̂′22




l̂1
l̂2
l̂′1
l̂′2


 (29)

l̂1 and l̂2 are the first two coordinates of the epipo-
lar line l̂ = F ˜̂p′ passing through p̂. Similarly, l̂′1
and l̂′2 are the first two coordinates of the epipo-

lar line l̂′ = FT ˜̂p passing through p̂′. So, the two
points B1 = A+ d∇̂R(A) and B2 = A− d∇̂R(A) are
computed and RE is evaluated at each point using
Hartley-Sturm correction as described in section 4.1.
If one of them has RE = d, the algorithm returns
it. If both of them have smaller REs, the trial fails
and the algorithm makes a new trial starting from a
different perfect correspondence generated randomly.
We found, in practice, that this strategy converges in
most of the cases after the first trial. We provided
an explanation of this phenomenon here. Given the
noisy correspondence B, the nearest perfect corre-
spondence is obtained by solving the following opti-
mization problem:

argmin
C

d2(B,C)

subject to R(C) = 0 (30)

By Lagrange’s theorem for constrained optimization,
it is easy to see that the correspondence A is a
critical correspondence of the optimization problem
(30). Given the correspondence B = (p, p′) as in-
put, the Hartley-Sturm correction scheme solves a
more constrained version of the optimization prob-
lem (30). Rather than considering all the correspon-
dences lying on S, it just considers every correspon-
dence C = (q, q′) from S with the property that (q, q′)
are the orthogonal projections of (p, p′) on the epipo-
lar lines lq = F q̃′ and lq′ = FT q̃, respectively. If we
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prove that A = (p̂, p̂′) satisfies the additional con-
straints introduced by the Hartley-Sturm optimiza-
tion, it will follow that A is one of the critical points
of the Hartley-Sturm optimization as it is a critical
point of the more general optimization problem (30).
Substituting (29) into (28), we obtain

(
p− p̂
p′ − p̂′

)
= ± d

|∇R(p̂, p̂′)|

(
n(l̂)

n(l̂′)

)
(31)

where l̂ = F ˜̂p′ and l̂′ = FT ˜̂p are the epipolar lines
passing through p̂ and p̂′, respectively. It follows

that
−→̂
pp is orthogonal to l̂. So, p̂ is the orthogo-

nal projection of p onto l̂. Similarly, p̂′ is the or-
thogonal projection of p′ onto l̂′. It follows that
the correspondence A lies in the domain of Hartley-
Sturm’s correction optimization. Since A is a criti-
cal point of the more general optimization problem
given in (30), it follows that A is one of the criti-
cal points considered by Hartley-Sturm’s optimiza-
tion. Since the Hartley-Sturm algorithm identifies
these critical points by finding the roots of a polyno-
mial of degree six (Hartley and Sturm, 1997; Hartley
and Zisserman, 2004; Kanatani et al., 2008), there
are either 2, 4, or 6 real critical points, with A be-
ing one of these points. Beside these critical points,
Hartley-Sturm optimization considers an additional
point determined by an asymptotic analysis of the
function being optimized(Hartley and Sturm, 1997;
Hartley and Zisserman, 2004; Kanatani et al., 2008).
So, there are 3 possible cases {C3, C5, C7} where the
number of candidate solutions in case Cn is n. As the
probability of occurrence of each case in {C3, C5, C7}
is unknown, we just consider the success probability
in each case separately. For a case involving n candi-
dates, we assume that all such candidates are equally
likely to be the optimal solution. In this case, the
failure probability is (n − 1)/n. As described ear-
lier, each trial of the algorithm involves two sub-trials
(one with B1 and another with B2). The best situ-
ation occurs when each sub-trial involves the fewest
possible number of candidates. The failure probabil-
ity of the trial in such a case is (2/3)(2/3) = (2/3)2

and thus the success probability is 1− (2/3)2. In the
worst case, each sub-trial involves 7 candidates. The
success probability in this case is 1 − (6/7)2. If the

algorithm performs m trials, failure happens when all
the 2m sub-trials fail. So, the success probability is
1− (2/3)2m at best and 1− (6/7)2m at worst.

7.2. A Parametric Form for The Epipolar Hyper-
surface

For very large values of RE, we have found in prac-
tice that the number of trials, needed by the algo-
rithm to succeed, increases. To solve this problem, we
found that choosing a perfect correspondence, such
that its distance from the epipoles is proportional to
the specified RE value d, retains the success rate of
the algorithm. It is not clear how to control how far
the generated correspondence is from the epipoles by
simply generating a 3D point and projecting it. So,
we have proposed an alternative parameterization of
the epipolar hyper-surface that makes it possible to
control the distance of the generated correspondence
from the epipoles. Assuming that the two epipoles
do not lie at infinity, the parameterization is given
by

C(t, d, d′) =

(
p(t, d)
p′(t, d′)

)

=

(
e+ dû(l(t))
e′ + d′û(l′(t))

)
(32)

The parameter t selects the pair of corresponding
epipolar lines (l(t), l′(t)) onto which the generated
correspondence lies. The parameters (d, d′) control
the distances of the two generated points from the
corresponding epipoles (e, e′). The vector function
û(l) gives the unit vector tangent to the line l. It is
defined as:

û(l) =
1

|u(l)|u(l) (33)

The epipolar line l(t) is defined as the line pass-
ing through the epipole a1 = ẽ and the point

a2(t) = ẽ +
(
cos(t) sin(t) 0

)T
. The coordi-

nate vector l(t) is found by forming the cross prod-
uct l(t) = a1 × a2(t). The coordinate vector l′(t) is
simply computed as l′(t) = FT p̃(t, 1). In case the
first epipole e is at infinity, we define p(t, d) simply
as ti + de if e and i are linearly independent, where

i =
(

1 0
)T

. Otherwise, we define it as tj + de,
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where j =
(

0 1
)T

. In case the second epipole
e′ is at infinity, we evaluate p′(t, d) as the 2D point
equivalent to the point with homogeneous coordinate

vector
((

e′T 0
)T × l′(t)

)
+ d′

(
e′T 0

)T
.

Equation (32) makes it possible to explicitly con-
trol the distance of the generated pair of points from
the epipoles by providing suitable values for the pa-
rameters d and d′. To generate a random correspon-
dence with this equation, we generate t from the uni-
form distribution U(−π, π), and d and d′ from the
zero-mean Gaussian distribution with standard devi-
ation 1000 RE. We found, in practice, that this leads
to a high success rate.

8. Experiments

Two experiments are conducted. The first experi-
ment tests the success rate of the RE-CG randomized
algorithm while the second experiment compares the
performance of the three error criteria SED, RE1, and
REK against the gold standard, RE. The experiments
were conducted on a Dell Vostro notebook equipped
with an Intel Core 2 Duo T7500 (2.2 GHz) processor
and 2.0 GB RAM. All computations were performed
in double precision. The experiments generate pairs
of random cameras. Each camera is parameterized
by a position P , an orientation R (R is the rotation
matrix that transforms the world axes so that they
are parallel to the axes of the camera), a focal length
f , and a principal point (u, v). The frame of the
first camera is always taken coincident with the world
frame. That is, the experiments set P = 0 and R = I.
The position P ′ of the second camera is selected ran-
domly on the unit sphere centered at the origin. As-
suming that U(a, b) is the uniform distribution of the
real numbers in [a, b], the generation of P ′ is done by
generating two random angles s and t from the distri-
butions U(−90, 90) and U(0, 360), respectively, and
setting P ′ = ( cos s cos t, sin s, cos s sin t ). The
orientation R′ of the second camera is obtained by
generating 3 random angles θ, φ, and ψ from the dis-
tributions U(−135, 135), U(−90, 90), and U(0, 360),
respectively, and setting R′ as the product of the ele-
mentary rotations Ry(θ)Rx(φ)Rz(ψ). Assuming that
N(a, b) is the normal distribution with mean a and

Figure 2: For each value of RE (on the x-axis), the plot shows
the mean number of trials taken by RE-CG to succeed.
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standard deviation b, the focal lengths of the cam-
eras are taken from N(favg = 1300, σ = 250). The
principal point (u, v) of each camera is obtained by
taking u and v from N(uavg = 399.5, σ = 133.33)
and N(vavg = 299.5, σ = 100), respectively. The
experiments generate random 3D points in a cube
C = [−3 × 105, 3 × 105]3. That is, each coordinate
belongs to the interval [−3× 105, 3× 105].

8.1. RE-CG Success Rate

This experiment practically tests the success rate
of the proposed randomized algorithm RE-CG. Given
a value of RE, the experiment generates two ran-
dom cameras (C,C ′), and runs RE-CG twice: the
first with perfect correspondences being generated by
generating and projecting 3D points, while the other
with perfect correspondences being generated by us-
ing the parametric form of the epipolar hyper-surface
proposed in section 7.2. The number of trials per-
formed to reach success by each of these two variants
of RE-CG is recorded. If a given algorithmic variant
makes 200 trials (arbitrary number) without success,
it terminates with failure. The experiment is per-
formed for different values of RE. At each value of
RE, the experiment is repeated 1000 times and the
average as well as the standard deviation of the num-
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Figure 3: For each value of RE (on the x-axis), the plot shows
the standard deviation of the numbers of trials taken by RE-
CG to succeed.
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bers of trials made by each algorithmic variant are
computed. Figure 2 graphs the mean number of tri-
als each algorithmic variant makes against RE. Both
algorithmic variants have the mean number of itera-
tions fixed at one as long as RE < 1000. Beyond this,
only the parametric variant maintains an average of
one trial. Figure 3 graphs the standard deviation of
the number of trials each algorithmic variant makes
against RE. For all values of RE, the number of tri-
als made by the parametric variant has zero deviation
from the mean (which is one trial). The deviation of
the other variant becomes non-zero when RE exceeds
1000. Let the value of RE at which the performance
of the Generate & Project (GP) variant starts to de-
grade be denoted by dv. For the current experimental
settings, dv = 1000 pixels. The particular value of dv
depends on two factors. The first is the values of
the focal lengths used in the generation of the ran-
dom cameras. Indeed, increasing favg amplifies the
value of dv. When the experiment was repeated with
favg = 13, 000 (which is 10 times larger), the value
of dv increased to about 104 (which is also 10 times
larger). The other factor is how far the projection of
the cube C lies from the epipoles. Although dv can be
increased by choosing C in such a way that it projects

Figure 4: For each value of RE (on the x-axis), the plot shows
the mean relative differences between the error criteria and
RE.
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far enough from the epipoles, it is not clear how this
can be done. The natural solution is to generate the
correspondence directly in the image space where it
is easy to control the distance of the generated cor-
respondence from the epipoles. Thus, RE-CG often
succeeds after the first trial using both algorithmic
variants when the desired value of RE is relatively
small. Beyond this, only the parametric variant of
the algorithm retains the ability to achieve success
after one iteration.

8.2. FM Error Criteria

The experiment studies the nature of the bias term
introduced by SED. The experiment also measures
the accuracy and efficiency of RE1 and REK in ap-
proximating the gold standard RE for different lev-
els of reprojection error (RE). For every level d of
RE, the experiment generates two random cameras
(C,C ′), and a random correspondence (p, p′) that has
a reprojection error d using the RE-CG algorithm.
The experiment then evaluates each of the tested er-
ror criteria (RE, SED, RE1, and REK) at the gener-
ated correspondence (p, p′) and records the following
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Figure 5: For each value of RE (on the x-axis), the plot shows
the standard deviations of the relative differences between the
error criteria and RE.
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measurements (DS, D1, DK, TE, TS, T1, TK, IK):

DS =
0.5SED2 − RE2

RE2 ∗ 100% =
b2

RE2 ∗ 100%(34)

D1 =
RE12 − RE2

RE2 ∗ 100% (35)

DK =
REK2 − RE2

RE2 ∗ 100% (36)

(37)

DS, D1, and DK measure the relative difference (in
percentage) between the error criteria and the gold
standard RE. TE, TS, T1, and TK are the times
taken to evaluate RE, SED, RE1, and REK, re-
spectively. IK is the number of iterations taken by
Kanatani’s iterative correction scheme. We have set
the maximum iteration count of Kanatani’s iterative
correction scheme to 1000 and its convergence con-
stant δ to 10−6. We have also adjusted the con-
vergence check in the implementation of Kanatani’s
scheme so that it switches the check from absolute to
relative for large reprojection errors. That is, if the
reprojection error at iteration i is small (Ei ≤ 1), we
test the convergence by making the absolute check
|Ei − Ei−1| ≤ δ. If the reprojection error is large

Figure 6: For each value of RE (on the x-axis), the plot shows
the mean running times taken by the different error criteria.
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(Ei > 1), we test for convergence by making the rel-
ative check |Ei − Ei−1| ≤ δEi. We use the poly-
nomial root finder provided by the GNU Scientific
Library (Gough, 2009) to solve the sixth-degree poly-
nomial computed by the Hartley-Sturm correction
scheme. For every level of reprojection error included
in our test, we repeat the above procedure (i.e., gen-
erate a random correspondence and take measure-
ments) 1000 times. Figure 4 plots for each value of
reprojection error RE (on the x-axis) the average of
the measured relative differences DS, D1, and DK.
Figure 5 is a plot of the standard deviations of the
relative differences DS, D1, and DK against the re-
projection error RE. Figure 6 is a plot of the average
running times of the different error criteria against
the reprojection error RE. From these plots, we can
make the following observations:

• It is apparent that the mean of the relative bias
DS is always positive. This agrees with the the-
oretical relation between SED2 and RE2 we ob-
tained in Section 5.1.

• It can be seen that the standard deviation of
the relative bias DS introduced by SED is rel-
atively large (> 30%) at every value of RE. A
non-zero standard deviation means that some or
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Figure 7: For each value of RE (on the x-axis), the plot shows
the average number of iterations taken by REK.
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all of the measurements deviate from their mean.
This means that SED gives widely different error
values to correspondences that have the same re-
projection error RE. The everywhere-inaccurate
behavior of SED2 is explained by the fact that
SED2 was originally derived to fix the problem
of another criterion (the multiplicative bias of
the algebraic distance) rather than to provide
a good approximation to RE2. As described in
Section 5.1, this makes SED less recommended
for use as a distance function in the outlier re-
moval phase, as a cost function in the iterative
refinement phase, or as an accuracy measure to
compare different estimates of the FM.

• The mean and standard deviation of D1 remain
close to zero for small to moderate values of RE.
This means that RE1 provides an accurate esti-
mate of RE as long as the correspondences have
moderate values of RE. Since the running time
of RE1 is always the smallest as apparent in Fig.
6, it is the best criterion to recommend from the
accuracy and efficiency perspectives when it is
not expected to have correspondences with large
values of RE. This is the situation during the
FM iterative refinement phase and the FM ac-
curacy comparison phase because it is assumed

that outliers have already been removed before
these stages. On the other hand, the mean of D1
drops below zero for large values of RE (> 100
pixels). That is, RE1 tends to under-estimate
RE when the correspondences that have large
values of RE. In addition, the standard devia-
tion of D1 increases when the reprojection error
increases beyond 100 pixels. This means that
RE1 gives less accurate estimates of RE for large
values of RE. So, it is less accurate to use RE1
to approximate RE with correspondences having
large values of RE, which is the situation during
the outlier removal phase.

• Figures 4 and 5 reveal that RE12 starts to get
inaccurate during the interval I = [102, 104] of
RE. The interval I marks the transition from
relatively small to relatively large values of RE.
Both non-iterative criteria (RE1 and SED) un-
dergo changes in behavior during that interval.
Since RE is measured in pixels and since the fo-
cal length values express the number of pixels
per physical distance unit on the image plane,
there is some sort of dependence between the
particular values of I and the focal length val-
ues employed in the experiment. Indeed, when
we repeated the experiment with 10 times larger
focal length values, the interval I increased to
about [103, 105].

• The mean and standard deviation of DK remain
nearly zero for all values of RE. Figure 7 shows
the number of iterations taken by Kanatani’s it-
erative correction scheme for each value of RE.
Although, the number of iterations and running
time increase with the RE level, the running time
TK remains below the running time TE taken by
the gold standard RE (TK is always less than 0.2
TE). The ability of REK to automatically adapt
the number of iterations based on the magnitude
of the reprojection error and to provide an accu-
rate estimate of RE, even for large values of RE,
makes REK the most effective to use during the
outlier removal phase. The results also show that
Kanatani’s iterative correction scheme is as accu-
rate as Hartley-Sturm correction, even for very
noisy correspondences. Meanwhile, Kanatani’s
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iterative correction scheme is at least five times
more efficient than Hartley-Sturm correction.

The deterioration in the accuracy of RE1 may be
explained by the fact that RE1 uses a first-order
approximation of the quadratic epipolar constraint.
This approximation performs well as long as the dis-
tance dist(B,A) between the noisy correspondence B
and its optimal correction A is relatively small. As
soon as dist(B,A) (which equals RE by definition)
increases, the first-order approximation becomes less
accurate and the difference d1 = | D1

100 | ∗RE2 between

RE12 and RE2 starts to increase. Although d1 con-
tinues to increase as RE2 increases, its growth rate
| D1
100 | stops increasing when RE becomes very large.

This is explained by the fact that the epipolar con-
straint (which is linearly approximated by RE1) is
just a low-order (quadratic) polynomial.

9. Conclusions

The different FM error criteria have been presented
and analyzed. It was mathematically proved that the
popular SED is biased. In addition, it was experimen-
tally verified that the bias value, introduced by SED,
varies from a point to another, suggesting that the
use of SED should be avoided. A new error criterion,
Kanatani distance (REK), was proposed and it was
experimentally found that it is the most effective er-
ror criterion for use as a distance function during the
outlier removal phase of the FM estimation. The ac-
curacy of Kanatani’s iterative correction scheme was
experimentally found equivalent to, yet five to seven
times faster than, the accuracy of Hartley-Sturm cor-
rection, even for very noisy correspondences. Exper-
iments demonstrated that Sampson distance (RE1)
provides an accurate approximation for RE as long
as the level of noise is limited. Since this is the situ-
ation after the outlier removal phase, the small run-
time taken by RE1 promotes it to be the most suit-
able error measure for use as a cost function and as
an accuracy measure. A new randomized algorithm
was developed to generate random correspondences
with pre-specified reprojection error values. The al-
gorithm was mathematically analyzed and an esti-
mate of the success probability for any given trial

was shown to be 1 − (2/3)2 at best, and 1 − (6/7)2

at worst. Practical experiments showed that the al-
gorithm succeeds often after just one trial.
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Armangué, X., Salvi, J., 2003. Overall view regarding
fundamental matrix estimation. Image and Vision
Computing 21 (2), 205–220.

Bradski, G., Kaehler, A., 2008. Learning OpenCV:
Computer Vision with the OpenCV Library.
O’Reilly Media, Inc.

Chojnacki, W., Brooks, M. J., van den Hengel, A.,
Gawley, D., 2004. A new constrained parameter
estimator for computer vision applications. Image
and Vision Computing 22 (2), 85–91.

Fathy, M. E., 2010. Image-based modeling and ren-
dering. Master’s thesis, Faculty of Computer and
Information Sciences, Ain Shams University.

Faugeras, O., Luong, Q.-T., Papadopoulou, T., 2001.
The Geometry of Multiple Images: The Laws That
Govern The Formation of Images of A Scene and
Some of Their Applications. MIT Press, Cam-
bridge, MA, USA.

Forsyth, D. A., Ponce, J., August 2002. Computer
Vision: A Modern Approach. Prentice Hall.

Gough, B., 2009. GNU Scientific Library Reference
Manual - Third Edition. Network Theory Ltd.

Hartley, R., Zisserman, A., March 2004. Multiple
View Geometry in Computer Vision. Cambridge
University Press.

Hartley, R. I., 1992. Estimation of relative camera
positions for uncalibrated cameras. In: Proc. Euro-
pean Conf. on Computer Vision (ECCV). pp. 579–
587.

14



Hartley, R. I., Sturm, P., 1997. Triangulation. Com-
puter Vision and Image Understanding 68 (2), 146–
157.

Kanatani, K., Sugaya, Y., Niitsuma, H., 2008. Trian-
gulation from two views revisited: Hartley-sturm
vs. optimal correction. In: Proc. British Machine
Vision Conference (BMVC). pp. 173–182.

Kovesi, P., June 2009. Peter’s functions for computer
vision.
URL http://www.csse.uwa.edu.au/~pk/

Research/MatlabFns/

Luong, Q., Deriche, R., Faugeras, O., Papadopoulo,
T., 1993. On determining the fundamental matrix:
Analysis of different methods and experimental re-
sults. Report RR-1894, INRIA.

Ma, Y., Soatto, S., Kosecka, J., Sastry, S. S., 2004.
An Invitation to 3-D Vision: From Images to Ge-
ometric Models. Springer.

Olsen, S. I., 1992. Epipolar line estimation. In: Proc.
European Conf. on Computer Vision (ECCV). pp.
307–311.

OpenCV: Open Computer Vision Library, June
2009.
URL http://sourceforge.net/projects/

opencvlibrary/

Shashua, A., 1992. Projective structure from two
uncalibrated images: Structure from motion and
recognition. Tech. rep., MIT, Cambridge, MA,
USA.

Snavely, N., Seitz, S. M., Szeliski, R., 2008. Modeling
the world from Internet photo collections. Internat.
J. Comput. Vision 80 (2), 189–210.

Torr, P., Murray, D., 1997. The development and
comparison of robust methods for estimating the
fundamental matrix. Internat. J. of Comput. Vi-
sion 24 (3), 271–300.

Torr, P., Zisserman, A., Maybank, S., 1998. Robust
detection of degenerate configurations while esti-
mating the fundamental matrix. Computer Vision
and Image Understanding 71 (3), 312–333.

Torr, P., Zissermann, A., 1997. Performance charac-
terization of fundamental matrix estimation under
image degradation. Machine Vision and Applica-
tions 9 (5), 321–333.

VxL, June 2009.
URL http://vxl.sourceforge.net/

Zhang, Z., Kanade, T., 1998. Determining the epipo-
lar geometry and its uncertainty: A review. Inter-
nat. J. Comput. Vision 27 (2), 161–195.

15


