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Abstract

This paper proposes a supervised multiscale Bayesian texture classifier. The classifier exploits the dual-tree

complex wavelet transform (DT-CWT) to obtain complex-valued multiscale representations of training tex-

ture samples for each texture class. The high-pass subbands of DT-CWT decomposition of a texture image

are used to form a multiscale feature vector representing magnitude and phase features. For computational

efficiency, the dimensionality of feature vectors is reduced using principal component analysis (PCA). The

class conditional probability density function of low-dimensional feature vectors for each texture class is

then estimated by using Parzen-window estimate with identical Gaussian kernels and is used to represent

the texture class. A query texture image is classified as the corresponding texture class with the highest

a posteriori probability according to a Bayesian inferencing. The superior performance and robustness of

the proposed classifier is demonstrated for classifying texture images from image databases. The proposed

multiscale texture feature vector extracted from both magnitude and phase of DT-CWT subbands of a query

image is also shown to be effective for texture retrieval.
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1. Introduction

There has been significant accumulation of visual information in large digital databases in the past

decades, making digital image libraries widely used. To improve the management of these collections, it is

necessary to have effective and efficient methods to search for specific images. For this purpose, content-

based image retrieval (CBIR) from unannotated image databases has been gaining interest of the research

community.

There are two main processes in a CBIR system: feature extraction and similarity measurement. In

the first process, a set of features such as shape, texture and colour, which constitutes the image signature

is generated to represent the content of a given image. The set has to be much smaller in size than the
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original image while capturing as much of the image information as possible. In the present work, texture

information is used as a feature for representing the content of an image. The second process requires a

distance measure to determine how similar each image in the database is to a query image.

The most important function of a CBIR system, where texture is used to represent the content of an

image, is the ability to classify texture. For texture classification, Gabor filters, wavelet transforms and

finite impulse response filters have been widely used. Gabor filters are appealing because of their simplicity

and support from neurophysiological experiments (Faugeras, 1978). They have been used for texture seg-

mentation despite being based on texture reconstruction (Jain and Farrokhnia, 1991), (Arivazhagan et al.,

2006b). A general filter bank is often too large since it is designed to capture general texture properties.

However, textures can be classified using a small set of filters, which gives rise to the filter selection problem.

For example, a neural network system has been used to select a minimum set of Gabor filters for texture

discrimination while keeping the classification at an acceptable level compared to the case without filter

selection (Jain and Karu, 1996). In these filtering methods, texture images are usually decomposed into

several feature images through projection via a set of selected filters. These filters are often based on repre-

sentation such that textures are reconstructed with the minimum information loss. Our proposed approach

extracts features that maximise the separation or discrimination among different textures. The wavelet

based texture classifiers are similar to Gabor based methods with the Gabor filters replaced by the Dis-

crete Wavelet Transform (DWT) (Arivazhagan and Ganesan, 2003a), (Arivazhagan and Ganesan, 2003b),

(Muneeswarana et al., 2005), (Kim and Kang, 2007), (Kokare et al., 2007), (Hiremath and Shivashankar,

2008). Since DWT is shift variant, a shift in the signal degrades the performance of DWT based classifiers.

An extensive set of texture features extracted from the ridgelet transform (Arivazhagan et al., 2006a) has

also been used for texture classification achieving a higher classification performance than using features

from DWT (Arivazhagan and Ganesan, 2003a). Apart from the mean and standard deviation of the ridgelet

transform subbands, co-occurrence features were extracted in order to increase the correct classification rate

(Arivazhagan et al., 2006a).

DWT has also been applied for texture retrieval. An energy and co-occurrence (Haralick et al., 1973)

based signature was used for texture retrieval in (Wouwer et al., 1999). Statistics of the wavelet coefficients

are used to extract two feature sets: (1) the wavelet histogram signatures which capture all first order

statistics using a model based approach; and (2) the wavelet co-occurrence signatures which reflect the

second-order statistics of the coefficients. The generalized Gaussian distribution (GGD) signature was used

in (Do and Vetterli, 2002). The GGD and Kullback-Leibler distance metrics have been used in the DWT

domain. The similarity measure and feature extraction are jointly considered for the estimation and detection

in a maximum likelihood framework, providing a definition for similarity measurement using Kullback-Leibler

divergence (KLD). The performance of the texture retrieval system then depends on modelling the marginal

distribution of wavelet coefficients using GGD and on the existence of a closed form for the KLD between
2



GGDs. Recently, two-dimensional (2-D) rotated wavelet filters that are non-separable and oriented were

used to improve the texture retrieval performance of the standard DWT (Kokare et al., 2007), via improved

characterisation of diagonally oriented textures. However, DWT is not invariant to shift and lacks direction

selectivity (Kingsbury, 1999), which is a major obstacle for robust feature representation. As a result

Gabor wavelets have been designed to be directionally selective. They are invariant to shift since they are

non-decimated, but they are therefore overcomplete and hence computationally expensive. The dual-tree

complex wavelet transform (DT-CWT) has been shown to be approximately shift invariant and has limited

redundancy (Kingsbury, 1999).

The afore-mentioned advantages of DT-CWT and its multiscale structure make it appealing for texture

classification and retrieval. In our recent work, we used DT-CWT subbands to design a multiscale texture

classifier (Celik and Tjahjadi, 2009). The classifier uses simple statistical features of the mean and standard

deviation of the magnitude of DT-CWT subbands in different scales. The multiscale feature vector extracted

from a query images is used together with simple distance measure to perform the final classification. In

this paper, we improve the performance of our previous work by using both magnitude and phase of the

complex subbands of DT-CWT, and a Bayesian inferencing. The extra information provided by the phase

combined with the magnitude of the complex subbands results in more discriminative feature vectors. The

standard deviation and energy of DT-CWT subbands are used to create a multiscale feature vector for

each texture image which consists of features extracted from phase and magnitude of DT-CWT subband

coefficients. The dimensionality of multiscale feature vectors is reduced using principal component analysis

(PCA) to benefit from computational efficiency. The class conditional probability density function of the

low-dimensional feature vectors is estimated by using the Parzen-window estimate with identical Gaussian

kernels (Fukunaga and Hayes, 1989). A query texture image is classified as the corresponding texture class

with the highest a posteriori probability according to the Bayesian inferencing. The new classifier is applied

to supervised texture classification. The proposed multiscale texture feature vector extracted from both

magnitude and phase of DT-CWT subbands of a query image is also used in texture retrieval.

The paper is organized as follows. Section 2 presents DT-CWT. The Bayesian classification is presented

in Section 3. Section 4 presents the proposed multiscale texture classifier, the learning and classification of

texture features for different texture classes, and the process of texture retrieval. The experimental results

and discussions are presented in Section 5. Finally, Section 6 concludes the paper.

2. Dual-tree complex wavelet transform

The DWT is not shift invariant due to the decimation during the transform. A small shift in the input

signal generates very different wavelet coefficients. The DT-CWT (Kingsbury, 1999) exhibits approximate

shift invariance and improved directional resolution. It achieves perfect reconstruction and good frequency
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Figure 1: Implementation of the two levels 1-D DT-CWT using two filter banks operating as two parallel trees on the same

data, where hi(n) and gi(n) are wavelet filters. The outputs from the upper and lower trees are interpreted as the real and

imaginary parts of the DT-CWT coefficients, respectively.

characteristics using two parallel fully decimated trees with real coefficients. The one-dimensional (1-D)

DT-CWT decomposes a signal f(x) in terms of a shifted and dilated complex mother wavelet ψ(x) and

scaling function φ(x), i.e.,

f(x) =
∑

l∈Z

sj0,lφj0,l(x) +
∑

j≥j0

∑

l∈Z

cj,lψj,l(x), (1)

where sj0,l is a scaling coefficient and cj,l is a complex wavelet coefficient with φj0,l(x) = φr
j0,l(x) +

√
−1φi

j0,l(x), and ψj,l(x) = ψr
j,l(x) +

√
−1ψi

j,l(x). The complex wavelet transform is a combination of

two real wavelet transforms. In 1-D the {φr
j0,l, φ

i
j0,l, ψ

r
j0,l, ψ

i
j0,l} form a tight wavelet frame with two times

redundant. The real and imaginary parts of the DT-CWT are computed using separate filter bank struc-

tures (operating as two parallel trees) with wavelet filters h0 and h1 for the real part, and g0 and g1 for the

imaginary part. 1-D DT-CWT is implemented using two filter banks in parallel operating on the same data

as illustrated in Figure 1 (Kingsbury, 1999). The outputs from the two trees are interpreted as the real and

imaginary parts of the DT-CWT coefficients.

Similar to 1-D DT-CWT, 2-D DT-CWT decomposes a 2-D image f(x, y) using dilation and translation

of a complex scaling function and six complex wavelet functions ψθ, i.e.,

f(x, y) =
∑

l∈Z2

sj0,lφj0,l(x, y) +
∑

b∈θ

∑

j≥j0

∑

l∈Z2

cθj,lψ
θ
j,l(x, y), (2)

where θ = {±15◦,±45◦,±75◦} refer to the directionality of complex wavelet subbands. The impulse re-

sponses of the six complex wavelets associated with 2-D DT-CWT are illustrated in Figure 2. The frequency-

partition of the DT-CWT resulting from two levels decomposition is shown in Figure 3. It shows that the

DT-CWT can discriminate between features at positive and negative frequencies. Hence, there are six

subbands characterising features along lines at angles of θ = {±15◦,±45◦,±75◦}.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 2: The real and imaginary parts of the impulse response of the DT-CWT filters for the 6 directional subbands: (a) real,

−15◦; (b) real, −45◦; (c) real, −75◦; (d) real, 75◦; (e) real, 45◦; (f) real, 15◦; (g) imaginary, −15◦; (h) imaginary, −45◦; (i)

imaginary, −75◦; (j) imaginary, 75◦; (k) imaginary, 45◦; and (l) imaginary, 15◦.

Figure 3: Frequency-domain partition resulted from a two-level 2-D DT-CWT decomposition, where wR and wI are the real

axis and the imaginary axis of the complex frequency domain, respectively.
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3. Bayesian Classification

Bayesian classification and decision making are based on probability theory and the principle of choosing

the most probable or the lowest risk option (Duda et al., 2000). Let x = [x1, x2, . . . , xD] be a feature vector

of dimensionality D. The probability (or posteriori probability) that a feature vector x belongs to texture

class wk is P (wk|x). The posterior probabilities can be computed using the a priori probabilities in the

framework of Bayes formula, i.e.,

P (wk|x) =
p (x|wk)P (wk)

p (x)
, (3)

where p (x|wk) and P (wk) are the probability density function and a priori probability of class wk, respec-

tively. The factor in the denominator is a normalization factor used to ensure that the weighted sum of

p (x|wk)’s for a training database is one, i.e.,

p (x) =

K
∑

k=1

p (x|wk)P (wk) , (4)

where K is the total number of different texture classes.

The feature vector x is assigned to the texture class wk with the highest a posteriori probability which

produces the minimum error probability (Duda et al., 2000), i.e., P (wk|x) > P (wi|x), ∀i ∈ {1, 2, . . . ,K}, i 6=
k which can be reformulated using (3) as follows:

wk = argmax
wi={w1,w2,...,wK}

P (wi|x) (5)

= argmax
wi={w1,w2,...,wK}

p (x|wi)P (wi)

p (x)

= argmax
wi={w1,w2,...,wK}

p (x|wi)P (wi) .

The classification problem reduces to the estimation of p (x|wk) and P (wk) for each texture class wk.

Without losing generality, one can assume that the a priori probabilities of the texture classes are equal,

which further simplifies the problem to the estimation of the class conditional probability density function

p (x|wk) of each texture class wk in the training set.

4. Proposed method

The DT-CWT decomposition of an W × H image I results in a decimated dyadic decomposition into

s = 1, 2, . . . , S scales, where each scale is of size W/2s × H/2s. Each decimated scale has a set Cs of 6

subbands of complex coefficients, denoted as Cs = {α(s)
1 eiθ

(s)
1 , . . . , α

(s)
6 eiθ

(s)
6 }, that correspond to responses

of the 6 subbands respectively orientated at −15◦, −45◦, −75◦, 15◦, 45◦, and 75◦. For each subband

orientation at scale s there are two responses: magnitude (α
(s)
i ) and phase (θ

(s)
i ) responses, i = 1, . . . , 6.

Each response is a 2-D data of size W/2s ×H/2s.
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4.1. Feature extraction

Texture features are extracted using image statistics. A feature vector is formed using the energy

and standard deviation of every subband. The basic assumption of using energy as a feature for texture

discrimination is that the energy distribution in the frequency domain identifies a texture. An energy based

approach is partly supported by physiological studies of the visual cortex (Daugman, 1980).

The standard deviation M1(r) and energy M2(r) of wavelet subband r, r ∈ {α(s)
i , θ

(s)
i }, are defined as

follows:

M1(r) =

√

√

√

√

22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

(r (x, y) − µ (r))
2

(6)

M2(r) =
22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

|r (x, y) | (7)

where

µ(r) =
22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

r (x, y) . (8)

Using Mk(r), k ∈ {1, 2}, the following feature vectors are defined for scale s using the set Cs:

FMk,α,s =
[

Mk(α
(s)
1 )Mk(α

(s)
2 ) . . .Mk(α

(s)
5 )Mk(α

(s)
6 )

]

(9)

FMk,θ,s =
[

Mk(θ
(s)
1 )Mk(θ

(s)
2 ) . . .Mk(θ

(s)
5 )Mk(θ

(s)
6 )

]

(10)

Fα,s =

[

FM1,α,s

‖FM1,α,s‖
FM2,α,s

‖FM2,α,s‖

]

(11)

Fθ,s =

[

FM1,θ,s

‖FM1,θ,s‖
FM2,θ,s

‖FM2,θ,s‖

]

(12)

Fs =

[

Fα,s

‖Fα,s‖
Fθ,s

‖Fθ,s‖

]

. (13)

where ‖.‖ is the second norm (i.e., the signal energy). Since the numerical ranges of the feature vectors

extracted from magnitude and phase responses are not equal, the feature vectors Fα,s, Fθ,s and Fs are

normalised as in (11), (12) and (13), respectively to ensure that the contributions of the magnitude and

phase responses to the feature vectors are equally weighted.

Given an image I, its multiscale feature vector is extracted by combining different realizations of (13)

for different values of scale s, i.e.,

FI
S =

[F1 F2 · · · FS ]

‖[F1 F2 · · · FS ]‖ (14)

=
[

f I
S,1 f

I
S,2 f

I
S,3 · · · f I

S,24S−2 f
I
S,24S−1 f

I
S,24S

]

,

where FI
S is a vector of 24S elements.
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4.2. Texture learning and classification

In the supervised texture learning stage, each texture class wk is modelled using a probability density

function p (x|wk). For this, texture features extracted from texture samples using (14) are used.

Let us assume that each training set for texture class wk consists of N texture samples. N feature

vectors for a texture class wk are used to create a class conditional probability density function p (x|wk)

using the Parzen-window estimate (Fukunaga and Hayes, 1989). The dimensionality of the texture feature

vector FI(n)

S extracted from the nth texture sample I(n) is 24S, and increases with an increase in S. In order

to benefit from low computational cost, the dimensionality of each feature vector FI(n)

S is reduced from 24S

to D by using PCA. For ease of mathematical notation, xn is used to denote the vector FI(n)

S .

The set of vectors {xn}N
n=1 is used to create an eigenvector space using PCA (Gonzalez and Woods,

2006). The average vector of the set is defined by

Ψ =
1

N

N
∑

n=1

xn. (15)

Each feature vector differs from the average vector by the vector ∆(n) = xn − Ψ. PCA is applied to the

feature vector set ∆(n) to determine a set of 24S orthonormal vectors ed and their associated scalars λd,

d = 1, 2, . . . , 24S, which best describe the distribution of the data. The vectors ed and corresponding scalars

λd are the eigenvectors and eigenvalues, respectively, of the covariance matrix

C =
1

N

N
∑

n=1

∆(n)T
∆(n), (16)

where T is the transpose operator. The matrix C ∈ R
24S×24S determines 24S eigenvectors and eigenvalues,

where the eigenvectors are sorted in descending order with respect to their eigenvalues, i.e., λd ≥ λd+1.

The dimensionality of the feature vector space is then reduced by projecting each feature vector xn onto

the eigenvector space spanned by the D largest eigenvectors of (16), i.e., the feature vector xn ∈ R
24S is

transformed into x̂n ∈ R
D as

x̂n = (xn − Ψ)E, (17)

where E = [e1 e2 · · · eD] ∈ R
24S×D is an eigenvector matrix. In this work, D = 10 is used.

The Parzen-window density estimate (Fukunaga and Hayes, 1989) is used for estimating p (x|wk) of

texture class wk from given texture features x̂n. It involves the superposition of a normalized window

centred on a set of samples, i.e.,

p (x|wk) =
1

N

N
∑

n=1

ϕ (x − xn, h) (18)

where ϕ (·, ·) is the kernel (window), and h is width of the window. In this work, it is found experimentally

that h = 20 gives satisfactory results on different databases. The Gaussian kernel with the covariance matrix
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Σ = I (I is the identity matrix) is used as a kernel, i.e.,

ϕ (y, h) =
1

(2π)
D/2

hD |Σ|1/2
exp

(

−yΣ−1yT

2h2

)

, (19)

where |·| is determinant.

After the class conditional probability density function p (x|wk) has been learned for each texture class

wk, the feature vector xu extracted from a query image Iu is used in its classification. The feature vector xu

is projected onto each texture class wk according to (17) to create a low dimensional projection vector x̂u.

The projected feature vectors are used in classifying Iu into one of the texture classes with the maximum

likelihood, according to the Bayesian classification of (5), i.e.,

wi = argmax
wi={w1,w2,...,wK}

p (x̂u|wi) , (20)

where it is assumed that all texture classes have the same a priori probabilities.

4.3. Texture retrieval

Texture retrieval is viewed as a search for the best N images, i.e., the N images most similar to a given

query image Iq from a database with M images, Im,m = 1, 2, · · · ,M . For this purpose, each image is

represented by a feature vector as in (14). The similarity between two images is measured by the distance

between the corresponding feature vectors. The goal is to select among the M possible distances the images

with the N smallest distances in a ranked order, and thus the N images that are most similar to Iq.

Given two images Iq and Im, let F
Iq

S and FIm

S represent the corresponding feature vectors extracted using

S level DT-CWT decomposition according to (14). We define the distance measure ∆(F
Iq

S ,F
Im

S ), between

two feature vectors, F
Iq

S and FIm

S as

∆(F
Iq

S ,F
Im

S ) =

24S
∑

i=1

|f Iq

S,i − f Im

S,i |
σi

, (21)

where σi is defined for the feature vectors of the images in the database, i.e.,

σi =

√

√

√

√

1

(M − 1)

M
∑

m=1

(

f Im

S,i − µi

)2

, (22)

and µi = 1
M

∑M
m=1 f

Im

S,i .

5. Experimental results

5.1. Test dataset

The effectiveness of the proposed texture feature extraction approach to texture classification is evaluated

by performing supervised classification of several test images with varying texture complexities from two
9



commonly-used natural texture image databases: 128 monochrome images from MIT VisTex colour image

database (MITVisTex, 1998) and 111 monochrome images from Brodatz album (Brodatz, 1966). Each

texture image has a size of 512 × 512, with 256 grey levels. Each image is globally histogram equalized to

ensure that the textures are not trivially discriminable simply based on the local mean or local variance.

Different portions of the input patterns of each texture class are selected and used for training the texture

classifier. We avoid using the texture patterns on a texture border for training because these patterns are

not representative of the texture.

Each texture image is divided into two non-overlapping parts of size 256× 512, one for training and one

for testing. Overlapped samples are generated from the training texture images using a sliding window of

size K ×K which is moved with shifts of ∆ in both the horizontal and vertical directions. The number of

test samples varies with the value of ∆. The value of ∆ is set to 8 to give a reasonable overlap between two

test samples, thus a total of 1152 texture samples are used in training for each class. After training, another

1152 samples are used to evaluate the performance of the texture classifier.

In texture retrieval tests, MIT VisTex database and Brodatz album are used together. Each texture image

is uniformly sampled with 288 sub-images of size 128 × 128, and thus a database of size 239 × 288 = 68832

is constructed. The query image is searched in this large database, and the top matches for the query image

are used in performance evaluations.

5.2. Performance evaluation metrics

The success of texture classification is measured using the classification gain (G) in percentage, i.e.,

G (%) =
C

T
× 100% (23)

where C is the number of sub-images correctly classified and T is the total number of sub-images, derived

from each texture image, i.e., T = 1152 in our case.

Texture retrieval performance is measured using precision-recall curve. Recall signifies the relevant

images in the database that are retrieved in response to a query. Precision is the proportion of the retrieved

images that are relevant to the query. More precisely, let A and B be the set of relevant items and the set

of retrieved items, respectively. Let us further assume that a, b, and c be the retrieved-relevant images,

retrieved-irrelevant images, and unretrieved-relevant images, respectively. Recall and precision are then

defined as the following conditional probabilities (Smith and Chang, 1996):

recall = P (B|A) =
P (B ∩A)

P (A)
=

a

a+ c
, (24)

precision = P (A|B) =
P (A ∩B)

P (B)
=

a

a+ b
.

With these conditions, the image retrieval capability of a method is said to be more effective than that of

another method if its precision values at the same recall values are higher than those of the other method.
10



5.3. Implementations of methods

In the experiments for texture classification, in addition to the proposed method, the methods in (Ce-

lik and Tjahjadi, 2009) and (Kokare et al., 2007) are implemented. In the implementations, three level

decompositions are used for wavelet decompositions of the texture samples, i.e., S = 3, to achieve good

performances. We also implemented the Haralick texture classification method (Haralick et al., 1973) based

on grey-level co-occurrence matrix (GLCM). Only a subset of the 14 Haralick features (i.e., energy, contrast,

correlation, entropy, homogeneity, cluster shade and cluster prominence) representing the most commonly

chosen ones are used in our study. In the experiments for GLCM method, quantization is applied to the

texture datasets considered in this paper. Different quantization levels are tested, and it is empirically found

that 32 levels of quantization provide the best performance for GLCM method. More details on the extrac-

tion of Haralick features can be found in (Haralick et al., 1973). We also present the texture classification

results of the method in (Arivazhagan et al., 2006a).

In order to make fair comparisons, Bayesian classification method are used in GLCM method, the

methods in (Kokare et al., 2007) and (Celik and Tjahjadi, 2009), and the proposed method in the final stage

of classifying extracted features into the texture classes.

5.4. Experiments on texture classification

The texture classification performances, in terms of classification gain, of different methods on VisTex

and Brodatz images are evaluated and compared. The results, Table 1 and Table 2, show that the proposed

method consistently and significantly outperforms all other methods.

The average classification gains of the different methods are shown in Table 3. The proposed method

achieves an average classification gain of 99% on both databases. The performance of GLCM is the worst.

This is mainly because the co-occurrence matrices derived from the images in both databases do not result

in discriminative features for texture classification. Furthermore, the monochrome grey-level distributions

of many of the texture images are similar to one other, thus degrading the classification performance. The

method in (Arivazhagan et al., 2006a) achieves the second best performance mainly due to the extensive set

of statistical texture features obtained from ridgelet decompositions of texture images. The performances

of the methods in (Kokare et al., 2007) and (Celik and Tjahjadi, 2009) are very similar. The method in

(Kokare et al., 2007) employs statistical features extracted from both DWT and rotated wavelet transform

(RWT). For each level of texture decomposition, features are extracted from subbands of both DWT and

RWT. Thus, at each level of decomposition, similar to (Celik and Tjahjadi, 2009), the feature vectors are

extracted from 6 subbands, which are equally distributed between 0-90 degree directions. Since, the direction

representation in DT-CWT transform is better than DWT+RWT, the texture classification performance

of the method in (Celik and Tjahjadi, 2009) is better than the method in (Kokare et al., 2007) by 3% on

average for both sets of images.
11
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Figure 4: Texture retrieval performances of different methods as a precision-recall curve on a database with 68832 images.

The texture classification performance of the proposed method is much higher (about 18% higher) than

the method in (Celik and Tjahjadi, 2009) due to two reasons. First, using both magnitude and phase

information extracted from the subbands of DT-CWT decompositions results in a more discriminative

feature vector than when only magnitude information is used as in (Celik and Tjahjadi, 2009). Second, the

Bayesian framework and dimensionality reduction using PCA provide better feature representation.

5.5. Experiments on texture retrieval

The effectiveness of an image retrieval system is measured using a precision-recall graph. In constructing

such a graph, the top matching Tr texture images for a query texture image are retrieved from a database,

and for each retrieval, the precision and recall are calculated according to (24).

The texture retrieval performances of different methods are shown in Figure 4. Similar to the tex-

ture classification, GLCM achieves the worst performance in texture retrieval. This is mainly because the

database consists of many texture samples with similar grey-level distributions but different shapes. The

texture retrieval performance is significantly increased by employing wavelet transform techniques which

rely on the high frequency components (edges) of texture images at different resolutions. The performances

of the methods in (Celik and Tjahjadi, 2009) and (Kokare et al., 2007) are almost the same. This is mainly

because both methods use almost the same directionality at each resolution. By using the phase together

with the magnitude information increases the texture retrieval capacity of the proposed method when com-

pared with the methods in (Celik and Tjahjadi, 2009) and (Kokare et al., 2007), thus achieving the best

performance.
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Table 1: Classification gains of different methods on 128 VisTex images. Method A: GLCM, Method B: (Arivazhagan et al.,

2006a), Method C: (Kokare et al., 2007), Method D: (Celik and Tjahjadi, 2009).
Images Method A Method B Method C Method D Proposed Images Method A Method B Method C Method D Proposed

Bark.0000 36 70 65 69 100 Grass.0000 55 75 65 65 100

Bark.0001 41 75 69 47 100 Grass.0001 77 85 92 91 99

Bark.0002 45 80 68 50 100 Grass.0002 82 95 91 90 99

Bark.0003 57 80 44 73 100 Leaves.0000 33 95 79 78 100

Bark.0004 54 100 86 90 100 Leaves.0001 92 95 97 97 100

Bark.0005 52 75 74 67 100 Leaves.0002 79 100 99 99 100

Bark.0006 43 85 72 66 100 Leaves.0003 91 100 98 99 100

Bark.0007 40 65 77 72 100 Leaves.0004 53 95 69 74 100

Bark.0008 37 90 72 78 100 Leaves.0005 21 20 34 30 100

Bark.0009 24 55 47 46 100 Leaves.0006 34 45 67 64 100

Bark.0010 27 85 54 57 100 Leaves.0007 27 60 33 35 100

Bark.0011 26 75 62 62 100 Leaves.0008 55 80 96 83 100

Bark.0012 26 65 45 43 99 Leaves.0009 37 75 60 55 100

Brick.0000 73 90 83 82 99 Leaves.0010 25 100 73 66 99

Brick.0001 52 90 85 81 98 Leaves.0011 42 85 70 84 100

Brick.0002 39 100 99 95 97 Leaves.0012 50 100 100 96 100

Brick.0003 33 90 91 81 100 Leaves.0013 80 85 88 90 100

Brick.0004 64 90 100 100 99 Leaves.0014 43 95 67 70 100

Brick.0005 65 100 47 56 100 Leaves.0015 26 70 54 52 100

Brick.0006 35 85 93 84 100 Leaves.0016 16 85 27 30 98

Brick.0007 19 75 27 30 100 Metal.0000 86 100 100 100 100

Brick.0008 10 30 17 19 100 Metal.0001 72 100 100 100 100

Clouds.0000 80 80 70 68 99 Metal.0002 78 100 91 92 100

Clouds.0001 72 80 81 82 99 Metal.0003 47 100 90 83 100

Fabric.0000 79 65 75 83 98 Metal.0004 78 85 82 82 100

Fabric.0001 85 90 93 89 100 Metal.0005 76 95 79 83 100

Fabric.0002 48 85 74 86 100 Misc.0000 52 95 82 69 100

Fabric.0003 56 95 80 99 100 Misc.0001 10 100 93 60 100

Fabric.0004 68 75 80 81 99 Misc.0002 90 100 92 88 100

Fabric.0005 49 75 69 74 99 Misc.0003 60 85 84 80 100

Fabric.0006 82 100 98 100 100 Sand.0000 87 100 100 100 100

Fabric.0007 53 100 85 90 100 Sand.0001 75 95 99 97 100

Fabric.0008 40 75 72 74 100 Sand.0002 73 85 66 74 100

Fabric.0009 90 100 95 98 100 Sand.0003 56 85 66 65 100

Fabric.0010 59 95 85 84 100 Sand.0004 35 55 53 55 100

Fabric.0011 60 100 82 95 100 Sand.0005 39 95 74 79 100

Fabric.0012 36 90 88 86 100 Sand.0006 63 100 93 89 100

Fabric.0013 76 100 100 99 100 Stone.0000 32 70 36 54 100

Fabric.0014 81 100 100 98 100 Stone.0001 36 80 90 86 100

Fabric.0015 44 95 90 81 100 Stone.0002 42 100 98 98 100

Fabric.0016 59 95 90 77 100 Stone.0003 48 90 79 64 100

Fabric.0017 89 100 100 100 100 Stone.0004 54 100 78 80 100

Fabric.0018 86 100 97 94 100 Stone.0005 64 95 76 77 100

Fabric.0019 85 100 95 93 100 Tile.0000 39 95 86 86 100

Flowers.0000 32 85 3 29 100 Tile.0001 21 100 66 70 100

Flowers.0001 49 90 67 64 100 Tile.0002 49 55 56 57 100

Flowers.0002 24 90 39 22 100 Tile.0003 64 60 80 80 99

Flowers.0003 14 95 90 61 100 Tile.0004 25 100 91 93 100

Flowers.0004 56 100 77 82 100 Tile.0005 54 35 81 64 100

Flowers.0005 27 100 76 69 100 Tile.0006 28 55 57 45 100

Flowers.0006 63 95 90 83 100 Tile.0007 51 90 98 93 100

Flowers.0007 53 100 73 70 100 Tile.0008 92 95 95 95 100

Food.0000 5 100 43 59 100 Tile.0009 76 85 96 96 100

Food.0001 85 95 97 97 100 Tile.0010 50 100 67 69 100

Food.0002 32 90 77 80 100 Water.0000 67 65 97 99 100

Food.0003 64 100 98 98 99 Water.0001 69 95 94 91 100

Food.0004 45 85 69 70 100 Water.0002 61 80 60 59 100

Food.0005 39 95 85 90 100 Water.0003 47 90 98 92 100

Food.0006 12 85 40 27 98 Water.0004 29 85 82 80 100

Food.0007 18 85 46 40 98 Water.0005 47 100 97 92 100

Food.0008 33 95 73 63 100 Water.0006 64 95 100 92 100

Food.0009 0 95 0 0 0 Water.0007 38 80 83 69 100

Food.0010 51 90 82 72 100 Wood.0000 31 45 60 47 100

Food.0011 95 100 99 99 100 Wood.0002 94 100 100 100 100
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Table 2: Classification gains of different methods on 111 Brodatz images. Method A: GLCM, Method B: (Arivazhagan et al.,

2006a), Method C: (Kokare et al., 2007), Method D: (Celik and Tjahjadi, 2009).
Images Method A Method B Method C Method D Proposed Images Method A Method B Method C Method D Proposed

D1 68 100 100 98 100 D57 98 100 100 100 100

D2 66 80 88 68 100 D58 33 100 44 25 99

D3 84 100 100 100 100 D59 67 100 62 74 99

D4 73 100 78 100 100 D60 52 70 76 67 100

D5 63 100 85 88 100 D61 28 85 65 65 99

D6 55 100 100 95 100 D62 46 90 79 73 99

D7 62 90 75 79 100 D63 44 75 68 43 100

D8 82 100 99 97 100 D64 58 100 93 91 100

D9 55 100 100 100 100 D65 90 100 100 100 100

D10 54 95 81 77 100 D66 32 90 52 64 100

D11 62 100 97 97 100 D67 37 80 87 91 100

D12 72 90 95 95 100 D68 87 100 100 98 100

D13 19 90 66 73 100 D69 49 50 53 37 100

D15 97 90 96 98 100 D70 17 75 68 35 100

D16 91 100 100 100 100 D71 46 95 89 83 100

D17 67 100 100 100 100 D72 15 90 75 66 100

D18 86 100 97 98 100 D73 39 95 72 52 100

D19 60 100 96 74 100 D74 34 100 84 71 100

D20 99 100 100 100 100 D75 32 100 96 96 100

D21 100 100 100 100 100 D76 77 100 100 100 100

D22 82 100 95 97 100 D77 79 100 100 100 100

D23 65 95 79 71 100 D78 48 100 100 96 100

D24 79 100 100 100 100 D79 72 100 97 97 100

D25 71 95 92 94 100 D80 48 100 98 98 100

D26 56 100 94 97 100 D81 59 100 97 99 100

D27 40 90 42 56 100 D82 90 100 100 100 100

D28 77 100 97 91 100 D83 76 100 100 100 100

D29 70 100 97 97 100 D84 92 100 100 100 100

D30 50 100 65 59 95 D85 80 100 100 100 100

D31 38 100 56 45 98 D86 60 95 93 96 100

D32 77 100 100 100 100 D87 85 100 99 99 100

D33 75 100 92 82 100 D88 56 95 73 59 99

D34 92 100 100 99 100 D89 23 90 46 45 100

D35 72 100 100 100 100 D90 59 100 75 67 100

D36 38 100 99 100 100 D91 37 80 69 65 95

D37 77 100 100 97 100 D92 65 100 100 65 100

D38 66 100 94 88 100 D93 61 100 98 97 100

D39 57 100 76 62 100 D94 48 100 98 95 100

D40 47 95 68 36 100 D95 64 100 100 100 100

D41 42 100 94 85 100 D96 59 100 94 97 100

D42 19 50 79 72 100 D97 46 60 78 78 100

D43 43 35 54 59 89 D98 31 90 46 34 100

D44 22 65 44 51 96 D99 38 90 49 45 99

D45 9 90 21 26 99 D100 31 95 76 71 100

D46 63 100 99 98 100 D101 56 100 75 84 99

D47 91 100 100 100 100 D102 83 95 76 79 98

D48 95 100 100 98 100 D103 33 95 90 74 100

D49 100 100 100 100 100 D104 90 100 89 81 99

D50 50 90 98 81 100 D105 78 100 93 87 100

D51 81 95 98 93 100 D106 73 90 99 98 100

D52 36 95 80 81 100 D107 63 90 94 88 99

D53 98 100 100 100 100 D108 44 90 69 65 98

D54 28 90 89 85 100 D109 52 90 91 85 100

D55 89 100 100 100 100 D110 88 100 98 94 100

D56 79 100 100 100 100 D111 23 100 96 85 100

D112 47 90 72 70 100
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Table 3: Average classification gains of different methods on VisTex and Brodatz images.

Method VisTex Brodatz

GLCM 52 60

(Arivazhagan et al., 2006a) 86 94

(Kokare et al., 2007) 75 83

(Celik and Tjahjadi, 2009) 77 86

Proposed 99 99

5.6. Effect of number of scales

The number of scales S used in DT-CWT decompositions affect both the texture classification and

retrieval performances of the proposed method. In order to observe this effect, the texture classification and

retrieval are performed for different values of S.

We employ a confusion matrix CM (Kohavi and Provost, 1998) to better represent texture classification

performance with different values of S. CM is a L×L matrix for L different texture classes and CM(i, j),

where CM(i, j) ∈ [0, 1], refers to the classification rate when samples from class i are identified as class j.

When the texture classifier performs well, the confusion matrix is expected to be a diagonal matrix with

diagonal values close to 1. In a pictorial representation of a confusion matrix, a white square denotes 0, a

black square denotes 1, and values in between 0 and 1 are denoted by squares of varying grey shades. Thus,

the more black squares there are in the diagonal of the pictorial representation of a confusion matrix the

better is the performance. The effect of S is evaluated using the VisTex database only, since the performance

of the proposed method is the same for the two databases.

Figure 5 shows the texture classification presented as confusion matrices. The average classification gain

for S = 1, S = 2, S = 3 and S = 4 are 91%, 92%, 99% and 99%, respectively. The classification performance

increases by 7% for S ≥ 3. This can also be observed from Figure 5: the confusion matrix scatters around

the main diagonal when S ≤ 2 but converges to an almost diagonal matrix when S ≥ 3. This increase in

performance comes with a higher computational cost with respect to the lower S values. The classification

performance does not change for S ≥ 3.

The effect of the number of scales on texture retrieval is evaluated on both VisTex database and Brodatz

album. Figure 6 shows the texture retrieval performance for different values of S. Similar to the texture

classification performance, the texture retrieval performance increases with an increase in the value of S.

However, the increase in the performance is not significant when S ≥ 3. Thus, S = 3 gives satisfactory

results on different databases when the input image size is 128 × 128.
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(a) (b) (c) (d)

Figure 5: Texture classification performances of the proposed method for different values of the number of scales S presented

as confusion matrices: (a) S = 1; (b) S = 2; (c) S = 3; and (d) S = 4.
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Figure 6: Texture retrieval performances of the proposed method as a precision-recall curve on a database of size 68832 images

for different values of the number of scales S.
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6. Conclusion

In this paper we propose a new texture classifier structure which uses both the magnitude and phase of

DT-CWT subbands. The coarse approximation of the signal is not used for feature extraction since it is more

prone to illumination changes. For each texture image, a multiscale texture feature vector is extracted from

the magnitude and phase of DT-CWT subbands at different scales. The dimensionality of feature vectors is

reduced using PCA, and the class conditional probability density function of a texture class is represented

using Parzen-window estimation. Using Bayesian classification of the feature vector of a query image, the

query image is assigned to the corresponding texture class with the highest a posteriori probability. The

average classification rate of the proposed texture classification algorithm increases when the number of the

scales S is increased.

It is shown that for texture classification the proposed classifier outperforms recently proposed texture

classifiers. It achieves 99% correct classification rate on both MIT VisTex and Brodatz album databases.

It is also shown that the use of phase information together with the magnitude information improves the

performance significantly.

It is shown that for texture retrieval the proposed texture retrieval algorithm outperforms recently

proposed texture retrieval algorithms. The average retrieval rate of the proposed texture retrieval algorithm

increases when the number of the scales S is increased. However, the increase in performance is achieved at

the expense of an increase in computational load.
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