
ar
X

iv
:1

10
5.

02
04

v1
  [

m
at

h.
ST

] 
 1

 M
ay

 2
01

1

Consistency of Functional Learning Methods Based on

Derivatives

Fabrice Rossia, Nathalie Villa-Vialaneixb,c,∗
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Abstract

In some real world applications, such as spectrometry, functional models
achieve better predictive performances if they work on the derivatives of order
m of their inputs rather than on the original functions. As a consequence, the
use of derivatives is a common practice in functional data analysis, despite a
lack of theoretical guarantees on the asymptotically achievable performances
of a derivative based model. In this paper, we show that a smoothing spline
approach can be used to preprocess multivariate observations obtained by
sampling functions on a discrete and finite sampling grid in a way that leads
to a consistent scheme on the original infinite dimensional functional problem.
This work extends Mas and Pumo (2009) to nonparametric approaches and
incomplete knowledge. To be more precise, the paper tackles two difficulties
in a nonparametric framework: the information loss due to the use of the
derivatives instead of the original functions and the information loss due to
the fact that the functions are observed through a discrete sampling and are
thus also unperfectly known: the use of a smoothing spline based approach
solves these two problems. Finally, the proposed approach is tested on two
real world datasets and the approach is experimentaly proven to be a good
solution in the case of noisy functional predictors.
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1. Introduction1

As the measurement techniques are developping, more and more data2

are high dimensional vectors generated by measuring a continuous process3

on a discrete sampling grid. Many examples of this type of data can be4

found in real world applications, in various fields such as spectrometry, voice5

recognition, time series analysis, etc.6

Data of this type should not be handled in the same way as standard7

multivariate observations but rather analysed as functional data: each ob-8

servation is a function coming from an input space with infinite dimension,9

sampled on a high resolution sampling grid. This leads to a large number10

of variables, generally more than the number of observations. Moreover,11

functional data are frequently smooth and generate highly correlated vari-12

ables as a consequence. Applied to the obtained high dimensional vectors,13

classical statistical methods (e.g., linear regression, factor analysis) often14

lead to ill-posed problems, especially when a covariance matrix has to be15

inverted (this is the case, e.g., in linear regression, in discriminant analy-16

sis and also in sliced inverse regression). Indeed, the number of observed17

values for each function is generally larger than the number of functions18

itself and these values are often strongly correlated. As a consequence,19

when these data are considered as multidimensional vectors, the covari-20

ance matrix is ill-conditioned and leads to unstable and unaccurate solu-21

tions in models where its inverse is required. Thus, these methods cannot22

be directly used. During past years, several methods have been adapted to23

that particular context and grouped under the generic name of Functional24

Data Analysis (FDA) methods. Seminal works focused on linear meth-25

ods such as factorial analysis (Deville (1974); Dauxois and Pousse (1976);26

Besse and Ramsay (1986); James et al. (2000), among others) and linear27

models Ramsay and Dalzell (1991); Cardot et al. (1999); James and Hastie28

(2001); a comprehensive presentation of linear FDA methods is given in29

Ramsay and Silverman (1997, 2002). More recently, nonlinear functional30

models have been extensively developed and include generalized linear mod-31

els James (2002); James and Silverman (2005), kernel nonparametric regres-32

sion Ferraty and Vieu (2006), Functional Inverse Regression Ferré and Yao33

(2003), neural networks Rossi and Conan-Guez (2005); Rossi et al. (2005), k-34

nearest neighbors Biau et al. (2005); Laloë (2008), Support Vector Machines35
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(SVM), Rossi and Villa (2006), among a very large variety of methods.36

In previous works, numerous authors have shown that the derivatives37

of the functions lead sometimes to better predictive performances than the38

functions themselves in inference tasks, as they provide information about39

the shape or the regularity of the function. In particular applications such as40

spectrometry Ferraty and Vieu (2006); Rossi et al. (2005); Rossi and Villa41

(2006), micro-array data Dejean et al. (2007) and handwriting recognition42

Williams et al. (2006); Bahlmann and Burkhardt (2004), these characteris-43

tics lead to accurate predictive models. But, on a theoretical point of the44

view, limited results about the effect of the use of the derivatives instead45

of the original functions are available: Mas and Pumo (2009) studies this46

problem for a linear model built on the first derivatives of the functions. In47

the present paper, we also focus on the theoretical relevance of this common48

practice and extend Mas and Pumo (2009) to nonparametric approaches and49

incomplete knowledge.50

More precisely, we address the problem of the estimation of the condi-51

tional expectation E (Y |X) of a random variable Y given a functional random52

variable X . Y is assumed to be either real valued (leading to a regression53

problem) or to take values in {−1, 1} (leading to a binary classification prob-54

lem). We target two theoretical difficulties. The first difficulty is the potential55

information loss induced by using a derivative instead of the original function:56

when one replaces X by its order m derivative X(m), consistent estimators57

(such as kernel models Ferraty and Vieu (2006)) guarantee an asymptotic58

estimation of E
(
Y |X(m)

)
but cannot be used directly to address the original59

problem, namely estimating E (Y |X). This is a simple consequence of the60

fact that X 7→ X(m) is not a one to one mapping. The second difficulty61

is induced by sampling: in practice, functions are never observed exactly62

but rather, as explained above, sampled on a discrete sampling grid. As a63

consequence, one relies on approximate derivatives, X̂
(m)
τ (where τ denotes64

the sampling grid). This approach induces even more information loss with65

respect to the underlying functional variable X : in general, a consistent es-66

timator of E
(
Y |X̂

(m)
τ

)
will not provide a consistent estimation of E (Y |X)67

and the optimal predictive performances for Y given X̂
(m)
τ will be lower than68

the optimal predictive performances for Y given X .69

We show in this paper that the use of a smoothing spline based approach70

solves both problems. Smoothing splines are used to estimate the functions71

from their sampled version in a convergent way. In addition, properties of72
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splines are used to obtain estimates of the derivatives of the functions with no73

induced information loss. Both aspects are implemented as a preprocessing74

step applied to the multivariate observations generated via the sampling grid.75

The preprocessed observations can then be fed into any finite dimensional76

consistent regression estimator or classifier, leading to a consistent estima-77

tor for the original infinite dimensional problem (in real world applications,78

we instantiate the general scheme in the particular case of kernel machines79

Shawe-Taylor and Cristianini (2004)).80

The remainder of the paper is organized as follows: Section 2 introduces81

the model, the main smoothness assumption and the notations. Section 382

recalls important properties of spline smoothing. Section 4 presents approx-83

imation results used to build a general consistent classifier or a general con-84

sistent regression estimator in Section 5. Finally, Section 6 illustrates the85

behavior of the proposed method for two real world spectrometric problems.86

The proofs are given at the end of the article.87

2. Setup and notations88

2.1. Consistent classifiers and regression functions89

We consider a pair of random variables (X, Y ) where X takes values in90

a functional space X and Y is either a real valued random variable (regres-91

sion case) or a random variable taking values in {−1, 1} (binary classifica-92

tion case). From this, we are given a learning set Sn = {(Xi, Yi)}
n
i=1 of n93

independent copies of (X, Y ). Moreover, the functions Xi are not entirely94

known but sampled according to a non random sampling grid of finite length,95

τd = (tl)
|τd|
l=1: we only observe Xτd

i = (Xi(t1), . . .Xi(t|τd|))
T , a vector of R|τd|

96

and denote Sn,τd the corresponding learning set. Our goal is to construct:97

1. in the binary classification case: a classifier, φn,τd, whose misclassifica-98

tion probability99

L(φn,τd) = P
(
φn,τd(X

τd) 6= Y
)

asymptotically reaches the Bayes risk100

L∗ = inf
φ:X→{−1,1}

P (φ(X) 6= Y )

i.e., lim|τd|→+∞ limn→+∞ E
(
L(φn,τd)

)
= L∗ ;101
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2. in the regression case: a regression function, φn,τd, whose L
2 error102

L(φn,τd) = E
(
[φn,τd(X

τd)− Y ]2
)

asymptotically reaches the minimal L2 error103

L∗ = inf
φ:X→R

E
(
[φ(Xτd)− Y ]2

)

i.e., lim|τd|→+∞ limn→+∞ L(φn,τd) = L∗.104

This definition implicitly requires E (Y 2) < ∞ and as a consequence,105

corresponds to a L2 convergence of φn,τd to the conditional expectation106

φ∗ = E (Y |X), i.e., to lim|τd|→+∞ limn→+∞E
(
[φn,τd(X

τd)− φ∗(X)]2
)
=107

0.108

Such φn,τd are said to be (weakly) consistent Devroye et al. (1996);109

Györfi et al. (2002). We have deliberately used the same notations for the110

(optimal) predictive performances in both the binary classification and the111

regression case. We will call L∗ the Bayes risk even in the case of regression.112

Most of the theoretical background of this paper is common to both the re-113

gression case and the classification case: the distinction between both cases114

will be made only when necessary.115

As pointed out in the introduction, the main difficulty is to show that116

the performances of a model built on the Xτd
i asymptotically reach the best117

performance achievable on the original functions Xi. In addition, we will118

build the model on derivatives estimated from the Xτd
i .119

2.2. Smoothness assumption120

Our goal is to leverage the functional nature of the data by allow-121

ing differentiation operators to be applied to functions prior their submis-122

sion to a more common classifier or regression function. Therefore we as-123

sume that the functional space X contains only differentiable functions.124

More precisely, X is the Sobolev space Hm =
{
h ∈ L2([0, 1]) | ∀ j =125

1, . . . , m, Djh exists in the weak sense, and Dmh ∈ L2([0, 1])
}
, where Djh126

is the j-th derivative of h (also denoted by h(j)) and for an integer m ≥ 1.127

Of course, by a straightforward generalization, any bounded interval can be128

considered instead of [0, 1].129
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To estimate the underlying functions Xi and their derivatives from sam-130

pled data, we rely on smoothing splines. More precisely, let us consider131

a deterministic function x ∈ Hm sampled on the aforementioned grid. A132

smoothing spline estimate of x is the solution, x̂λ,τd, of133

arg min
h∈Hm

1

|τd|

|τd|∑

l=1

(x(tl)− h(tl))
2 + λ

∫

[0,1]

(h(m)(t))2dt, (1)

where λ is a regularization parameter that balances interpolation error and134

smoothness (measured by the L2 norm of the m-th derivative of the esti-135

mate). The goal is to show that a classifier or a regression function built136

on X̂
(m)
λ,τd

is consistent for the original problem (i.e., the problem defined by137

the pair (X, Y )): this means that using X̂
(m)
λ,τd

instead of X has no dramatic138

consequences on the accuracy of the classifier or of the regression function.139

In other words, asymptotically, no information loss occurs when one replaces140

X by X̂
(m)
λ,τd

.141

The proof is based on the following steps:142

1. First, we show that building a classifier or a regression function on143

X̂
(m)
λ,τd

is approximately equivalent to building a classifier or a regression144

function on Xτd = (X(tl))
|τd|
l=1 using a specific metric. This is done by145

leveraging the Reproducing Kernel Hilbert Space (RKHS) structure of146

Hm. This part serves one main purpose: it provides a solution to work147

with estimation of the derivatives of the original function in a way148

that preserves all the information available in Xτd. In other words, the149

best predictive performances for Y theoretically available by building a150

multivariate model onXτd are equal to the best predictive performances151

obtained by building a functional model on X̂
(m)
λ,τd

.152

2. Then, we link E

(
Y |X̂λ,τd

)
with E (Y |X) by approximation results153

available for smoothing splines. This part of the proof handles the154

effects of sampling.155

3. Finally, we glue both results via standard R
|τd| consistency results.156
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3. Smoothing splines and differentiation operators157

3.1. RKHS and smoothing splines158

As we want to work on derivatives of functions from Hm, a natural in-159

ner product for two functions of Hm would be (u, v) →
∫ 1

0
u(m)(t)v(m)(t)dt.160

However, we prefer to use an inner product of Hm (
∫ 1

0
u(m)(t)v(m)(t)dt only161

induces a semi-norm on Hm) because, as will be shown later, such an in-162

ner product is related to an inner product between the sampled functions163

considered as vectors of R|τd|.164

This can be done by decomposing Hm into Hm = Hm
0 ⊕ Hm

1165

Kimeldorf and Wahba (1971), where Hm
0 = KerDm = P

m−1 (the space of166

polynomial functions of degree less or equal to m − 1) and Hm
1 is an infi-167

nite dimensional subspace of Hm defined via m boundary conditions. The168

boundary conditions are given by a full rank linear operator from Hm to R
m,169

denoted B, such that KerB ∩ P
m−1 = {0}. Classical examples of boundary170

conditions include the case of “natural splines” (for m = 2, h(0) = h(1) = 0)171

and constraints that target only the first values of h and its derivatives at172

a fixed position, for instance the conditions: h(0) = . . . = h(m−1)(0) = 0.173

Other boundary conditions can be used Berlinet and Thomas-Agnan (2004);174

Besse and Ramsay (1986); Craven and Wahba (1978), depending on the ap-175

plication.176

Once the boundary conditions are fixed, an inner product on both Hm
0177

and Hm
1 can be defined:178

〈u, v〉1 = 〈Dmu,Dmv〉L2 =

∫ 1

0

u(m)(t)v(m)(t)dt

is an inner product on Hm
1 (as h ∈ Hm

1 and Dmh ≡ 0 give h ≡ 0). Moreover,179

if we denote B = (Bj)mj=1, then 〈u, v〉0 =
∑m

j=1B
juBjv is an inner product180

on Hm
0 . We obtain this way an inner product on Hm given by181

〈u, v〉Hm =

∫ 1

0

u(m)(t)v(m)(t)dt+

m∑

j=1

BjuBjv

= 〈Pm
1 (u),Pm

1 (v)〉1 + 〈Pm
0 (u),Pm

0 (v)〉0

where Pm
i is the projector on Hm

i .182

Equipped with 〈., .〉Hm, Hm is a Reproducing Kernel Hilbert Space183

(RKHS, see e.g. Berlinet and Thomas-Agnan (2004); Heckman and Ramsay184
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(2000); Wahba (1990)). More precisely, it exists a kernel k : [0, 1]2 → R such185

that, for all u ∈ Hm and all t ∈ [0, 1], 〈u, k(t, .)〉Hm = u(t). The same occurs186

for Hm
0 and Hm

1 which respectively have reproducing kernels denoted by k0187

and k1. We have k = k0 + k1.188

In the most common cases, k0 and k1 have already been explicitly cal-189

culated (see e.g., Berlinet and Thomas-Agnan (2004), especially chapter 6,190

sections 1.1 and 1.6.2). For example, for m ≥ 1 and the boundary conditions191

h(0) = h′(0) = . . . = h(m−1)(0) = 0, we have:192

k0(s, t) =
m−1∑

k=0

tksk

(k!)2
.

and193

k1(s, t) =

∫ 1

0

(t− w)m−1
+ (s− w)m−1

+

(m− 1)!2
dw.

3.2. Computing the splines194

We need now to compute to x̂λ,τd starting with xτd = (x(t))Tt∈τd . This195

can be done via a theorem from Kimeldorf and Wahba (1971). We need the196

following compatibility assumptions between the sampling grid τd and the197

boundary conditions operator B:198

Assumption 1. The sampling grid τd = (tl)
|τd|
l=1 is such that199

1. sampling points are distinct in [0, 1] and |τd| ≥ m− 1200

2. the m boundary conditions Bj are linearly independent from the |τd|201

linear forms h 7→ h(tl), for l = 1, . . . , |τd| (defined on Hm)202

Then x̂λ,τd and xτd = (x(t))Tt∈τd are linked by the following result:203

Theorem 1 (Kimeldorf and Wahba (1971)). Under Assumption (A1), the204

unique solution x̂λ,τd to equation (1) is given by:205

x̂λ,τd = Sλ,τdx
τd, (2)

where Sλ,τd is a full rank linear operator from R
|τd| to Hm defined by:206

Sλ,τd = ωTM0 + ηTM1 (3)

with207
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• M0 =
(
U(K1 + λId)

−1UT
)−1

U(K1 + λId)
−1

208

• M1 = (K1 + λId)
−1
(
Id − UTM0

)
;209

• {ω1, . . . , ωm} is a basis of P
m−1, ω = (ω1, . . . , ωm)

T and U =210

(ωi(t))i=1,...,m t∈τd
;211

• η = (k1(t, .))
T
t∈τd

and K1 = (k1(t, t
′))t,t′∈τd.212

3.3. No information loss213

The first important consequence of Theorem 1 is that building a model214

on X̂λ,τd or on Xτd leads to the same optimal predictive performances (to the215

same Bayes risk). This is formalized by the following corollary:216

Corollary 1. Under Assumption (A1), we have217

• in the binary classification case:218

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
=

inf
φ:R|τd|→{−1,1}

P (φ(Xτd) 6= Y )
(4)

• in the regression case:219

inf
φ:Hm→R

E

([
φ
(
X̂λ,τd

)
− Y

]2)
=

inf
φ:R|τd|→R

E
(
[φ (Xτd)− Y ]2

) (5)

3.4. Differentiation operator220

The second important consequence of Theorem 1 is that the inner product221

〈., .〉Hm is equivalent to a specific inner product on R
|τd| given in the following222

corollary:223

Corollary 2. Under Assumption (A1) and for any uτd = (u(t))Tt∈τd and224

vτd = (v(t))Tt∈τd in R
|τd|,225

〈ûλ,τd, v̂λ,τd〉Hm = (uτd)TMλ,τdv
τd (6)

where Mλ,τd = MT
0 WM0 + MT

1 K1M1 with W = (〈wi, wj〉0)i,j=1,...,m. The226

matrix Mλ,τd is symmetric and positive definite and defines an inner product227

on R
|τd|.228
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The corollary is a direct consequence of equations (2) and (3).229

In practice, the corollary means that the euclidean space
(
R

|τd|, 〈., .〉Mλ,τd

)
230

is isomorphic to
(
Iλ,τd , 〈., .〉Hm

)
, where Iλ,τd is the image of R|τd| by Sλ,τd . As231

a consequence, one can use the Hilbert structure of Hm directly in R
|τd| via232

Mλ,τd: as the inner product of H
m is defined on the orderm derivatives of the233

functions, this corresponds to using those derivatives instead of the original234

functions.235

More precisely, letQλ,τd be the transpose of the Cholesky triangle ofMλ,τd236

(given by the Cholesky decomposition QT
λ,τd

Qλ,τd = Mλ,τd). Corollary 2237

shows that Qλ,τd acts as an approximate differentiation operation on sampled238

functions.239

Let us indeed consider an estimation method for multivariate inputs based240

only on inner products or norms (that are directly derived from the in-241

ner products), such as, e.g., Kernel Ridge Regression Saunders et al. (1998);242

Shawe-Taylor and Cristianini (2004). In this latter case, if a Gaussian kernel243

is used, the regression function has the following form:244

u 7→

n∑

i=1

Tiαie
−γ‖Ui−u‖

2

Rp (7)

where (Ui, Ti)1≤i≤n are learning examples in R
p×{−1, 1} and the αi are non245

negative real values obtained by solving a quadratic programming problem246

and γ is a parameter of the method. Then, if we use Kernel Ridge Regression247

on the training set {(Qλ,τdX
τd
i , Yi)}

n
i=1 (rather than the original training set248

{(Xτd
i , Yi)}

n
i=1), it will work on the norm in L2 of the derivatives of order249

m of the spline estimates of the Xi (up to the boundary conditions). More250

precisely, the regression function will have the following form:251

xτd 7→
n∑

i=1

Yiαie
−γ‖Qλ,τd

X
τd
i −Qλ,τd

xτd‖
2

R
|τd|

7→
n∑

i=1

Yiαie
−γ‖DmX̂iλ,τd

−Dmx̂λ,τd‖
2

L2

× e−γ
∑m

j=1(BjX̂iλ,τd
−Bj x̂λ,τd)

2

In other words, up to the boundary conditions, an estimation method based252

solely on inner products, or on norms derived from these inner products,253
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can be given modified inputs that will make it work on an estimation of the254

derivatives of the observed functions.255

Remark 1. As shown in Corollary 1 in the previous section, building a256

model on Xτd or on X̂λ,τd leads to the same optimal predictive performances.257

In addition, it is obvious that given any one-to-one mapping f from R
|τd| to258

itself, building a model on f(Xτd) gives also the same optimal performances259

than building a model on Xτd . Then as Qλ,τd is invertible, the optimal260

predictive performances achievable with Qλ,τdX
τd are equal to the optimal261

performances achievable with Xτd or with X̂λ,τd.262

In practice however, the actual preprocessing of the data can have a strong263

influence on the obtained performances, as will be illustrated in Section 6.264

The goal of the theoretical analysis of the present section is to guarantee265

that no systematic loss can be observed as a consequence of the proposed266

functional preprocessing scheme.267

4. Approximation results268

The previous section showed that working on Xτd , Qλ,τdX
τd or X̂λ,τd269

makes no difference in terms of optimal predictive performances. The present270

section addresses the effects of sampling: asymptotically, the optimal predic-271

tive performances obtained on X̂λ,τd converge to the optimal performances272

achievable on the original and unobserved functional variable X .273

4.1. Spline approximation274

From the sampled random function Xτd = (X(t1), . . . , X(t|τd|)), we can275

build an estimate, X̂λ,τd, of X . To ensure consistency, we must guarantee276

that X̂λ,τd converges to X . In the case of a deterministic function x, this277

problem has been studied in numerous papers, such as Craven and Wahba278

(1978); Ragozin (1983); Cox (1984); Utreras (1988); Wahba (1990) (among279

others). Here we recall one of the results which is particularly well adapted280

to our context.281

Obviously, the sampling grid must behave correctly, whereas the infor-282

mation contained in Xτd will not be sufficient to recover X . We need also283

the regularization parameter λ to depend on τd. Following Ragozin (1983),284

a sampling grid τd is characterized by two quantities:285

∆τd = max{t1, t2 − t1, . . . , 1− t|τd|}

∆τd
= min

1≤i<|τd|
{ti+1 − ti}.

(8)
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One way to control the distance between X and X̂λ,τd is to bound the ratio286

∆τd/∆τd
so as to ensure quasi-uniformity of the sampling grid.287

More precisely, we will use the following assumption:288

Assumption 2. There is R such that ∆τd/∆τd
≤ R for all d.289

Then we have:290

Theorem 2 (Ragozin (1983)). Under Assumptions (A1) and (A2), there are291

two constants AR,m and BR,m depending only on R and m, such that for any292

x ∈ Hm and any positive λ:293

‖x̂λ,τd − x‖2
L2 ≤

(
AR,mλ+BR,m

1

|τd|2m

)
‖Dmx‖2L2 .

This result is a rephrasing of Corollary 4.16 from Ragozin (1983) which294

is itself a direct consequence of Theorem 4.10 from the same paper.295

Convergence of x̂λ,τd to x is then obtained by the following simple as-296

sumptions:297

Assumption 3. The series of sampling points τd and the series of regular-298

ization parameters, λ, depending on τd and denoted by (λd)d≥1, are such that299

limd→+∞ |τd| = +∞ and limd→+∞ λd = 0.300

4.2. Conditional expectation approximation301

The next step consists in relating the optimal predictive performances302

for the regression and the classification problem (X, Y ) to the performances303

associated to (X̂λd,τd, Y ) when d goes to infinity, i.e., relating L∗ to304

1. binary classification case:305

L∗
d = inf

φ:Hm→{−1,1}
P

(
φ(X̂λd,τd) 6= Y

)
,

2. regression case:306

L∗
d = inf

φ:Hm→R

E

(
[φ(X̂λd,τd)− Y ]2

)

Two sets of assumptions will be investigated to provide the convergence307

of the Bayes risk L∗
d to L

∗:308
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Assumption 4. Either309

(A4a) E
(
‖DmX‖2L2

)
is finite and Y ∈ {−1, 1},310

or311

(A4b) τd ⊂ τd+1 and E (Y 2) is finite.312

The first assumption (A4a) requires an additional smoothing property for313

the predictor functional variable X and is only valid for a binary classifica-314

tion problem whereas the second assumption (A4a) requires an additional315

property for the sampling point series: they have to be growing sets.316

Theorem 2 then leads to the following corollary:317

Corollary 3. Under Assumptions (A1)-(A4), we have:318

lim
d→+∞

L∗
d = L∗.

5. General consistent functional classifiers and regression functions319

5.1. Definition of classifiers and regression functions on derivatives320

Let us now consider any consistent classification or regression scheme321

for standard multivariate data based either on the inner product or on322

the Euclidean distance between observations. Examples of such classifiers323

are Support Vector Machine Steinwart (2002), the kernel classification rule324

Devroye and Krzyżak (1989) and k-nearest neighbors Devroye and Györfi325

(1985); Zhao (1987) to name a few. In the same way, multilayer perceptrons326

Lugosi and Zeger (1990), kernel estimates Devroye and Krzyżak (1989) and327

k-nearest neighbors regression Devroye et al. (1994) are consistent regression328

estimators. Additional examples of consistent estimators in classification and329

regression can be found in Devroye et al. (1996); Györfi et al. (2002).330

We denote ψD the estimator constructed by the chosen scheme using a331

dataset D = {(Ui, Ti)1≤i≤n}, where the (Ui, Ti)1≤i≤n are n independent copies332

of a pair of random variables (U, T ) with values in R
p×{−1, 1} (classification)333

or Rp × R (regression).334

The proposed functional scheme consists in choosing the estimator φn,τd335

as ψEn,τd
with the dataset En,τd defined by:336

En,τd = {(Qλd,τdX
τd
i , Yi)1≤i≤n}
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As pointed out in Section 3.4, the linear transformation Qλd,τd is an approx-337

imate multivariate differentiation operator: up to the boundary conditions,338

an estimator based on Qλd,τdX
τd is working on the m-th derivative of X̂λd,τd .339

In more algorithmic terms, the estimator is obtained as follows:340

1. choose an appropriate value for λd341

2. compute Mλd,τd using Theorem 1 and Corollary 2;342

3. compute the Cholesky decomposition of Mλd,τd and the transpose of343

the Cholesky triangle, Qλd,τd (such that QT
λd,τd

Qλd,τd = Mλd,τd);344

4. compute Qλd,τdX
τd
i to obtain the transformed dataset En,τd;345

5. build a classifier/regression function ψEn,τd
with a multivariate method346

in R
|τd| applied to the dataset En,τd;347

6. associate to a new sampled function Xτd
n+1 the prediction348

ψEn,τd
(Qλ,τdX

τd
n+1).349

Figure 5.1 illustrates the way the method performs: instead of relying350

on an approximation of the function and then on the derivation preprocess-351

ing of this estimates, it directly uses an equivalent metric by applying the352

Qλd,τd matrix to the sampled function. The consistency result proved in The-353

orem 3 shows that, combined with any consistent multidimensional learning354

algorithm, this method is (asymptotically) equivalent to using the original355

function drawn at the top left side of Figure 5.1.356

On a practical point of view, Wahba (1990) demonstrates that cross val-357

idated estimates of λ achieve suitable convergence rates. Hence, steps 1 and358

2 can be computed simultaneously by minimizing the total cross validated359

error for all the observations, given by360

n∑

i=1

1

|τd|

∑

t∈τd

(
xi(t)− x̂iλ,τd(t)

)2

(1− Att(λ))
2 ,

where A is a |τd|×|τd| matrix called the influence matrix (see Wahba (1990)),361

over a finite number of λ values.362
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Figure 1: Method scheme and its equivalence to the usual approach for using derivatives
in learning algorithms.
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5.2. Consistency result363

Corollary 1 and Corollary 3 guarantee that the estimator proposed in the364

previous section is consistent:365

Theorem 3. Under assumptions (A1)-(A4), the series of classi-366

fiers/regression functions (φn,τd)n,d is consistent:367

lim
d→+∞

lim
n→+∞

E
(
Lφn,τd

)
= L∗

5.3. Discussion368

While Theorem 3 is very general, it could be easily extended to cover369

special cases such as additional hypothesis needed by the estimation scheme370

or to provide data based parameter selections. We discuss briefly those issues371

in the present section.372

It should first be noted that most estimation schemes, ψD, depend on373

parameters that should fulfill some assumptions for the scheme to be con-374

sistent. For instance, in the Kernel Ridge Regression method in R
p, with375

Gaussian kernel, ψD has the form given in Equation (7) where the (αi) are376

the solutions of377

arg min
α∈Rn

n∑

i=1

(
Ti −

n∑

j=1

Tjαje
−γ‖Ui−Uj‖

2

Rp

)2

+

δn

n∑

i,j=1

TiTjαiαje
−γ‖Ui−Uj‖

2

Rp .

The method thus depends on the parameter of the Gaussian kernel, γ and378

of the regularization parameter δn. This method is known to be consistent if379

(see Theorem 9.1 of Steinwart and Christmann (2008)):380

δn
n→+∞
−−−−→ 0 and nδ4n

n→+∞
−−−−→ +∞.

Additional conditions of this form can obviously be directly integrated in381

Theorem 3 to obtain consistency results specific to the corresponding algo-382

rithms.383

Moreover, practitioners generally rely on data based selection of the pa-384

rameters of the estimation scheme ψD via a validation method: for instance,385

rather than setting δn to e.g., n−5 for n observations (a choice which is com-386

patible with theoretical constraints on δn), one chooses the value of δn that387
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optimizes an estimation of the performances of the regression function ob-388

tained on an independent data set (or via a re-sampling approach).389

In addition to the parameters of the estimation scheme, functional data390

raise the question of the convenient order of the derivative, m, and of the391

sampling grid optimality. In practical applications, the number of available392

sampling points can be unnecessarily large (see Biau et al. (2005) for an ex-393

ample with more than 8 000 sampling points). The preprocessing performed394

by Qλd,τd do not change the dimensionality of the data which means that395

overfitting can be observed in practice when the number of sampling points396

is large compared to the number of functions. Moreover, processing very397

high dimensional vectors is time consuming. It is there quite interesting in398

practice to use a down-sampled version of the original grid.399

To select the parameters of ψD, the order of the derivative and/or the400

down-sampled grid, a validation strategy, based on splitting the dataset into401

training and validation sets, could be used. A simple adaptation of the402

idea of Berlinet et al. (2008); Biau et al. (2005); Laloë (2008); Rossi and Villa403

(2006) shows that a penalized validation method can be used to choose any404

combination of those parameters consistently. According to those papers,405

the condition for the consistency of the validation strategy would simply406

relate the shatter coefficients of the set of classifiers in R
d to the penalization407

parameter of the validation. Once again, this type of results is a rather direct408

extension of Theorem 3.409

6. Applications410

In this section, we show that the proposed approach works as expected on411

real world spectrometric examples: for some applications, the use of deriva-412

tives leads to more accurate models than the direct processing of the spectra413

(see e.g. Rossi et al. (2005); Rossi and Villa (2006) for other examples of such414

a behavior based on ad hoc estimators of the spectra derivatives). It should415

be noted that the purpose of this section is only to illustrate the behavior416

of the proposed method on finite datasets. The theoretical results of the417

present paper show that all consistent schemes have asymptotically identical418

performances, and therefore that using derivatives is asymptotically useless.419

On a finite dataset however, preprocessing can have strong influence on the420

predictive performances, as will be illustrated in the present section. In ad-421

dition, schemes that are not universally consistent, e.g., linear models, can422

lead to excellent predictive performances on finite datasets; such models are423
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therefore included in the present section despite the fact the theory does not424

apply to them.425

6.1. Methodology426

The methodology followed for the two illustrative datasets is roughly the427

same:428

1. the dataset is randomly split into a training set on which the model is429

estimated and a test set on which performances are computed. The split430

is repeated several times. The Tecator dataset (Section 6.2) is rather431

small (240 spectra) and exhibits a rather large variability in predic-432

tive performances between different random splits. We have therefore433

used 250 random splits. For the Yellow-berry dataset (Section 6.3), we434

used only 50 splits as the relative variability in performances is far less435

important.436

2. λ is chosen by a global leave-one-out strategy on the spectra contained437

in training set (as suggested in Section 5.1). More precisely, a leave-one-438

out estimate of the reconstruction error of the spline approximation of439

each training spectrum is computed for a finite set of candidate values440

for λ. Then a common λ is chosen by minimizing the average over441

the training spectra of the leave-one-out reconstruction errors. This442

choice is relevant as cross validation estimates of λ are known to have443

favorable theoretical properties (see Craven and Wahba (1978); Utreras444

(1981) among others).445

3. for regression problems, a Kernel Ridge Regression (KRR)446

Saunders et al. (1998); Shawe-Taylor and Cristianini (2004) is then447

performed to estimate the regression function; this method is consistent448

when used with a Gaussian kernel under additional conditions on the449

parameters (see Theorem 9.1 of Steinwart and Christmann (2008)); as450

already explained, in the applications, Kernel Ridge Regression is per-451

formed both with a Gaussian kernel and with a linear kernel (in that452

last case, the model is essentially a ridge regression model). Parameters453

of the models (a regularization parameter, δn, in all cases and a ker-454

nel parameter, γ for Gaussian kernels) are chosen by a grid search that455

minimizes a validation based estimate of the performances of the model456

(on the training set). A leave-one-out solution has been chosen: in Ker-457

nel Ridge Regression, the leave-one-out estimate of the performances of458
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the model is obtained as a by-product of the estimation process, with-459

out additional computation cost, see e.g. Cawley and Talbot (2004).460

Additionally, for a sake of comparison with a more traditional approach461

in FDA, Kernel Ridge Regression is compared with a nonparametric462

kernel estimate for the Tecator dataset (Section 6.2.1). Nonparametric463

kernel estimate is the first nonparametric approach introduced in Func-464

tional Data Analysis Ferraty and Vieu (2006) and can thus be seen as465

a basis for comparison in the context of regression with functional pre-466

dictors. For this method, the same methodology as with Kernel Ridge467

Regression was used: the parameter of the model (i.e., the bandwidth)468

was selected on a grid search minimizing a cross-validation estimate of469

the performances of the model. In this case, a 4-fold cross validation470

estimate was used instead of a leave-one-out estimate to avoid a large471

computational cost.472

4. for the classification problem, a Support Vector Machine (SVM) is used473

Shawe-Taylor and Cristianini (2004). As KRR, SVM are consistent474

when used with a Gaussian kernel Steinwart (2002). We also use a475

SVM with a linear kernel as this is quite adapted for classification in476

high dimensional spaces associated to sampled function data. We also477

use a K-nearest neighbor model (KNN) for reference. Parameters of the478

models (a regularization parameter for both SVM, a kernel parameter,479

γ for Gaussian kernels and number of neighbors K for KNN) are chosen480

by a grid search that minimizes a validation based estimate of the481

classification error: we use a 4-fold cross-validation to get this estimate.482

5. We evaluate the models obtained for each random split on the test set.483

We report the mean and the standard deviation of the performance484

index (classification error and mean squared error, respectively) and485

assess the significance of differences between the reported figures via486

paired Student tests (with level 1%).487

6. Finally, we compare models estimated on the raw spectra and on spec-488

tra transformed via the Qλd,τd matrix for m = 1 (first derivative) and489

m = 2 (second derivative). For both values of m, we used the most490

classical boundary conditions (x(0) = 0 and Dx(0) = 0). Depending of491

the problem, other boundary conditions could be investigated but this492

is outside the scope of the present paper (see Besse and Ramsay (1986);493

Heckman and Ramsay (2000) for discussion on this subject). For the494
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Tecator problem, we also compare these approaches with models es-495

timated on first and second derivatives based on interpolating splines496

(i.e. with λ = 0) and on first and second derivatives estimated by finite497

differences.498

Note that the kind of preprocessing used has almost no impact on499

the computation time. In general, selecting the parameters of the500

model with leave-one-out or cross-validation will use significantly more501

computing power than constructing the splines and calculating their502

derivatives. For instance, computing the optimal λ with the approach503

described above takes less than 0.1 second for the Tecator dataset on a504

standard PC using our R implementation which is negligible compared505

to the several minutes used to select the optimal parameters of the506

models used on the prepocessed data.507

6.2. Tecator dataset508

The first studied dataset is the standard Tecator dataset Thodberg (1996)509

1. It consists in spectrometric data from the food industry. Each of the510

240 observations is the near infrared absorbance spectrum of a meat sample511

recorded on a Tecator Infratec Food and Feed Analyzer. Each spectrum is512

sampled at 100 wavelengths uniformly spaced in the range 850–1050 nm.513

The composition of each meat sample is determined by analytic chemistry514

and percentages of moisture, fat and protein are associated this way to each515

spectrum.516

The Tecator dataset is a widely used benchmark in Functional Data Anal-517

ysis, hence the motivation for its use for illustrative purposes. More precisely,518

in Section 6.2.1, we address the original regression problem by predicting the519

percentage of fat content from the spectra with various regression method520

and various estimates of the derivative preprocessing: this analysis shows521

that both the method and the use of derivative have a strong effect on the522

performances whereas the way the derivatives are estimated has almost no523

effect. Additionally, in Section 6.2.2, we apply a noise (with various vari-524

ances) to the original spectra in order to study the influence of smoothing525

in the case of noisy predictors: this section shows the relevance of the use of526

a smoothing spline approach when the data are noisy. Finally, Section 6.2.3527

deals with a classification problem derived from the original Tecator problem528

1Data are available on statlib at http://lib.stat.cmu.edu/datasets/tecator
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(in the same way as what was done in Ferraty and Vieu (2003)): conclusions529

of this section are similar to the ones of the regression study.530

6.2.1. Fat content prediction531

As explained above, we first address the regression problem that consists532

in predicting the fat content of peaces of meat from the Tecator dataset. The533

parameters of the model are optimized with a grid search using the leave-one-534

out estimate of the predictive performances (both models use a regularization535

parameter, with an additional width parameter in the Gaussian kernel case).536

The original data set is split randomly into 160 spectra for learning and 80537

spectra for testing. As shown in the result Table 1, the data exhibit a rather538

large variability; we use therefore 250 random split to assess the differences539

between the different approaches.540

The performance indexes are the mean squared error (M.S.E.) and the541

R2.2 As a reference, the target variable (fat) has a variance equal to 14.36.542

Results are summarized in Table 1.543

The first conclusion is that the method itself has a strong effect on the544

performances of the prediction: for this application, a linear method is not545

appropriate (mean squared errors are much greater for linear methods than546

for the kernel ridge regression used with a Gaussian kernel) and the non-547

parametric kernel estimate gives worse performances than the kernel ridge548

regression (indeed, they are about 10 times worse). Nevertheless, for non-549

parametric approaches (Gaussian KKR and NKE), the use of derivatives550

has also a strong impact on the performances: for kernel ridge regression,551

e.g., preprocessing by estimating the first order derivative leads to a strong552

decrease of the mean squared error.553

Differences between the average MSEs are not always significant, but554

we can nevertheless rank the methods in increasing order of modeling error555

(using notations explained in Table 1) for Gaussian kernel ridge regression:556

FD1 ≤ IS1 ≤ S1 < DF2 ≤ SS2 < IS2 < O

where < corresponds to a significant difference (for a paired Student test557

with level 1%) and ≤ to a non significant one. In this case, the data are very558

smooth and thus the use of smoothing splines instead of a finite differences559

2R2 = 1− M.S.E
Var(y) where Var(y) is the (empirical) variance of the target variable on the

test set.
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Method Data Average M.S.E. Average R2

and SD
KRR Linear O 8.69 (4.47) 95.7%

S1 8.09 (3.85) 96.1%
IS1 8.09 (3.85) 96.1%
FD1 8.27 (4.17) 96.0%
S2 9.64 (4.98) 95.3%
IS2 9.87 (5.84) 95.2%
FD2 8.45 (4.18) 95.9%

KRR Gaussian O 5.02 (11.47) 97.6%
S1 0.485 (0.385) 99.8%
IS1 0.485 (0.385) 99.8%
FD1 0.484 (0.387) 99.8%
S2 0.584 (0.303) 99.7%
IS2 0.586 (0.303) 99.7%
FD2 0.569 (0.281) 99.7%

NKE O 73.1 (16.5) 64.2%
S1 4.59 (1.09) 97.7%
IS1 4.59 (1.09) 97.7%
FD1 4.59 (1.09) 97.7%
S2 3.75 (1.22) 98.2%
IS2 3.75 (1.22) 98.2%
FD2 3.67 (1.18) 98.2%

Table 1: Summary of the performances of the chosen models on the test set (fat Tecator
regression problem) when using either a kernel ridge regression (KRR) with linear ker-
nel or with Gaussian kernel or when using a nonparametric kernel estimate (NKE) with
various inputs: O (original data), S1 (smoothing splines with order 1 derivatives), IS1 (in-
terpolating splines with order 1 derivatives), FD1 (order 1 derivatives estimated by finite
differences) and S2, IS2 and FD2 (the same as previously with order 2 derivatives).
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approximation does not have a significant impact on the predictions. How-560

ever, in this case, the roughest approach, consisting in the estimation of the561

derivatives by finite differences, gives the best performances.562

6.2.2. Noisy spectra563

This section studies the situation in which functional data observations564

are corrupted by noise. This is done by adding a noise to each spectrum of565

the Tecator dataset. More precisely, each spectrum has been corrupted by566

Xb
i (t) = Xi(t) + ǫit (9)

where (ǫit) are i.i.d. Gaussian variables with standard deviation equal to567

either 0.01 (small noise) or to 0.2 (large noise). 10 observations of the data568

generated this way are given in Figure 2.569

The same methodology as for the non noisy data has been applied to (Xb
i )570

to predict the fat content. The experiments have been restricted to the use of571

kernel ridge regression with a Gaussian kernel (according to the nonlinearity572

of the problem shown in the previous section). Results are summarized in573

Table 2 and Figure 3.574

In addition, the results can be ranked this way:575

Noise with sd equal to 0.01

S2 < S1 < IS1 ≤ O < FD1 < IS2 ≤ FD2

Noise with sd equal to 0.2

S1 < O < S2 < FD1 < IS1 < IS2 ≤ FD2

where < corresponds to a significant difference (for a paired Student test576

with level 1%).577

The first conclusion of these experiments is that, even though the deriva-578

tives are the relevant predictors, their performances are strongly affected by579

the noise (compared to the ones of the original data: note that the average580

M.S.E. reported in Table 1 are more 10 times lower that the best ones from581

Table 2 and that, in the best cases, R2 is slightly greater than 50% for the582

most noisy dataset). In particular, using interpolating splines or finite differ-583

ence derivatives leads to highly deteriorated performances. In this situation,584

the approach proposed in the paper is particularly useful and helps to keep585
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Figure 2: 10 observations of the noisy data generated from the Tecator spectra as in
Equation 9 24



Noise Data Average M.S.E. Average R2

and SD
sd = 0.01 O 13.3 (13.5) 93.5%

S1 7.45 (1.5) 96.4%
IS1 12.72 (2.2) 93.8%
FD1 20.03 (2.8) 90.3%
S2 6.83 (1.4) 96.7%
IS2 31.23 (5.9) 84.9%
FD2 31.10 (5.9) 84.9%

sd = 0.2 O 87.9 (13.9) 57.4%
S1 85.0 (12.5) 58.8%
IS1 210.1 (36.1) -1.9%
FD1 209.1 (33.0) -1.4%
S2 95.9 (12.8) 53.5%
IS2 213.7 (33.1) -3.6%
FD2 235.1 (222.7) -14.0%

Table 2: Summary of the performances of the chosen models on the test set (fat Tecator
regression problem) with noisy spectra.
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Figure 3: Mean squared errors boxplot for the noisy fat Tecator regression problem with
Gaussian kernel (the worst test samples for IS and FD have been removed for a sake of
clarity)
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better performances than with the original data. Indeed, the differences of586

the smoothing splines approach with the original data is still significant (for587

both derivatives in the “small noise” case and for the first order derivative588

in the “high noise” case), even though, the most noisy the data are, the589

most difficult it is to estimate the derivatives in an accurate way. That is,590

except for smoothing spline derivatives, the estimation of the derivatives for591

the most noisy dataset is so bad that it leads to negative R2 when used in592

the regression task.593

6.2.3. Fat content classification594

In this section, the fat content regression problem is transformed into a595

classification problem. To avoid imbalance in class sizes, the median value596

of the fat in the dataset is used as the splitting criterion: the first class597

consists in 119 samples with strictly less than 13.5 % of fat, while the second598

class contains the other 121 samples with a fat content equal or higher than599

13.5 %.600

As in previous sections, the analysis is conducted on 250 random splits of601

the dataset into 160 learning spectra and 80 test spectra. We used stratified602

sampling: the test set contains 40 examples from each class. The 4 fold603

cross-validation used to select the parameters of the models on the learning604

set is also stratified with roughly 20 examples of each class in each fold.605

The performance index is the mis-classification rate (MCR) on the test606

set, reported in percentage and averaged over the 250 random splits. Results607

are summarized in Table 3. As in the previous sections, both the model608

and the preprocessing have some influence on the results. In particular,609

using derivatives always improves the classification accuracy while the actual610

method used to compute those derivatives has no particular influence on the611

results. Additionally, using interpolation splines leads, in this particular612

problem, to results that are exactly identical to the ones obtained with the613

smoothing splines: they are not reported in Table 3.614

More precisely, for the three models (linear SVM, Gaussian SVM and615

KNN), differences in mis-classification rates between the smoothing spline616

preprocessing and the finite differences calculation is never significant, ac-617

cording to a Student test with level 1 %. Additionally while the actual aver-618

age mis-classification rates might seem quite different, the large variability of619

the results (shown by the standard deviations) leads to significant differences620

only for the most obvious cases. In particular, SVM models using derivatives621

(of order one or two) are indistinguishable one from another using a Student622

27



Method Data Average MCR SD of MCR
Linear SVM O 1.41 1.55

S1 0.73 1.15
FD1 0.74 1.15
S2 0.94 1.27
FD2 0.92 1.23

Gaussian SVM O 3.39 2.57
S1 0.97 1.41
FD1 0.98 1.42
S2 0.99 2.00
FD2 0.97 1.27

KNN O 22.0 5.02
S1 6.67 2.55
FD1 6.57 2.55
S2 1.93 1.65
FD2 1.93 1.63

Table 3: Summary of the performances of the chosen models on the test set (Tecator fat
classification problem). See Table 1 for notations. MCR stands for mis-classification rate,
SD for standard deviation.
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test with level 1 %: all methods with less than 1 % of mean mis-classification623

rate perform essentially identically. Other differences are significant: for in-624

stance the linear SVM used on raw data performs significantly worse than625

any SVM model used on derivatives.626

It should be noted that the classification task studied in the present sec-627

tion is obviously simpler than the regression task from which it is derived.628

This explains the very good predictive performances obtained by simple mod-629

els such as a linear SVM, especially with the proper preprocessing.630

6.3. Yellow-berry dataset631

The goal of the last experiment is to predict the presence of yellow-berry in632

durum wheat (Triticum durum) kernels via a near infrared spectral analysis633

(see Figure 4). Yellow-berry is a defect of the durum wheat seeds that reduces634

the quality of the flour produced from affected wheat. The traditional way635

to assess the occurrence of yellow-berry is by visual analysis of a sample of636

the seed stock. In the current application, a quality measure related to the637

occurrence of yellow-berry is predicted from the spectrum of the seed.638
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Figure 4: 20 observations of NIR spectra of durum wheat
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The dataset consists in 953 spectra sampled at 1049 wavelengths uni-639

formly spaced in the range 400–2498 nm. The dataset is split randomly into640

600 learning spectra and 353 test spectra. Comparatively to the Tecator641

dataset, the variability of the results is smaller in the present case. We used642

therefore 50 random splits rather than 250 in the previous section.643

The regression models were build via a Kernel Ridge Regression approach644

using a linear kernel and a Gaussian kernel. In both cases, the regularization645

parameter of the model is optimized by a leave-one-out approach. In addi-646

tion, the width parameter of the Gaussian kernel is optimized via the same647

procedure at the same time.648

The performance index is the mean squared error (M.S.E.). As a refer-649

ence, the target variable has a variance of 0.508. Results are summarized in650

Table 4 and Figure 5.

Kernel and Data Average M.S.E. Standard deviation Average R2

Linear-O 0.122 8.77 10−3 76.1%
Linear-S1 0.138 9.53 10−3 73.0%
Linear-S2 0.122 8.41 10−3 76.1%
Gaussian-O 0.110 20.2 10−3 78.5%
Gaussian-S1 0.0978 7.92 10−3 80.9%
Gaussian-S2 0.0944 8.35 10−3 81.5%

Table 4: Summary of the performances of the chosen models on the test set (durum wheat
regression problem)

651

As in the previous section, we can rank the methods in increasing order652

of modelling error, we obtain the following result:653

G-S2 < G-S1 < G-O < L-O ≤ L-S2 < L-S1,

where G stands for Gaussian kernel and L for linear kernel (hence G-S2 stands654

for kernel ridge regression with gaussian kernel and smoothing splines with655

order 2 derivatives); < corresponds to a significant difference (for a paired656

Student test with level 1%) and ≤ to a non significant one. For this appli-657

cation, there is a significant gain in using a non linear model (the Gaussian658

kernel). In addition, the use of derivatives leads to less contrasted perfor-659

mances that the ones obtained in the previous section but it still improves660

the quality of the non linear model in a significant way. In term of normal-661

ized mean squared error (mean squared error divided by the variance of the662
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Figure 5: Mean squared error boxplots for the “durum wheat” regression problem (see
Table 4 for the full names of the regression models)
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target variable), using a non linear model with the second derivatives of the663

spectra corresponds to an average gain of more than 5% (i.e., a reduction of664

the normalised mean squared error from 24% for the standard linear model665

to 18.6%).666

7. Conclusion667

In this paper we proposed a theoretical analysis of a common practice that668

consists in using derivatives in classification or regression problems when the669

predictors are curves. Our method relies on smoothing splines reconstruction670

of the functions which are known only via a discrete deterministic sampling.671

The method is proved to be consistent for very general classifiers or regres-672

sion schemes: it reaches asymptotically the best risk that could have been673

obtained by constructing a regression/classification model on the true ran-674

dom functions.675

We have validated the approach by combining it with nonparametric re-676

gression and classification algorithms to study two real-world spectrometric677

datasets. The results obtained in these applications confirm once again that678

relying on derivatives can improve the quality of predictive models compared679

to a direct use of the sampled functions. The way the derivatives are esti-680

mated does not have a strong impact on the performances except when the681

data are noisy. In this case, the use of smoothing splines is quite relevant.682

In the future, several issues could be addressed. An important practical683

problem is the choice of the best order of the derivative, m. We consider684

that a model selection approach relying on a penalized error loss could be685

used, as is done, in e.g., Rossi and Villa (2006), to select the dimension of686

truncated basis representation for functional data. Note that in practice,687

such parameter selection method could lead to select m = 0 and therefore to688

automatically exclude derivative calculation when it is not needed. This will689

extend the application range of the proposed model.690

A second important point to study it the convergence rate for the method.691

It would be very convenient for instance, to be able to relate the size of692

the sampling grid to the number of functions. But, this latter issue would693

require the use of additional assumptions on the smoothness of the regression694

function whereas the result presented in this paper, even if more limited, only695

needs mild conditions.696
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9. Proofs824

9.1. Theorem 1825

In the original theorem (Lemma 3.1) in Kimeldorf and Wahba (1971),826

one has to verify that (k0(tl, .))l spans Hm
0 and that (k1(tl, .))l are linearly827

independent. These are consequences of Assumption (A1).828

First, k0(s, t) =
∑m−1

i,j=0 b
(−1)
ij sitj where B̃ = (b

(−1)
i,j )i,j is the in-829

verse of (
∑m

l=1B
lsiBltj)i,j (see Heckman and Ramsay (2000)). Then830

(k0(t1, s), . . . , k0(t|τd|, s)) = (1, s, . . . , sm−1)B̃[Vm−1(t1, . . . , t|τd|)]
T where831

Vm−1(t1, . . . , t|τd|) is the Vandermonde matrix with m − 1 columns and |τd|832

rows associated to values t1, . . . , t|τd|. If the (tl)l are distinct, this matrix is833

of full rank.834

Moreover the reproducing property shows that
∑|τd|

l=1 alk1(tl, .) ≡ 0 im-835

plies
∑|τd|

l=1 alf(tl) ≡ 0 for all f ∈ Hm
1 . Hence, Hm

1 = Ker
(
BT ,

∑τd
l=1 alζl

)T
836

where ζl denotes the linear form h ∈ Hm → h(tl). As the co-dimension of837

Hm
1 is dimHm

0 = m and as, by Assumption (A1), B is linearly independent838

of
∑τd

l=1 alζl, we thus have
∑τd

l=1 alζl ≡ 0 (or codimKer
(
BT ,

∑τd
l=1 alζl

)T
=839

dim Im
(
BT ,

∑τd
l=1 alζl

)
would bem+1). Thus, we obtain that

∑|τd|
l=1 alf(tl) ≡840

0 for all f in Hm and, as (tl) are distinct, that al = 0 for all l, leading to the841

independence conclusion for the (k1(tl, .))l.842

Finally, we prove that Sλ,τd is of full rank. Indeed, if Sλ,τdx
τd = 0,843

ωTM0x
τd = 0 and ηTM1x

τd = 0. As (ωk)k is a basis of Hm
0 , ω

TM0x
τd = 0844

implies M0x
τd = 0 and therefore M1 = (K1 + λId)

−1. As shown above,845

the (k1(tl, .))l are linearly independent and therefore ηM1x
τd = 0 implies846

M1x
τd = 0, which in turns leads to xτd = 0 via the simplified formula forM1.847
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9.2. Corollary 1848

We give only the proof for the classification case, the regression case is849

identical.850

According to Theorem 1, there is a full rank linear mapping from R
|τd|

851

to Hm, Sλ,τd, such that for any function x ∈ Hm, x̂λ,τd = Sλ,τdx
τd. Let852

us denote Iλ,τd the image of R|τd| by Sλ,τd , Pλ,τd the orthogonal projection853

from Hm to Iλ,τd and S−1
λ,τd

the inverse of Sλ,τd on Iλ,τd . Obviously, we have854

S−1
λ,τd

◦Pλ,τd(x̂λ,τd) = xτd .855

Let ψ be a measurable function from R
|τd| to {−1, 1}. Then ζψ de-856

fined on Hm by ζψ(u) = ψ
(
S−1
λ,τd

◦Pλ,τd(u)
)
is a measurable function from857

Hm to {−1, 1} (because S−1
λ,τd

and Pλ,τd are both continuous). Then for858

any measurable ψ, infφ:Hm→{−1,1} P

(
φ(X̂λ,τd) 6= Y

)
≤ P

(
ζψ(X̂λ,τd) 6= Y

)
=859

P (ψ(Xτd) 6= Y ), and therefore860

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
≤

inf
φ:R|τd|→{−1,1}

P (φ(Xτd) 6= Y ) .
(10)

Conversely, let ψ be a measurable function from Hm to {−1, 1}. Then ζψ de-861

fined on R
|τd| by ζψ(u) = ψ(Sλ,τd(u)), is measurable. Then for any measurable862

ψ, infφ:R|τd|→{−1,1} P (φ(Xτd) 6= Y ) ≤ P (ζψ(X
τd) 6= Y ) = P

(
ψ(X̂λ,τd) 6= Y

)
,863

and therefore864

infφ:R|τd|→{−1,1}P (φ(Xτd) 6= Y ) ≤

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
.

(11)

The combination of equations (10) and (11) gives equality (4).865

9.3. Corollary 3866

1. Suppose assumption (A4a) is fullfilled867

The proof is based on Theorem 1 in Faragó and Györfi (1975). This868

theorem relates the Bayes risk of a classification problem based on869

(X, Y ) with the Bayes risk of the problem (Td(X), Y ) where (Td) is a870

series of transformations on X .871

More formally, for a pair of random variables (X, Y ), where X takes872

values in X , an arbitrary metric space, and Y in {−1, 1}, let us873
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denote for any series of functions Td from X to itself, L∗(Td) =874

infφ:X→{−1,1} P (φ(Td(X)) 6= Y ). Theorem 1 from Faragó and Györfi875

(1975) states that E (δ(Td(X), X))
d→+∞
−−−−→ 0 implies L∗(Td)

d→+∞
−−−−→ L∗,876

where δ denotes the metric on X .877

This can be applied to X = (Hm, 〈., .〉L2) with Td(X) =878

X̂λd,τd = Sλd,τdX
τd: under Assumptions (A1) and (A2), Theo-879

rem 2 gives: ‖Td(X)−X‖2L2 ≤
(
AR,mλd +BR,m

1
|τd|2m

)
‖DmX‖2L2 .880

Taking the expectation of both sides gives E (‖Td(X)−X‖L2) ≤881 (
AR,mλd +BR,m

1
|τd|2m

)
E
(
‖DmX‖2L2

)
, using the fact that the constants882

are independent of the function under analysis. Then under Assump-883

tions (A4a) and (A3), E (‖Td(X)−X‖L2)
d→+∞
−−−−→ 0. According to884

Faragó and Györfi (1975), this implies limd→∞ L∗
d = L∗.885

2. Suppose assumption (A4b) is fullfilled886

The conclusion will follow both for classification case and for regres-887

sion case. The proof follows the general ideas of Biau et al. (2005);888

Rossi and Conan-Guez (2006); Rossi and Villa (2006); Laloë (2008).889

Under assumption (A1), by Theorem 1 and with an argument similar to890

those developed in the proof of Corollary 1, σ(X̂λd,τd) = σ({X(t)}t∈τd).891

From assumption (A4b), σ({X(t)}t∈τd) is clearly a filtration. More-892

over, as E (Y ) and thus E (Y 2) are finite, E
(
Y |X̂λd,τd

)
is a uniformly893

bounded martingal for this filtration (see Lemma 35 of Pollard (2002)).894

This martingale converges in L1-norm to E

(
Y |σ

(
∪dσ(X̂λd,τd)

))
; we895

have896

• σ
(
∪dσ(X̂λd,τd)

)
⊂ σ(X) as X̂λd,τd is a function of X (via Theo-897

rem 1);898

• by Theorem 2, X̂λd,τd

d→+∞, surely
−−−−−−−−→ X in L2 which proves that X899

is σ
(
∪dσ(X̂λd,τd)

)
-measurable.900

Finally, E

(
Y |σ

(
∪dσ(X̂λd,τd)

))
= E (Y |X) and901

E

(
Y |X̂λd,τd

)
d→+∞, L1

−−−−−−→ E (Y |X).902

The conclusion follows from the fact that:903
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(a) binary classification case: the bound L∗
d − L∗ ≤904

2E
(∣∣∣E

(
Y |X̂λd,τd

)
− E (Y |X)

∣∣∣
)

(see Theorem 2.2 of905

Devroye et al. (1996)) concludes the proof;906

(b) regression case: as E (Y 2) is finite, E

(
E

(
Y |X̂λd,τd

)2)
is also fi-907

nite and the convergence also happens for the quadratic norm (see908

Corollary 6.22 in Kallenberg (1997)), i.e.,909

lim
d→+∞

E

((
E (Y |X)− E

(
Y |X̂λd,τd

))2)
= 0

Hence, as L∗
d − L∗ = E

((
E (Y |X)− E

(
Y |X̂λd,τd

))2)
, the con-910

clusion follows.911

9.4. Theorem 3912

We have913

L(φn,d)− L∗ = Lφn,τd − L∗
d + L∗

d − L∗. (12)

Let ǫ be a positive real. By Corollary 3, it exists d0 ∈ N
∗ such that, for all914

d ≥ d0,915

L∗
d − L∗ ≤ ǫ. (13)

Moreover, as shown in Corollary 1 and as Qλd,τd is invertible, we have916

in the binary classification case: L∗
d = infφ:R|τd|→{−1,1} P (φ(Xτd) 6= Y ) =917

infφ:R|τd|→{−1,1} P (φ (Qλd,τdX
τd) 6= Y ), and in the regression case: L∗

d =918

infφ:R|τd|→R
E
(
[φ (Xτd)− Y ]2

)
= infφ:R|τd|→R

E
(
[φ (Qλd,τdX

τd)− Y ]2
)
. By hy-919

pothesis, for any fixed d, φn,τd is consistent, that is920

lim
n→+∞

E (L(φn,τd)) = inf
φ:R|τd|→{−1,1}

P (φ (Qλd,τdX
τd) 6= Y ) ,

in the classification case and921

lim
n→+∞

E (L(φn,τd)) = inf
φ:R|τd|→R

E
(
[φ (Qλd,τdX

τd)− Y ]2
)
,

in the regression case, and therefore for any fixed d0,922

limn→+∞ E

(
L(φn,τd0 )

)
= L∗

d0
. Combined with equations (12) and923

(13), this concludes the proof.924
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