
New rank methods for reducing the size of the training set1

using the nearest neighbor rule2

Juan Ramón Rico-Juana, José Manuel Iñestaa
3

aDpto. Lenguajes y Sistemas Informáticos, Universidad de Alicante, E-03071 Alicante, Spain4

Abstract5

Some new rank methods to select the best prototypes from a training set are proposed

in this paper in order to establish its size according to an external parameter, while

maintaining the classification accuracy. The traditional methods that filter the training

set in a classification task like editing or condensing have some rules that apply to the

set in order to remove outliers or keep some prototypes that help in the classification. In

our approach, new voting methods are proposed to compute the prototype probability

and help to classify correctly a new sample. This probability is the key to sorting the

training set out, so a relevance factor from 0 to 1 is used to select the best candidates for

each class whose accumulated probabilities are less than that parameter. This approach

makes it possible to select the number of prototypes necessary to maintain or even

increase the classification accuracy. The results obtained in different high dimensional

databases show that these methods maintain the final error rate while reducing the size

of the training set.

Key words: editing, condensing, rank methods, sorted prototypes selection6

1. Introduction7

In classification problems, a statistical knowledge of the conditional density func-8

tions of each class is rarely available, so application of the optimal Bayes classification9

methods is not possible. The nearest neighbor (NN) rule and its extension (k-nearest10

neighbors) have been the most widely used non-parametric classifiers in practice.11

The advantage of the NN rule lies in the fact that it combines its conceptual simplic-12

ity with an asymptotic error rate that is conveniently bounded in terms of the optimal13

Email addresses: juanra@dlsi.ua.es (Juan Ramón Rico-Juan), inesta@dlsi.ua.es (José
Manuel Iñesta)Preprint submitted to Pattern Recognition Letters August 12, 2011

Bayes error (Cover and Hart, 1967). However, the NN rule also presents some prob-14

lems when the number of prototypes is large, since it needs to store all the examples15

in a memory and is sensitive to noisy instances. Many researchers have studied how16

to reduce the training set and obtain the same classification ability as when the whole17

training set is used (Wilson and Martinez, 2000; Wilson, 1972; Hart, 1968).18

There are two different ways to deal with the instance reduction problem (Li et al.,19

2005):20

• New prototype generation that creates a new prototype set (Chang, 1974).21

• Prototype selection, consisting in selecting a particular subset of prototypes from22

the original training set:23

– The condensing or reducing algorithms give the minimal subset of proto-24

types that lead to the same performance as when the whole training set is25

used.26

– The editing algorithm eliminates atypical prototypes from the original set27

and removes overlapping among classes.28

For condensing algorithms, the key problem is to decide which examples should29

be retained. The difference between the different condensing algorithms is how the30

typicality of training examples is evaluated. Condensing algorithms give more empha-31

sis to minimizing the size of the training set and its consistence, but noisy examples32

may often be selected for the prototype set and harm the classification accuracy. For33

editing algorithms, identifying these ’bad’ training examples that harm the accuracy is34

the most important challenge.35

In this paper, some new rank methods are proposed in order to reduce the size36

of the training set. This rank is based on estimating the probability that an instance37

participates in a correct classification using the nearest neighbor rule. So, using this38

methodology the user could control the size of the resulting training set.39

In the second section, some classical methodologies to reduce the training set are40

explained. In the third section, our new methodologies are introduced with their de-41

tailed algorithms. In the fourth section, the results obtained when applying different42

2

algorithms to reduce the size of the training set and their associated error rates on some43

widely used collection data are shown. Finally, some conclusions and future lines of44

work are presented.45

2. Classical Methodologies46

2.1. Condensed Nearest Neighbor Rule47

The Condensed Nearest Neighbor Rule (CNN) (Hart, 1968) was one of the first48

techniques to reduce the size of the training set. This algorithm gives a subset S of the49

training set T such that every member of T is closer to a member of S of the same class50

than to a member of a different class.51

The algorithm selects a sample randomly from T . If this sample is incorrectly52

classified using S then it is added to S . The process is repeated until all samples53

belonging to T are selected and correctly classified using S .54

This algorithm is especially sensitive to noise, because noisy instances are retained55

and the generalization accuracy is damaged because they are usually exceptions and56

thus do not represent the underlying function well.57

There are some other extensions of the CNN technique such as Selective Nearest58

Neighbor Rule (SNN) (Ritter et al., 1975), which changes slightly the basic CNN rules;59

Reduced Nearest Neighbor Rule (Gates, 1972), which finds the reduction subset by de-60

creasing the training set, while CNN uses an incremental approach. All these methods61

are more complex than CNN; hence, they are beyond our goals and will not be stud-62

ied. However, Multiedit Condensing can be considered to be a technique derived from63

CNN due to its good performance.64

2.2. Multiedit Condensing65

Multiedit Condensing (MCNN) (Dasarathy et al., 2000) solves the problem CNN66

has with noisy examples. The goal of MCNN is to remove the outliers using an editing67

algorithm (Wilson, 1972) and then apply CNN. The editing algorithm starts with a68

subset S equal to T , and then each instance in S is removed if it does not agree with69

the majority of its k-NN. This edits out noisy instances as well as close border cases.70

3

The multiedit algorithm applies the algorithm repeatedly until all remaining instances71

have a majority of their neighbors in the same class.72

3. Our Methodology73

In order to illustrate the main idea of our proposed methodology, a binary classifi-74

cation problem is considered and a distribution of training samples, T . In the figures75

shown in this section, the points of class 1 are indicated by circles and the points of76

class 2 by rectangles. The main idea is that the prototypes in the training set vote for77

the rest of the prototypes that help them to classify correctly and the method estimates78

a probability for each prototype that shows its importance in a classification task. The79

next step is to sort the training set according to that probability and select the best can-80

didates before the accumulated probability exceeds the external parameter (from 0 to81

1). This parameter allows the performance of this method to be controlled. Low values82

will reduce the size of the training set, and the performance will be similar to that of83

condensing algorithms. On the other hand, high values of this parameter will reduce84

the noise or outlier prototypes as editing algorithms do.85

In order to compute the votes for the training set, different approaches are presented86

and detailed in the following subsections.87

3.1. One vote per prototype farther88

In the one vote per prototype farther (1-FN), only one vote per prototype in the89

training set is considered. So the algorithm is focused on finding the best candidate90

to vote for. A graphical representation of this situation is shown in figure 1(a). The91

process is repeated for each element of the training set. Then, a is a selected prototype92

(in this case it belongs to class 1) and the nearest enemy (NE), labeled as b, is found93

among the rest of the classes (in this case, class 2). The farthest prototype whose class94

is the same as that of a and whose distance is less than that to the nearest enemy, in95

this case c, is found. So, if the prototype c belongs to the training set, the prototype96

a is classified correctly using the NN rule, given the fact that d(a, c) < d(a, b). In97

other words, there is a nearest neighbor of a whose distance is less than the distance to98

4

a

b

c

T

• T : Training set

• a: example selected

• b : The a nearest enemy

argminx∈T∼{a}{d(a, x) : class(a) , class(x)}

• c : The a farthest neighbor from the same class

with a distance less than d(a, b)

argmaxx∈T∼{a}{d(a, x) : class(a) = class(x) ∧

d(a, x) < d(a, b)}

(a) The voting method for two class prototypes to one candidate far from the selected candidate.

a

b

c1

c2

c3

c4

c5

T

• T : Training set

• a: example selected

• b : The a nearest enemy

argminx∈T∼{a}{d(a, x) : class(a) , class(x)}

• c : The a nearest neighbors from the same

class with a distance less than d(a, b)

x∈T∼{a}{d(a, x) : class(a) = class(x)∧d(a, x) <

d(a, b)}

(b) The voting method for two class prototypes to k candidates.

a

b

T

c

• T : Training set

• a: example selected

• b : The a nearest enemy

argminx∈T∼{a}{d(a, x) : class(a) , class(x)}

• c : The b Nearest Neighbor with the same class

as a and whose distance is less than d(a, b)

argminx∈T∼{a}{d(x, b) : class(x) = class(a) ∧

d(a, x) < d(a, b)}

(c) The voting method for two class prototypes to one candidate near to the enemy class.

Figure 1: Illustrations of the proposed voting methods.

5

the nearest enemy. In consequence, the vote from a is given to c. When the method is99

applied to all the training set prototypes, a score of votes for each prototype is obtained.100

An estimated probability is obtained normalizing this score using the vote summatory101

for a given class. This probability is an estimate of how many times a sample could be102

used as the NN to classify another sample correctly.103

The algorithm to compute this method is detailed below:104

function vote-1-FN(T)105

for a ∈ T do {Initializing votes}106

a.vote← 1107

end for108

for a ∈ T do {Process all prototypes}109

b← a.NearestEnemy(T)110

c← a.FarthestNeighbour(T ,b)111

if c = null then {if c does not exist, the prototype a is needed}112

a.vote++113

else114

c.vote++115

end if116

end for117

for a ∈ T do {Compute the probability}118

a.probability← a.vote / a.sumClassVotes(T)119

end for120

end function121

In this algorithm T is the training set, a. NearestEnemy(T) is a method by which122

the prototype computes the nearest enemy using the T set, a. FarthestNeighbour(T ,b)123

is a method by which the prototype computes the farthest neighbor from a with the124

same class and whose distance is less than that to b, a. and a.sumClassVotes(T) is a125

method by which the prototype sums all the votes from the prototypes that belong to126

the class of a. The votes are initialized to 1 (uniform distribution) in order to obtain127

probabilities greater than zero.128

6

3.2. k votes per prototype129

In this approach, k votes per prototype (k-NN) in the training set are allowed. This130

method is focused on finding the best candidates to vote for. In figure 1(b) a graphical131

representation of this situation is shown. The process described next is repeated for132

each element of the training set. First, a is a selected prototype (in this case it belongs133

to class 1) and the nearest enemy, labeled as b, is found among the rest of the classes134

(in this case, class 2). The nearest neighbor prototypes whose class is the same as a and135

whose distance is less than that to the nearest enemy, in this case ci, are found. So, if the136

prototypes ci belong to the training set, the prototype a is classified correctly using the137

NN rule. Given that d(a, ci) < d(a, b), in other words, there is a NN to a whose distance138

is less than that to the nearest enemy. In consequence, the vote from a is given to every139

ci. When the method is applied to all training set prototypes, a score for each prototype140

is obtained with the votes. As in the previous subsection, the individual probability is141

computed by dividing the individual votes between the class accumulated votes.142

The algorithm to compute this method is detailed below:143

function vote-k(T)144

for a ∈ T do {Initializing votes}145

a.vote← 1146

end for147

for a ∈ T do {Process all prototypes}148

b← a.NearestEnemy(T)149

C ← a.NearestNeighbours(T ,b)150

if |C| = 0 then {if C is empty the prototype a is needed}151

a.vote++152

else153

for c ∈ C do154

c.vote++155

end for156

end if157

end for158

7

for a ∈ T do {Compute the probability}159

a.probability← a.vote / a.sumClassVotes(T)160

end for161

end function162

Where a. NearestNeighbours(T ,b) is a method by which the prototype computes163

the nearest neighbors to a with the same class and whose distance is less than that to b.164

It returns a set of these prototypes. The votes are initialized to 1 (uniform distribution)165

as in the previous method.166

3.3. One vote per prototype near the enemy167

In this case (1-NE), one vote per prototype is considered and the process is repeated168

for all training set examples. A graphical example of this approximation is shown in169

figure 1(c). In the example, a is a selected prototype and the nearest enemy is labeled170

as b. The nearest prototype to the nearest enemy whose class is the same as that for171

a and whose distance is less than d(a, b), in this case c, is selected to receive the vote172

from a. So, if c belongs to the new training set, the example a is classified correctly173

because d(a, c) < d(a, b). In other words, the NN from a is near the NE.174

The algorithm to compute this method is detailed below:175

function vote-1-NE(T)176

for a ∈ T do {Initializing votes}177

a.vote← 1178

end for179

for a ∈ T do {Process all prototypes}180

b← a.NearestEnemy(T)181

c← b.NearestNeighbour(T ,a)182

if c = null then {if c doesn’t exist, the prototype a is needed}183

a.vote++184

else185

c.vote++186

end if187

end for188

8

for a ∈ T do {Compute the probability}189

a.probability← a.vote / a.sumClassVotes(T)190

end for191

end function192

Where b. NearestNeighbour(T ,a) is a method by which the prototype computes the193

NN to b with the same class as a and whose distance to a is less than to d(a, b).194

In the following section, a number of variations on the previous algorithms are195

presented with a brief description of the difference.196

3.4. Variations of the previous algorithms197

One vote per prototype farther discarding outliers (1-FN-D3) is similar to the pre-198

vious one vote per prototype farther (1-FN). The difference is that the algorithm is199

applied several times to compute the individual votes of the prototypes and it avoids200

computing the NE for the examples whose votes in the previous iteration are less than201

3. Thus, the outliers are initialized to 1 and they only receive their own vote. At the202

end of the iteration, they will obtain 2 votes. These prototypes are discarded in the next203

iteration. The final rank is computed with the votes of the final iteration.204

The One vote per second prototype farther (2-FN) is similar to the previous one vote205

per prototype farther. In order to discard the outliers (isolated examples that are sur-206

rounded by different class examples) the method to compute the b:=a.NearestEnemy(T)207

is replaced by b:=a.SecondNearestEnemy(T). This way, the isolated examples are not208

considered.209

Next, a combination of classical methods and our method is proposed. The idea is210

to combine CNN and MCNN with some of the algorithms presented above.211

The CNN rule selects the prototypes in an unsorted way, so the resulting training212

sets may be different for each run. If the best prototypes of each class are selected213

to start the CNN algorithm and the order of the selection is fixed (more important214

prototypes are examined first), this may help CNN to find a good candidate for the215

condensed training set. So, if the 1-FN method is selected to sort the training set,216

the new algorithm is called 1-FN-CNN and if the k-NN method is selected, the new217

algorithm is called as k-NN-CNN.218

9

In the same way as in the previous paragraph, the multiedit condensing algorithm219

(MCNN) selects the prototypes in an unsorted way, so the resulting training set may220

also be different each time. In the first step, the 1-FN algorithm is applied and in the221

second step a MCNN is used to obtain the reduced training set. This new algorithm is222

called 1-FN-MCNN. If the k-NN is used in the first step, the new algorithm is called223

k-NN-MCNN.224

4. Results225

The experiments were performed using two well known isolated handwritten char-226

acter databases and the UCI Machine Learning Repository (Asuncion and Newman,227

2007). The first is a database of uppercase characters (the NIST Special Database 3 of228

the National Institute of Standards and Technology) and the second contains digits (the229

US Post Service digit recognition corpus, USPS). In both cases, the classification task230

was performed using contour descriptions with Freeman codes (Freeman, 1961) and231

the string edit distance Wagner and Fischer (1974) as the similarity measure. In the232

case of the UCI database, some of the main collection sets are used. The prototypes are233

vectors of numbers and some of their components may have missing values. In order to234

cope with this problem, a normalised heterogeneous distance such as HVDM (Wilson235

and Martinez, 1997) is used.236

The new algorithms proposed were tested using low, medium, and high parameter237

values (0.10, 0.25, 0.50, 0.75, 0.90) in order to control their performance with different238

training sets.239

Experiments with the NIST database240

The subset of the 26 uppercase handwritten characters was used. The experiments241

were constructed by taking 500 writers and selecting the samples randomly. 4 sets242

were extracted with 1300 examples each (26 classes and 50 examples per class) and243

the 4-fold cross-validation technique was used. So, 4 experiments were evaluated with244

1300 prototypes as the size of the test set and 3900 (the rest) prototypes for the training245

set. As shown in table 1 and graphically in Fig. 3, the best classification results were246

10

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1-FN 2-FN K-NN 1-NE CNN MCNN

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

Methods

0.1

0.25

0.5

0.75

0.9

(a)

 0

 20

 40

 60

 80

 100

1-FN 2-FN K-NN 1-NE CNN MCNN

T
ra

in
in

g
 s

e
t
s
iz

e
 r

a
te

Methods

0.1
0.25
0.5

0.75
0.9

(b)

Figure 2: Comparison of the proposed methods grouped by method and parameter with the NIST database

(uppercase characters): a) Classification rate b) Training set remaining size (%).

obtained for the original set, 1-FN, 2-FN, and 1-NE with 0.90 and 0.75 as the external247

parameter. Also, Fig. 2 shows the results grouped by method and parameter. The248

1-FN method obtains the best classification rates for all parameters in our proposed249

methods, especially for the parameter value 0.1 that reduces dramatically the training250

set size to 3.69% with respect to the original set and achieves 79.15% accuracy. With251

regard to CNN and MCNN methods, better classification accuracies were obtained by252

our methods for similar training sizes. The 1-FN(0.90) and 2-FN(0.90) methods give a253

training set size of 80.67% and 65.37% , respectively. This performance is similar to254

that of the standard editing method. If about 25% of the training set is kept, 1-NE(0.50)255

and 2-FN(0.50) have the best average classification rates but they do not achieve any256

significant improvement with respect to the CNN and the MCNN methods.257

Note that any reduction in the original training set size decreases the average accu-258

racy. This may be due to the high intrinsic dimensionality of the feature vectors which259

causes all examples to be near the other class examples. This is supported by studies260

like Ferri et al. (1999) where the authors examined the sensitivity of the relation be-261

tween edit methods based on the nearest neighbor rules and the accuracy. Nevertheless,262

Fig. 3 shows that the 1-NE(0.75) method has a classification rate similar to the original263

rate with only 41.1% of the training set prototypes, and significantly better than that of264

CNN and MCNN.265

11

accuracy (%) training size training size (%)

original 89.2 ± 0.9 3900 ± 0 100 ± 0

1-FN(0.90) 89.0 ± 1.1 3146 ± 1 80.7 ± 0.1

2-FN(0.90) 88.9 ± 1.3 2549 ± 6 65.4 ± 0.2

1-FN(0.75) 88.7 ± 1.3 2198 ± 8 56.4 ± 0.2

2-FN(0.75) 88.3 ± 1.1 1840 ± 3 47.2 ± 0.1

1-NE(0.90) 88.6 ± 1.3 2514 ± 3 64.5 ± 0.1

1-NE(0.75) 88.5 ± 1.6 1602 ± 4 41.1 ± 0.1

1-FN-D3(0.90) 88.0 ± 1.2 2172 ± 9 55.7 ± 0.2

1-FN-D3(0.75) 87.8 ± 1.2 1758 ± 20 45.1 ± 0.3

1-FN(0.50) 87.6 ± 0.9 1223 ± 10 31.3 ± 0.3

1-NE(0.50) 87.5 ± 0.8 753 ± 6 19.3 ± 0.2

2-FN(0.50) 87.2 ± 1.2 1009 ± 5 25.8 ± 0.1

K-NN-CNN 86.5 ± 1.4 1000 ± 20 25.7 ± 0.5

1-FN-MCNN 86.4 ± 0.8 538 ± 6 13.8 ± 0.2

K-NN(0.90) 86.3 ± 1.4 2000 ± 40 51 ± 1

1-FN-CNN 86.3 ± 1.1 1020 ± 20 26.1 ± 0.3

CNN 86.2 ± 1.4 1000 ± 20 25.8 ± 0.6

1-FN-D3(0.50) 86.2 ± 1.6 1120 ± 10 28.7 ± 0.4

MCNN 85.6 ± 1.3 530 ± 10 13.6 ± 0.4

K-NN-MCNN 85.5 ± 1.4 540 ± 20 13.8 ± 0.4

1-FN(0.25) 84.9 ± 0.4 487 ± 6 12.5 ± 0.1

K-NN-(0.75) 84.3 ± 0.8 1100 ± 20 27.9 ± 0.6

2-FN-(0.25) 83.8 ± 1.4 412 ± 3 10.6 ± 0.1

1-FN-D3(0.25) 81.8 ± 0.5 436 ± 6 11.2 ± 0.2

1-NE(0.25) 81.3 ± 1.6 246 ± 5 6.3 ± 0.1

1-FN(0.10) 79.2 ± 0.8 170 ± 4 4.3 ± 0.1

K-NN(0.50) 78.0 ± 0.3 490 ± 10 12.4 ± 0.3

2-FN(0.10) 77.8 ± 1.7 143 ± 4 3.6 ± 0.1

1-FN-D3(0.10) 71.9 ± 0.1 160 ± 10 4.1 ± 0.3

1-NE(0.10) 69.3 ± 1.6 75 ± 3 1.9 ± 0.1

K-NN-(0.25) 68 ± 2 194 ± 1 4.9 ± 0.1

K-NN-(0.10) 59 ± 3 75 ± 1 1.9 ± 0.1

Table 1: Comparison results sorted by classification accuracy rates over the NIST database (uppercase char-

acters) with the number of training size prototypes and their percentage of the original. Means and deviations

for the 4-fold-cross-validation experiments are presented.

12

 75

 80

 85

 90

 0 20 40 60 80 100

%
 a

cc
ur

ac
y

% training set

Original

1-FN-0.10

1-FN-0.25

1-FN-0.50

1-FN-0.75
1-FN-0.90

1-FN-CNN

1-NE-0.25

1-NE-0.50

1-NE-0.75 1-NE-0.90

2-FN-0.10

2-FN-0.25

2-FN-0.50

2-FN-0.75

2-FN-0.90

CNN

MCNN

 84

 85

 86

 87

 88

 89

 25 26 27

1-FN-CNN

2-FN-0.50

CNN

Figure 3: Graphical comparison of the proposed methods using accuracy vs. percentage of training set.

The boxes around each method name represent graphically the standard deviations. The zoomed region

represents CNN, 2-FN(0.5) and 1-FN-CNN more clearly.

13

The USPS database266

In this classification task, the original digit database was divided in two sets: The267

training set with 7291 examples and test set with 2007 examples, so no cross-validation268

was performed.269

The table 2 shows that the best classification rates are obtained by the original270

set, 1-NE(0.90) and 2-FN(0.90). In this case, the deviations are not available because271

there are only two sets (training and test). Again, due to the high dimensionality of272

the feature vectors, any reduction in the size of the original training set decreases the273

accuracy. The 1-NE(0.90) and 2-FN(0.90) methods utilized 62.64% and 80.06% of274

the training set examples, respectively. It is remarkable that 1-NE(0.75) appears in the275

fourth position with only 37.77% of the training set. If about 25% of the training set is276

considered, 1-NE(0.50), 1-FN(0.50), and 2-FN(0.50) have the best classification rates,277

which are less than that of CNN and MCNN.278

UCI Machine Learning Repository279

Some of the main data collections used in this study have already been used in280

other articles like Wilson and Martinez (2000). The 10-fold-cross-validation method281

was used. The size of the training and test set is different according to the total size of282

the collection.283

The table 3 shows that in most cases our methods with 0.1 as external parameter284

obtained similar classification rates as those obtained using the whole set, but with a285

dramatic decrease in the size of the training set, as in the bcw case, with an average of286

0.5% of the original size. These reductions are significantly better than those obtained287

with the CNN and MCNN methods. In the worst cases, such as glass and io, the results288

are comparable to those of MCNN.289

5. Conclusions and future work290

In this paper, new algorithms to reduce the size of the training set for use in a291

classification task have been presented. These algorithms give a different estimate of292

the probability that a new example may be classified correctly by a training set example.293

14

accuracy(%) training size trainingsize(%)

original 88.9 7291 100.0

1-NE(0.90) 88.4 4567 62.6

1-FN(0.90) 88.3 5837 80.0

1-NE(0.75) 88.2 2754 37.7

2-FN(0.90) 88.1 4602 63.1

1-FN-D3(0.90) 88.0 3830 52.5

1-FN(0.75) 87.9 3724 51.0

K-NN(0.90) 87.9 2991 41.0

1-FN(0.50) 87.7 1603 21.9

1-NE(0.50) 87.7 1007 13.8

2-FN(0.50) 87.4 1192 16.3

K-NN(0.75) 87.4 1859 25.5

k-MCNN 87.1 597 8.1

2-NN(0.75) 87.0 2855 39.1

1-FN-MCNN 87.0 592 8.1

MCNN 86.9 614 8.4

1-FN-D3(0.75) 86.5 2379 32.6

1-FN(0.25) 86.4 520 7.1

K-NN(0.50) 85.8 935 12.8

2-FN(0.25) 85.5 388 5.3

1-FN-CNN 85.5 1446 19.8

K-NN-CNN 85.1 1392 19.0

CNN 85.0 1418 19.5

1-NE(0.25) 85.0 279 3.8

K-NN(0.24) 83.8 362 4.9

1-FN-D3(0.50) 83.4 1030 14.1

2-FN(0.10) 81.2 109 1.4

K-NN(0.10) 80.3 120 1.6

1-FN(0.10) 79.8 153 2.1

1-NE(0.10) 77.1 71 1.0

1-FN-D3(0.25) 75.8 346 4.8

1-FN-D3(0.10) 63.3 105 1.4

Table 2: Comparison of results sorted by classification rates over the USPS digits database. Only one fold

was made so no deviations are available.

15

bcw wdbc glass hc hh

acc. % acc. % acc. % acc. % acc. %

original 95.6 ± 1.4 100 ± 0 94.9 ± 1.5 100 ± 0 88 ± 6 100 ± 0 53 ± 6 100 ± 0 78 ± 9 100 ± 0

CNN 93 ± 2 10.9 ± 0.7 94 ± 3 14 ± 1 89 ± 7 30 ± 2 47 ± 4 64.3 ± 1.5 75 ± 8 42 ± 3

MCNN 95 ± 2 2.8 ± 0.5 95 ± 3 7.2 ± 0.9 80 ± 10 17 ± 1 50 ± 7 13.9 ± 1.6 80 ± 10 15.1 ± 1.6

1-NE(0.1) 96.1 ± 1.8 0.5 ± 0.1 84 ± 8 0.8 ± 0.1 60 ± 10 3.8 ± 0.3 45.8 ± 8.9 4.5 ± 0.4 73 ± 9 2.4 ± 0.4

1-NE(0.25) 96.3 ± 1.7 1.4 ± 0.1 91 ± 4 2.8 ± 0.1 80 ± 10 9.0 ± 0.6 48.3 ± 7 13.4 ± 0.5 83 ± 9 8.1 ± 0.7

1-NE(0.5) 95 ± 1.4 7.3 ± 0.2 93 ± 4 12.6 ± 0.4 80 ± 10 23 ± 0 50.4 ± 8.6 35.6 ± 1.1 78 ± 8 26 ± 1

1-NE(0.75) 95.3 ± 1.2 50.2 ± 0.1 94 ± 2 50.1 ± 0.1 86 ± 6 53.3 ± 0.8 53.2 ± 8 60.7 ± 1.1 76 ± 6 52.6 ± 0.4

1-NE(0.9) 95.3 ± 1.5 80.2 ± 0.1 95.1 ± 1.6 80.2 ± 0.1 87 ± 9 81.7 ± 0.6 52.6 ± 5.2 82.3 ± 0.7 76 ± 8 80.3 ± 0.5

1-FN(0.1) 96 ± 1.5 2 ± 0 90 ± 5 3.9 ± 0.2 50 ± 2 5.3 ± 0.4 52 ± 7 6 ± 0.3 80 ± 10 4.0 ± 0.2

1-FN(0.25) 96.6 ± 1.4 5.9 ± 0.3 94 ± 3 11.7 ± 0.4 78 ± 12 13.2 ± 0.4 50 ± 8 15.9 ± 0.7 79 ± 12 12.0 ± 0.5

1-FN(0.5) 96.7 ± 1.2 18.9 ± 0.6 95 ± 3 29.3 ± 0.7 85 ± 9 31.4 ± 1.2 54 ± 8 38 ± 1 77 ± 8 31.7 ± 0.8

1-FN(0.75) 95.1 ± 1.8 51.6 ± 0.2 95 ± 2 54.3 ± 0.8 89 ± 5 56.5 ± 1.1 54 ± 8 63.1 ± 1.2 75 ± 6 56.6 ± 0.8

1-FN(0.9) 95.6 ± 1.4 80.2 ± 0.1 95 ± 2 80.2 ± 0.1 87 ± 8 81.6 ± 0.5 54 ± 6 82.2 ± 0.8 76 ± 9 80.3 ± 0.5

2-FN(0.1) 96 ± 2 1.8 ± 0.1 93 ± 3 4 ± 0 51.2 ± 9.2 5 ± 0.4 46 ± 8 5.5 ± 0.2 81 ± 8 4.0 ± 0.3

2-FN(0.25) 96 ± 2 5.4 ± 0.3 93 ± 3 11.8 ± 0.5 72 ± 14 11.9 ± 0.6 50 ± 10 14.6 ± 0.6 77 ± 9 11.4 ± 0.5

2-FN(0.5) 95.9 ± 1.7 17.9 ± 0.6 93 ± 2.4 29.3 ± 1 79 ± 12 28.8 ± 1.4 52 ± 6 35.3 ± 0.7 75 ± 9 29.7 ± 0.6

2-FN(0.75) 95 ± 2 51.7 ± 0.4 95 ± 3 54.1 ± 1.1 85 ± 6 54.2 ± 1.1 54 ± 7 60.3 ± 0.8 72 ± 4 54.5 ± 0.7

2-FN(0.9) 95.4 ± 1.1 80.2 ± 0.1 95 ± 2 80.2 ± 0.1 87 ± 6 81.6 ± 0.6 53 ± 6 81.2 ± 0.8 78 ± 8 80.3 ± 0.5

bcw (breast cancer wisconsin); hc (heart cleveland); hh (heart hungarian)

hepatitis io iris pd zoo

acc. % acc. % acc. % acc. % acc. %

original 81 ± 15 100 ± 0 87 ± 4 100 ± 0 94 ± 5 100 ± 0 70 ± 6 100 ± 0 95 ± 6 100 ± 0

CNN 74 ± 17 36 ± 2 87 ± 5 23.3 ± 1.6 95 ± 4 18 ± 2 66 ± 5 48.2 ± 1.6 97 ± 6 17 ± 3

MCNN 84 ± 10 13.5 ± 1.1 85 ± 6 11.1 ± 1.1 95 ± 5 8.7 ± 1.7 73 ± 5 15 ± 1 94 ± 7 13 ± 2

1-NE(0.1) 67 ± 12 2.2 ± 0.3 55 ± 12 0.9 ± 0.2 817 ± 11 2.7 ± 0.4 69 ± 7 3.0 ± 0.1 90 ± 12 7.7 ± 0.1

1-NE(0.25) 81 ± 6 5.4 ± 0.5 80 ± 6 3.3 ± 0.3 84 ± 11 5.3 ± 0.6 71 ± 7 10.6 ± 0.2 92 ± 9 8.6 ± 0.7

1-NE(0.5) 86 ± 6 20 ± 1 87 ± 5 14.1 ± 0.5 92 ± 7 13 ± 1 71 ± 6 29.8 ± 0.5 95 ± 6 20.5 ± 1.3

1-NE(0.75) 82 ± 12 52.5 ± 0.6 90 ± 4 50.3 ± 0.4 94 ± 5 51.4 ± 0.4 69 ± 5 54.8 ± 0.5 96 ± 6 54.0 ± 1.2

1-NE(0.9) 79 ± 16 80.6 ± 0.5 88 ± 4 80.3 ± 0.3 95 ± 6 80.8 ± 0.2 70 ± 6 80.2 ± 0.1 95 ± 6 83.5 ± 1.8

1-FN(0.1) 86 ± 4 4.4 ± 0.3 76 ± 5 3.4 ± 0.2 83 ± 13 4.3 ± 0.5 70 ± 5 4.6 ± 0.2 90 ± 11 7.7 ± 0.1

1-FN(0.25) 86 ± 9 12.0 ± 0.6 85 ± 7 10.4 ± 0.3 90 ± 6 10.9 ± 0.4 73 ± 5 13.6 ± 0.3 91 ± 13 9.1 ± 0.5

1-FN(0.5) 84 ± 9 29.3 ± 1.2 86 ± 6 28.1 ± 0.6 93 ± 5 26.4 ± 0.9 69 ± 7 33.9 ± 0.5 94 ± 5 20.7 ± 0.9

1-FN(0.75) 85 ± 10 54.1 ± 1.4 88 ± 4 53.2 ± 0.6 95 ± 6 54.8 ± 0.8 68 ± 6 58.9 ± 0.5 97 ± 6 54.3 ± 1.1

1-FN(0.9) 79 ± 14 80.6 ± 0.5 88 ± 4 80.3 ± 0.3 95 ± 7 80.8 ± 0.2 70 ± 6 80.2 ± 0 96 ± 6 83.5 ± 1.8

2-FN(0.1) 78 ± 10 4.5 ± 0.5 78 ± 8 2.9 ± 0.3 72 ± 13 4.1 ± 0.5 72 ± 3 4.3 ± 0.1 87 ± 15 7.7 ± 0.1

2-FN(0.25) 84 ± 10 11.9 ± 0.6 82 ± 4 9.2 ± 0.3 93 ± 5 10.8 ± 1.2 68 ± 4 12.9 ± 0.4 86 ± 12 9.1 ± 0.5

2-FN(0.5) 86 ± 9 29.4 ± 1 88 ± 6 26.6 ± 0.7 93 ± 6 26.1 ± 1.6 67 ± 8 31.4 ± 0.4 93 ± 7 22.2 ± 1.9

2-FN(0.75) 82 ± 12 54.3 ± 1.1 90 ± 6 52.1 ± 0.5 93 ± 5 55.3 ± 1.4 68 ± 7 56.4 ± 0.4 95 ± 6 54.5 ± 1.9

2-FN(0.9) 81 ± 15 80.6 ± 0.5 88 ± 4 80.3 ± 0.3 94 ± 5 80.8 ± 0.2 67 ± 6 80.2 ± 0.1 96 ± 6 83.5 ± 1.8

pd (pima diabetes); io (ionosphere)

Table 3: Comparison results on some of the UCI Machine Repository databases. Means and deviations are

presented in accuracy and % of remaining training set size.

16

The results obtained for accuracy are in most cases better than those obtained using the294

classical algorithms compared. Note the good performance shown by 1-FN, 2-FN and295

1-NE algorithms with respect to the classification accuracy and the reduction in the296

number of prototypes in the training set. Moreover, these algorithms have a low time297

complexity, only O
(
|T |2
)

which is run offline, before the classification operation.298

As future work, the new algorithms proposed could be compared with evolved299

instance-based learning algorithms such as DROP (Wilson and Martinez, 2000), al-300

though their method has higher complexity than the one presented here. In addition,301

how to estimate the control parameter of these algorithms to obtain optimal results in302

classification tasks remains to be studied. Finally, boosting techniques adapted to the303

proposed algorithms could explore to observe the behavior.304

References305

Asuncion, A., Newman, D., 2007. UCI machine learning repository.306

URL http://www.ics.uci.edu/∼mlearn/MLRepository.html307

Chang, C., 1974. Finding Prototypes for Nearest Neighbour Classifiers. IEEE Transac-308

tions on Computers 23 (11), 1179–1184.309

Cover, T., Hart, P., Jan. 1967. Nearest neighbor pattern classification. IEEE Transac-310

tions on Information Theory 13 (1), 21–27.311

Dasarathy, B. V., Sánchez, J. S., Townsend, S., 2000. Nearest neighbour editing and312

condensing tools-synergy exploitation. Pattern Anal. Appl. 3 (1), 19–30.313

Ferri, F. J., Albert, J. V., Vidal, E., 1999. Considerations about sample-size sensitivity314

of a family of edited nearest-neighbor rules. IEEE Transactions on Systems, Man,315

and Cybernetics, Part B 29 (5), 667–672.316

Freeman, H., Jun. 1961. On the encoding of arbitrary geometric configurations. IRE317

Transactions on Electronic Computer 10, 260–268.318

Gates, G., 1972. The Reduced Nearest Neighbor Rule. IEEE Transactions on Informa-319

tion Theory IT-18(3), 431–433.320

17

Hart, P., 1968. The condensed nearest neighbor rule. IEEE Transactions on Information321

Theory 14 (3), 515–516.322

Li, Y., Huang, J., Zhang, W., Zhang, X., Dec. 2005. New prototype selection rule323

integrated condensing with editing process for the nearest neighbor rules. In: IEEE324

International Conference on Industrial Technology. pp. 950–954.325

Ritter, G. L., Woodruff, H. B., Lowry, S. R., Isenhour, T., 1975. An algorithm for a326

selective nearest neighbor rule. IEEE Transactions on Information Theory 21 (6),327

665–669.328

Wagner, R. A., Fischer, M. J., 1974. The string-to-string correction problem. J. ACM329

21, 168–173.330

Wilson, D., 1972. Asymptotic properties of nearest neighbor rules using edited data.331

IEEE Transactions on Systems, Man and Cybernetics 2 (3), 408–421.332

Wilson, D., Martinez, T., 2000. Reduction techniques for instance-based learning algo-333

rithms. Machine Learning 38 (3), 257–286.334

Wilson, D. R., Martinez, T. R., 1997. Improved heterogeneous distance functions. Jour-335

nal of Artificial Intelligence Research, 1–34.336

18

