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Abstract

In this paper, we propose a different insight to analyze AdaBoost. This anal-
ysis reveals that, beyond some preconceptions, AdaBoost can be directly used
as an asymmetric learning algorithm, preserving all its theoretical properties.
A novel class-conditional description of AdaBoost, which models the actual
asymmetric behavior of the algorithm, is presented.
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1. Introduction

Asymmetry is present in many real world pattern recognition applica-
tions. Medical diagnosis, disaster prediction, biometrics, fraud detection,
etc. have obviously different costs associated with the different kinds of mis-
takes (false positives and false negatives) implicitly related to each decision.
But asymmetry is not only connected to the direct cost of a mistake. Many
problems have unbalanced class priors, where one of the classes is extremely
more frequent than the other one, or it is easier to sample. This kind of
problems may require classifiers capable of focusing their attention in the
rare (but most valuable) class, instead of trying to find hypothesis that in
general fit well to data (mainly driven by the prevalent class).

From its original publication, boosting algorithms (Schapire, 1990) and
specifically AdaBoost (Freund and Schapire, 1997) have drawn a lot of atten-
tion of the pattern recognition community. Its strong properties and theo-
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retical guarantees, its tendency to non-overfitting and its promising practical
results, have focused the interest in this family of algorithms (e.g., Schapire
et al., 1998a; Schapire and Singer, 1999; Friedman et al., 2000; Mease and
Wyner, 2008a; Viola and Jones, 2004) both from the theoretical (different
interpretations, modifications, discussions. . . ) and practical points of view.

In the literature, several modifications of AdaBoost have been proposed to
deal with asymmetry (Karakoulas and Shawe-Taylor, 1998; Fan et al., 1999;
Ting, 2000; Viola and Jones, 2004, 2002; Sun et al., 2007; Masnadi-Shirazi and
Vasconcelos, 2007). Viola and Jones in their face detector framework (2004),
use a validation set to modify the AdaBoost strong classifier threshold in
order to trade off false positive and detection rates. Nevertheless, as they
stated, it is not clear whether this change preserves the original training and
generalization guarantees of AdaBoost (Viola and Jones, 2004) and the weak
classifiers selection is not optimal for an asymmetric task (Viola and Jones,
2002). Most of the other proposed algorithms (Karakoulas and Shawe-Taylor,
1998; Fan et al., 1999; Ting, 2000; Viola and Jones, 2002; Sun et al., 2007) try
to reach asymmetry based on direct manipulations of the weight distribution
update rule. These are heuristic modifications of the algorithm, but not a
full reformulation of AdaBoost for asymmetric classification problems. On
the other hand, the more recent Asymmetric Boosting algorithm (Masnadi-
Shirazi and Vasconcelos, 2007) finds a new solution to the problem based
on the Statistical View of Boosting (Friedman et al., 2000). Their result is
theoretically solid, but the final algorithm is far more complex and computing
demanding than the original AdaBoost.

Eventhough some studies (Freund and Schapire, 1997; Zadrozny et al.,
2003) mention that the incorporation of unbalanced initial weights could
lead to a cost-sensitive version of AdaBoost, subsequent works insist that this
is not enough to reach effective asymmetry (Viola and Jones, 2002; Mease
et al., 2007; Sun et al., 2007; Masnadi-Shirazi and Vasconcelos, 2007) swelling
the number of different asymmetric boosting algorithm variants. Meanwhile,
standard AdaBoost remains being explained with an uniform initial weight
distribution (e.g., Schapire and Singer, 1999; Friedman et al., 2000; Schapire
et al., 1998a; Fan et al., 1999; Ting, 2000; Sun et al., 2007; Masnadi-Shirazi
and Vasconcelos, 2007; Freund and Schapire, 1999; Polikar, 2006, 2007). To
the best of our knowledge, a formal explanation of the consequences of using
asymmetric initial weights on AdaBoost has not been provided, either in
one way (they lead to effective asymmetry) or the other (they are definetely
useless), so we think that some light must be shed in order to clarify the
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actual asymmetric learning capabilities of AdaBoost.
In this paper we propose a new perspective to analyze AdaBoost in a

class-conditional way. This analysis suggests that, only with an unbalanced
class-conditional initialization of the weight distribution, AdaBoost is, by
itself, a theoretically sound asymmetric classification algorithm. Based on
class error decomposition, our analysis offers a new model to understand
AdaBoost behavior and how it really deals with asymmetry in an additive
round-by-round scheme. In fact, weights initialization is no more than a way
to modify the data distribution seen by the learner and, as we will see, it can
be easily shown to shape the error bound that sets AdaBoost minimization
goal. One key point of our work is that it is merely an analysis, so AdaBoost
is unchanged. As a consequence, all the algorithm theoretical properties (re-
lated to training and generalization errors) remain intact, which has not been
clearly reported on the other modifications in the literature. Our analysis is
inspired by the generalized derivation of Schapire and Singer (1999), close
to the original (Freund and Schapire, 1997) and specially intuitive and illus-
trative for our purpose. The Statistical View of Boosting (Friedman et al.,
2000) and all its subsequent controversy (Mease and Wyner, 2008a; Bennett
et al., 2008; Mease and Wyner, 2008b) is left aside, although an analogous
conclusion could be derived from it.

The paper is organized as follows: in the next section we will describe
AdaBoost original algorithm and its relationship with asymmetry. Section 3
will detail our novel class-dependant interpretation, its analysis and some ex-
perimental results which show the actual asymmetric behavior of AdaBoost.
Finally, Section 4 includes the main conclusions drawn from this analysis.

2. AdaBoost

In this section we will analyze the original AdaBoost definition and how
it has usually been adapted to asymmetric learning.

2.1. Algorithm

Given a set of n training examples (xi, yi) from which the m first are
positives {yi = 1}mi=1 and the rest are negatives {yi = −1}ni=m+1, AdaBoost is
a boosting algorithm whose goal is learning a strong classifier H(x) based on
an ensemble of weak classifiers ht(x) combined in a weighted voting scheme.
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H(x) = sign (f(x)) = sign

(
T∑

t=1

αtht(x)

)

(1)

To achieve this, a weight distribution Dt(i) is defined over the whole
training set. In each learning round t the weak learner selects the best
classifier according to the weight distribution, and this weak classifier is added
to the ensemble weighted by a goodness parameter αt (2) depending on a
correlation term rt (3). Once every weak classifier is selected, the weight
distribution is updated according to its performance, following the rule on
(4) (where Zt is a normalization factor which ensures Dt(i) is an actual
distribution). The process can be repeated iteratively until a fixed number
of rounds is reached, or when the obtained strong classifier achieves some
performance goal.

αt =
1

2
ln

(
1 + rt
1− rt

)

(2)

rt =

n∑

i=1

Dt(i)yiht(xi) (3)

Dt+1(i) =
Dt(i) exp (−αtyiht(xi))

Zt
(4)

Zt =

n∑

i=1

Dt(i) exp (−αtyiht(xi)) (5)

This framework can be seen (Schapire and Singer, 1999) as an additive
(round-by-round) minimization process of an exponential bound on the train-
ing error of the strong classifier. The bounding process is based on (6), and
all the above expressions (including the weight update rule) can be derived
from it.

H(xi) 6= yi ⇒ yif(xi) ≤ 0 ⇒ exp (−yif(xi)) ≥ 1 (6)

Following the procedure used by Schapire and Singer (1999), the final
bound of the training error obtained by AdaBoost is expressed as (7). The
additive minimization of ẼT can be seen as finding, round by round, the weak
hypothesis ht that maximizes rt, that is maximizing the correlation between
labels (yi) and predictions (ht) weighted by Dt(i).
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ET ≤
T∏

t=1

Zt ≤
T∏

t=1

√

1− rt2 = ẼT (7)

For the sake of simplicity and clarity in our analysis, we will focus on the
discrete version of the algorithm. In that case weak hypothesis are binary
yi ∈ {−1,+1}, and the minimization process is equivalent to selecting the
weak classifier with less weighted error ǫt (8)

1. In this case, the last inequality
on (7) becomes an equality, and parameter αt can be rewritten (9) in terms
of ǫt .

ǫt =

n∑

i=1

Dt(i)Jh(xi) 6= yiK =
∑

nok

Dt(i) (8)

αt =
1

2
ln

(
1− ǫt
ǫt

)

(9)

This simplification doesn’t prevent our analysis from being extended to
other AdaBoost variations.

2.2. AdaBoost and Asymmetry

AdaBoost is usually seen as a learning procedure driven by misclassifica-
tion on the training set. In that sense, the exponential bound to minimize
must be defined (10) following the guidelines proposed by (Schapire and
Singer, 1999). Graphically, we can visualize this bounding process in Figure
1.

ET =
1

n

n∑

i=1

JH(xi) 6= yiK

≤
1

n

n∑

i=1

exp (−yif(xi)) =
T∏

t=1

Zt = ẼT

(10)

From this point of view, AdaBoost is an algorithm with a symmetric
behavior if the number of instances in the training set is the same for the two

1Notation: Operator JaK is 1 if a is true and 0 otherwise. The term ‘ok’ refers to those
training examples in which the result of the weak classifier is right {i : h(xi) = yi} and
‘nok’ when it is wrong {i : h(xi) 6= yi}.
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Figure 1: AdaBoost exponential training error bound. Horizontal axis represents the
absolute value of the final score of the strong classifier, with negative sign for errors and
positive for correct classifications. Vertical axis is the loss related to misclassification and
its exponential bound.

classes, or biased to the prevalent class otherwise. Consequently, AdaBoost
couldn’t be a cost-sensitive algorithm unless the training data set is resampled
accordingly.

Based on this seemingly balanced nature, several modifications of Ada-
Boost have been proposed in order to adapt the algorithm to cost-sensitive
problems. Most of them (Karakoulas and Shawe-Taylor, 1998; Fan et al.,
1999; Ting, 2000; Sun et al., 2007; Viola and Jones, 2002) are based on
modifying the weight update rule in an asymmetric (class-conditional) way.
However it is not clear how these changes can affect the theoretical properties
of AdaBoost since, as was mentioned above, the update rule is a consequence
of the minimization process and not an arbitrary starting point of it.

This perspective is supported by the fact that AdaBoost is usually ex-
plained with a fixed uniform initial weight distribution (D1(i) = 1/n) (e.g.,
Schapire and Singer, 1999; Friedman et al., 2000; Schapire et al., 1998a; Fan
et al., 1999; Ting, 2000; Sun et al., 2007; Masnadi-Shirazi and Vasconcelos,
2007; Freund and Schapire, 1999; Polikar, 2006, 2007). Nevertheless some
initial works by Freund and Schapire (1997) leave this distribution free to be
controlled by the learner. In our explanation of the algorithm in Section 2.1
we deliberately didn’t mention anything about the initialization of the weight
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distribution. So, what would really happen if the initial distribution was a
generic one? Changes of the initial distribution were used to deal with cost-
related utility functions (Schapire et al., 1998b), and cost-sensitive weight
initializations bonded to different changes in the weight update rule were
also used by Karakoulas and Shawe-Taylor (1998), Fan et al. (1999) or Ting
(2000). Viola and Jones (2002) proposed a first modification of AdaBoost
equivalent to an asymmetric modification of the initial weights. Neverthe-
less, they discard this approximation arguing that the induced asymmetry is
fully absorbed by the first round, remaining the rest of the process entirely
symmetric. Their final proposal (coined as AsymBoost) was fairly spreading
the desired asymmetry among a predefined number of rounds.

Though it is not widely appreciated, it can be easily shown that the error
bounded and minimized by AdaBoost is actually a weighted error depending
on the initial weight distribution. The only change with regard to the usual
bound (10), in which initial uniform weights have been taken out of the
summation, is that generic initial weights must be kept inside the summation
during the bounding process (11).

ET =
n∑

i=1

D1(i)JH(xi) 6= yiK

≤

n∑

i=1

D1(i) exp (−yif(xi)) =

T∏

t=1

Zt = ẼT

(11)

All the rest of the process remains identical to that explained by Schapire
and Singer (1999), consequently guaranteeing all the theoretical properties
of AdaBoost with regard to training and generalization errors.

3. Revisiting AdaBoost

In this section we will show our novel class-conditional interpretation
model for AdaBoost. This generalized analysis will shed light on the class-
dependant behavior of AdaBoost sketched in the previous section.

3.1. Asymmetric Interpretation

To derive our new interpretation of AdaBoost, instead of the initial weight
distribution used in the original AdaBoost formulation, we define a set of
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parameters which contain exactly the same information of the former distri-
bution.

• Asymmetry :
m∑

i=1

D1(i) = γ ∈ (0, 1) (12)

• Class-conditional distributions :

D1+(i) =
D1(i)

γ
, for i = 1, . . . , m (13)

D1−(i) =
D1(i)

1− γ
, for i = m+ 1, . . . , n (14)

If we put this new set of parameters into the training error expression
(11) we will be able to decompose it in terms of its positive and negative
class error components:

ET =
n∑

i=1

D1(i)JH(xi) 6= yiK = γ
m∑

i=1

D1+(i)JH(xi) 6= yiK

+ (1− γ)

n∑

i=m+1

D1−(i)JH(xi) 6= yiK

= γ ET+ + (1− γ)ET−

(15)

Bounding (15) with the usual exponential approximation, we can also
obtain the error bound as the combination of two class-conditional partial
error bounds:

ET = γ ET+ + (1− γ)ET−

≤ γ

m∑

i=1

D1+(i) exp (−yif(xi))

+ (1− γ)
n∑

i=m+1

D1−(i) exp (−yif(xi))

= γ ẼT+ + (1− γ) ẼT−
= ẼT

(16)
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Figure 2: AdaBoost training error and its exponential bound split into two class-
conditional components for an asymmetry of γ = 2/3.

In Figure 2 we can see the defined weighted partial error bounds (ẼT+

and ẼT−
) for an asymmetry of γ = 2/3 (assuming uniform class-conditional

distributions). Asymmetry becomes evident.
As it can be seen, the two partial bounds have expressions formally iden-

tical to that of the general bound used in the original AdaBoost (11), so an
equivalent update rule can be derived for each class error:

D(t+1)+(i) =
Dt+(i) exp (−αtyiht(xi))

Zt+
(17)

D(t+1)−(i) =
Dt−(i) exp (−αtyiht(xi))

Zt−
(18)

where

Zt+ =

m∑

i=1

Dt+(i) exp (−αtyiht(xi)) (19)

Zt− =
n∑

i=m+1

Dt−(i) exp (−αtyiht(xi)) (20)
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We will also define two new parameters Pt+ and Pt− which, unraveling
the update rules, can be expressed as follows:

Pt+ =
t−1∏

k=1

Zk+ =
m∑

i=1

(

D1+(i)
t−1∏

k=1

exp (−αkyihk(xi))

)

(21)

Pt− =
t−1∏

k=1

Zk− =
n∑

i=m+1

(

D1−(i)
t−1∏

k=1

exp (−αkyihk(xi))

)

(22)

These parameters (we will discuss later about their meaning) allow us to
express the partial error bounds in a compact form:

Ẽt+ = Pt+ Zt+ (23)

Ẽt− = Pt− Zt− (24)

The global error bound of the original view of AdaBoost, Ẽt, can also be
analogously rewritten by defining an equivalent parameter Pt for the whole
training set:

Pt =
t−1∏

k=1

Zk =
n∑

i=1

(

D1(i)
t−1∏

k=1

exp (−αkyihk(xi))

)

(25)

Ẽt = Pt Zt (26)

As a result, the error bound to minimize can be expressed as:

Ẽt = γ Ẽt+ + (1− γ) Ẽt−

= γ Pt+Zt+ + (1− γ)Pt−Zt−

(27)

Bearing in mind that in each round the only variable parameters are Zt+

and Zt− (γ is fixed from the beginning, and Pt depends only on the previous
rounds), we can minimize Ẽt using a procedure analogous to that proposed
by Schapire and Singer (1999). While the minimization is exactly the same
as in the original case (∂Ẽt/∂αt = 0) the process can be entirely performed
in terms of the class-conditional parameters and allows us to obtain the next
expression of the error to be minimized round by round:
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ǫt =
γ Pt+

γ Pt+ + (1− γ)Pt−

ǫt+ +
(1− γ)Pt−

γ Pt+ + (1− γ)Pt−

ǫt− (28)

Where ǫt+ and ǫt− are the partial weighted errors per class:

ǫt+ =
m∑

i=1

Dt+(i)Jh(xi) 6= yiK =
∑

pos nok

Dt+(i) (29)

ǫt− =
n∑

i=m+1

Dt−(i)Jh(xi) 6= yiK =
∑

neg nok

Dt−(i) (30)

The expression for αt is:

αt =
1

2

ln







γ Pt+

∑

pos ok

Dt+(i) + (1− γ)Pt−

∑

neg ok

Dt−(i)

γ Pt+

∑

pos nok

Dt+(i) + (1− γ)Pt−

∑

neg nok

Dt−(i)







=
1

2
ln

(
1− ǫt
ǫt

)

(31)

And the final training error bound, can be expressed as:

ET ≤ ẼT =

T∏

t=1

Zt =

T∏

t=1

√

1− rt2 (32)

rt =
γ Pt+

γ Pt+ + (1− γ)Pt−

m∑

i=1

Dt+(i)yiht(xi)

+
(1− γ)Pt−

γ Pt+ + (1− γ)Pt−

n∑

i=m+1

Dt−(i)yiht(xi)

(33)

As we can see, all the magnitudes (ǫt, αt and rt) are systematically decou-
pled in two components according to the global asymmetry and the classifier
behavior over each class. The key concept is that expressions (28), (31) and
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(33) are actually the same as those of the original AdaBoost formulation (8),
(9) and (3), respectively. On one hand, the derivation is equivalent to the
original with the only exception that weights are decomposed in three pa-
rameters (12), (13), (14). On the other hand, during the derivation process
we can obtain equivalences (34), (35), (36) which appropriately replaced on
the original AdaBoost expressions lead us to the new ones.

γ Pt+ + (1− γ)Pt− = Pt (34)

γ Pt+Dt+(i) = PtDt(i), for i = 1, . . . , m (35)

(1− γ)Pt−Dt−(i) = PtDt(i), for i = m+ 1, . . . , n (36)

3.2. Asymmetric Error Analysis

The initial weight decomposition in our analysis allows us to decouple the
global weight distribution information in two levels which were always mixed
in the original AdaBoost formulation:

• Class level : The asymmetry parameter γ models the global cost of the
positive class over the negative one. From a practical point of view, this
parameter can be used to introduce asymmetry in the strong classifier.

• Example level : The class-conditional initial weight distributions (D1+

and D1−(i)) model the relative relevance of each example inside its own
class. So, being two separate distributions, they are isolated from the
asymmetry of the problem.

This two-level categorization can be extrapolated to the error bound min-
imized by AdaBoost in each round, yielding us a new insight.
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Ẽt =

CLASS LEVEL
︷ ︸︸ ︷

γ
︸︷︷︸

Global Asymmetry

· Pt+
︸︷︷︸

Previous Rounds Asymmetry
︸ ︷︷ ︸

Effective Asymmetry

·

EXAMPLE LEVEL
︷ ︸︸ ︷

Zt+
︸︷︷︸

Current Round

︸ ︷︷ ︸

POSITIVES BEHAVIOR

+

CLASS LEVEL
︷ ︸︸ ︷

(1− γ)
︸ ︷︷ ︸

Global Asymmetry

· Pt−
︸︷︷︸

Previous Rounds Asymmetry
︸ ︷︷ ︸

Effective Asymmetry

·

EXAMPLE LEVEL
︷ ︸︸ ︷

Zt−
︸︷︷︸

Current Round

︸ ︷︷ ︸

NEGATIVES BEHAVIOR

(37)

The bound consists of two formally identical terms, one per class (positive
and negative). Each term has two main components: one on the class level
and another one in the example level.

• The class level defines the effective asymmetry demanded for the cur-
rent round. It can be seen as the global desired asymmetry modulated
by the past asymmetric behavior of the classifier (encoded by cumu-
lative errors Pt+ and Pt−). It only depends on the previous rounds.

• The example level is related to the weighted error of the current weak
classifier. Weight distributions (Dt+(i) and Dt−(i)) are updated, round
by round, to encode the effective relative relevance of each example
totally apart from the class behavior. It depends both on the previous
and current rounds.

As we can see, the effective asymmetry of each round will depend on
the asymmetry of the previous ones, so AdaBoost goal is to iteratively find
the weak hypothesis which, given its predecessors, best helps to the global
asymmetry minimizing the training error bound. Asymmetry is reached in a
round-by-round adaptive way, without any previous restriction on the final
number of rounds.

13



This error bound interpretation can open the door to new modifications
of AdaBoost based, for example, on tuning the global and past asymme-
try contributions in order to achieve different asymmetric behaviors along
rounds.

3.3. Algorithm

Once we have seen the actual asymmetric properties of AdaBoost when
using a generic initial distribution, the complete algorithm can be reformat-
ted as in Table 1.

The only change regarding to the algorithm description usually found in
the literature is that the initial weight distribution is not necessarily uni-
form. Here, we initialize it in terms of an asymmetry parameter (γ) and two
class-conditional distributions (D1+(i) and D1−(i)), which can be uniform
(all the examples of each class weight the same) or not (some examples are
emphasized).

3.4. Experiments

In order to illustrate our analysis with empirical results on the asymme-
tric behavior of AdaBoost with unbalanced initial weight distributions, we
performed three kinds of experiments. For these experiments we have defined
the Asymmetric Error (AsErr) as the cost-sensitive error of the classifier: the
weighted average of positives (PorErr) and negatives (NegErr) error rates or,
what is the same, the weighted average of false negatives (FN) and false
positives (FP) rates.

AsErr = γ · PosErr + (1− γ) ·NegErr

= γ · FN + (1− γ) · FP
(38)

At first, we used the separable set of Figure 3 (inspired by that used
by Viola and Jones, 2002) in which positives are concentrated in a circular
area and negatives surround them, following the same uniform distribution in
both cases. Weak classifiers are stumps in the linear two-dimensional space.

AdaBoost behavior for this training set and different asymmetries (γ = 1
2
,

3
5
, 2

3
and 7

8
) is shown in Figure 4. We can see that, as the asymmetry grows,

positive error bound and respective positive training/test errors tend to be
lower, while negative error bound and respective negative training/test errors
tend to be higher. This behavior doesn’t prevent the classifier from asymp-
totically improving itself round by round approaching to zero training error

14



Table 1: Discrete AdaBoost generalized formulation for asymmetric classification prob-
lems.

Given:

• A set of positive examples: (xi, yi) = (x1, 1), . . . , (xm, 1)

• A set of negative examples: (xi, yi) = (xm+1,−1), . . . , (xn,−1)

• An asymmetry parameter: γ ∈ (0, 1).

• Two weight distributions over the positive (D1+(i)) and negative examples

(D1−(i)).

Initialize the global weight distribution as:

• D1(i) = γ D1+(i) for i = 1, . . . ,m

• D1(i) = (1− γ)D1−(i) for i = m+ 1, . . . , n

For t = 1, . . . , T (or until the strong classifier reaches some performance goal):

• Select the weak classifier ht(x) with the lowest weighted error

ǫt =

n∑

i=1

Dt(i)Jht(xi) 6= yiK =
∑

nok

Dt(i)

• Calculate

αt =
1

2
ln

(
1− ǫt
ǫt

)

• Update the weight distribution

Dt+1(i) =
Dt(i) exp (−αtyiht(xi))

∑
n

i=1
Dt(i) exp (−αtyiht(xi))

The final strong classifier is:

H(x) = sign

(
T∑

t=1

αtht(x)

)

15



(a) (b)

Figure 3: Training set (a) and example weak classifiers over the test set (b) used to
illustrate our asymmetric analysis of AdaBoost. Positive examples are marked as ‘+’,
while ‘◦’ are the negative ones.

classifiers, due to the separable nature of the classification problem. The
key advantage of this approach is that the error evolution follows an unbal-
anced behavior, allowing the user to stop training at any iteration, with the
theoretical confidence of having minimized the error bound with the desired
asymmetry no matter in which iteration we are (opposed to Asymboost (Vi-
ola and Jones, 2002) philosophy). This can be very useful for flexible building
of cascaded classifiers as the ones proposed by (Viola and Jones, 2004).

We also run this experiment with a non-separable set as shown in Figure
5 and for the same different asymmetries (γ = 1

2
, 3

5
, 2

3
and 7

8
) (Figures

6 and 7). We can see that, due to the overlapping between classes (they
are non-separable), error curves tend to a working point different to that
of the previous experiment. In any case, the obtained behaviors are clearly
asymmetric along the whole evolution of the boosted classifiers, and the
degree of asymmetry is effectively managed by the γ parameter.

Finally we have also conducted a more extensive experiment using both
synthetic and real datasets to obtain numerical results verifying our hypoth-
esis. The strategy we have followed is leave-one out cross-validation. Thus,
iteratively selecting every example of a dataset, a classifier is trained over
the remaining elements and tested over the selected one. This procedure is
repeated for all the examples, all the datasets and all the desired γ param-
eters, so that overall performance figures can be computed. Tables 2 and 5
summarize the obtained performance over the synthetic dataset with over-
lapping in Figure 5 and some real asymmetric datasets (Credit, Diabetes
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(a) γ = 1
2

(b) γ = 3
5

(c) γ = 2
3

(d) γ = 7
8

Figure 4: Evolution of training error bounds (left column), training errors (center column)
and test errors (right column) through 100 rounds of AdaBoost training and different
asymmetries, using the set without overlapping in Figure 3.
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(a) (b)

Figure 5: Training set with overlapping (a) and example weak classifiers over the test set
(b). Positive examples are marked as ‘+’, while ‘◦’ are the negative ones.

and Spam) extracted from the UCI Machine Learning Repository (Frank
and Asuncion, 2010). As can be seen, in all cases a consistent asymmetric
behavior is reached, being also progressive depending on γ.

Table 2: Classifier behavior (false negatives, false positives, classification error and asym-
metric error) for different asymmetric requirements over the synthetic cloud dataset with
overlapping in Figure 5.

γ
Synthetic cloud

FN FP ClErr AsErr

1/2 31.60% 29.20% 30.40% 30.40%

3/5 26.80% 38.00% 32.40% 31.28%

2/3 22.00% 42.00% 32.00% 28.67%

7/8 7.60% 66.40% 37.00% 14.95%

Table 3: Classifier behavior (false negatives, false positives, classification error and asym-
metric error) for different asymmetric requirements over real datasets extracted from the
UCI Machine Learning Repository (Frank and Asuncion, 2010).

γ
Credit Diabetes Spam

FN FP ClErr AsErr FN FP ClErr AsErr FN FP ClErr AsErr

1/2 28.67% 26.86% 27.40% 27.76% 32.09% 22.40% 25.78% 27.24% 4.84% 6.18% 5.37% 5.51%

3/5 22.67% 37.43% 33.00% 28.57% 22.39% 28.60% 26.43% 24.87% 4.16% 7.06% 5.30% 5.32%

2/3 18.67% 43.43% 36.00% 26.92% 19.78% 32.20% 27.86% 23.92% 3.84% 8.38% 5.63% 5.35%

7/8 6.00% 69.14% 50.20% 13.89% 10.07% 53.00% 38.02% 15.44% 2.33% 11.75% 6.04% 3.51%
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(a) γ = 1
2

(b) γ = 3
5

(c) γ = 2
3

(d) γ = 7
8

Figure 6: Evolution of training error bounds (left column), training errors (center column)
and test errors (right column) through 100 rounds of AdaBoost training and different
asymmetries, using the set with overlapping in Figure 5.
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(a) γ = 1
2

(b) γ = 3
5

(c) γ = 2
3

(d) γ = 7
8

Figure 7: Classification results over the test set with overlapping (Figure 5) for different
asymmetries. As in Figure 3 true positives are marked as ‘+’, and ‘◦’ are true negatives.
However, in this case, cyan colored marks represent positive classifications while blue ones
represent negative classifications.
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3.5. Discussion

Previous sections reveal that AdaBoost can be by itself an asymmetric
learning algorithm, following its original additive round-by-round updating
behavior. Our proposed change of perspective yields several consequences:

• The initial weight distribution is more than the distribution seen by
the first weak classifier. It is the distribution which weighs the global
error bound to be minimized by AdaBoost. Any asymmetry in this
initial weight distribution is an effective way to introduce asymmetry
in the strong classifier goal.

• This kind of asymmetry is asymptotic for the whole classifier and the
number of training rounds can be as flexible as in the original case
(unlike AsymBoost, Viola and Jones, 2002, which rigidly spreads the
asymmetry in a predefined number of rounds). Among other advan-
tages, this makes possible, once a strong classifier is trained, to cut it
out at whatever round we consider, with the certainty that the error
bound has been minimized taking the desired global asymmetry into
account. Moreover, it can be specially useful for cascaded classifiers as
those used for object detection (Viola and Jones, 2004), in which each
stage (each strong classifer) must be markedly asymmetric and as short
as possible, in order to improve rejecting efficiency (and consequently
the real-time ability of the system).

• Asymmetry can be reached without changing the weight update rule, as
opposed to the most of the asymmetric AdaBoost modifications in the
literature. It is argued that such a modification is needed because Ada-
Boost updates weights of examples from different classes in the same
way, only distinguishing between correctly and incorrectly classified
ones. This is true, but it must be taken into account that, before the
first weight distribution update, AdaBoost must have selected a first
weak classifier h1(x) and a goodness parameter α1 according to the
initial weight distribution D1(i), which stores the desired asymmetry
information. Consequently h1(x) and α1 implicitly encode asymmetry
information, and both parameters are just the ones that manage the
update rule. The result is that asymmetry is indirectly present in the
usual weight update rule and, as seen in section 3.2, all the subsequent
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iterations can be seen as a round-by-round asymmetry adaptive pro-
cess. Any additional class-dependant change in the weight update rule
may emphasize, in a more or less controlled way, the described asym-
metric behavior but in those cases it is not clear how it would affect to
the theoretical properties of AdaBoost.

• The whole formal guarantees provided by AdaBoost remain intact.

4. Conclusion

In this paper we have introduced a new insight on the asymmetric learn-
ing capabilities of AdaBoost, in which the symmetric case can be seen as
a particularization (when asymmetry parameter γ = 0.5). Beyond some
preconceptions, the only needed change with regard to the usual formula-
tion is how the initial weights are initialized. We have shown, using a novel
class-conditional interpretation of the error bound, that the asymmetric be-
havior reached is asymptotic with the number of rounds and it works, as
the whole algorithm, in an additive round-by-round way. The weight up-
date rule doesn’t need to be changed and all the formal guarantees remain
intact. Our error bound interpretation can also be useful to develop new
AdaBoost modifications based on adjusting the different asymmetry compo-
nents (both on the class and/or example levels). We have not presented a
new algorithm. . . it is just AdaBoost!
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