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Morse theory is a fundamental tool for analyzing the geometry and topology of smooth manifolds. This
tool was translated by Forman to discrete structures such as cell complexes, by using discrete Morse
functions or equivalently gradient vector fields. Once a discrete gradient vector field has been defined
on a finite cell complex, information about its homology can be directly deduced from it. In this paper
we introduce the foundations of a homology-based heuristic for finding optimal discrete gradient vector
fields on a general finite cell complex K. The method is based on a computational homological algebra
representation (called homological spanning forest or HSF, for short) that is an useful framework to
design fast and efficient algorithms for computing advanced algebraic-topological information (classifi-
cation of cycles, cohomology algebra, homology A(cc)-coalgebra, cohomology operations, homotopy
groups, ...). Our approach is to consider the optimality problem as a homology computation process

for a chain complex endowed with an extra chain homotopy operator.

© 2012 Published by Elsevier B.V.

1. Introduction

Morse theory (Milnor, 1963) has been considered a powerful
tool in its applications to computational topology, computer vision
and geometric modeling. In (Forman, 1995) the author formulates
a version of this theory for discrete structures such as cell com-
plexes. The aim of Forman’s Discrete Morse Theory is to find sim-
plicial collapses (cell pairings) that transform the initial complex to
a simpler complex. This theory relies either on admissible func-
tions on a cell complex, called discrete Morse functions, or equiv-
alently gradient vector fields.

Forman proved that the topology of a cell complex can be partly
read out of the critical cells of a discrete gradient vector field de-
fined on it. Critical cells are cells that are not paired with any other
cell in the gradient vector field. A gradient vector field is consid-
ered optimal if it has the minimum possible number of critical
cells.

In (Lewiner et al., 2003) the authors develop a heuristic for com-
puting optimal Morse pairings. This heuristic computes optimal
gradient vector fields for combinatorial 2-manifolds. However,
for general cell complexes this problem has not yet been solved.

The long term motivation of the work presented here is to de-
velop a computational homological algebra framework for a finite
cell complex K embedded in R", based on Discrete Morse Theory
notions which gives positive and efficient answers to the problem
of calculating classical algebraic topological information (Euler
characteristic, Betti numbers, classification of cycles, cohomology

* Corresponding author.
E-mail address: habril@us.es (H. Molina-Abril).

0167-8655/$ - see front matter © 2012 Published by Elsevier B.V.
doi:10.1016/j.patrec.2012.01.014

algebra, cohomology operations, fundamental group, homology
A(oo)-coalgebra, homotopy groups, ...). Due to the limited space
of the paper, we exclusively focus here on purely topological re-
sults. The interplay of this framework with geometric or analytical
information of a geometric object and the introduction of new
algebraic operators in our framework “measuring” advanced alge-
braic-topological invariants will be treated elsewhere.

The optimal gradient vector field notion has already shown its
power for computing advanced topological invariants more
complex than homology, like cohomology algebra (see Forman
(2002)). In this paper we integrate the notion of discrete gradient
vector field into a general computational homological algebra
scheme and we create a homology-based heuristic for finding opti-
mal discrete gradient vector fields. The underlying idea is to classify
chain homotopies as gradient vector fields on a finite cell complex
and vice versa. In order to do this, we use a chain homotopy operator
(see Gonzalez-Diaz and Real (2005), Gonzalez-Diaz et al. (2009)) at
algebraic level, and its associated graph-based representation
(homological spanning forest or, HSF for short Molina-Abril and Real
(2009)) at combinatorial level.

The paper is organized as follows: In Section 2 some basic defini-
tions are introduced. The theoretical foundation of our work is de-
tailed in Section 3. In Section 4 the relation between this algebraic
machinery and the optimality in Discrete Morse Theory are estab-
lished. We finish the paper with some examples and conclusions.

2. Preliminaries

In this section, some basic definitions are introduced in order
to understand the proposed algebraic-topological approach. We
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present the notion of (combinatorial) cell complex in a finite-
dimensional Euclidean space with the cell boundary information
described in algebraic terms.

2.1. Cell complexes

The ring of coefficients A is a commutative field (for example, a
finite field, the rational numbers, the real numbers, ...). Let
{x1,X2,...,x,} be a finite set of symbols. We denote by A[xy,...,X,]
the module of formal linear combinations 41x; + /Xy + - - - AnXn, With
A€ A

Let ¢ be a positive integer. Let B’ = {x € E’s.t. | x |< 1} be the
closed unit ball in the ¢-dimensional Euclidean space E‘. The
boundary of B’ is the unit (¢ — 1)-sphere S~V and the interior of
B°, denoted by IntB‘, is the open unit ¢-dimensional ball
IntB’ = {x € E’s.t. | x |< 1}. A p-cell in E’ (with 0 < p < ¢) is a subset
of E* which is homeomorphic (same topology) to the open unit ball
IntB? (that is, to RP).

A 0-cell is a topological space homeomorphic to a point of a fi-
nite-dimensional Euclidean space. The dimension of a p-cell o is
|o| = p and the notation 6P indicates that ¢ is a cell of dimension
p. The union as point set of a set of cells K in [E is called the carrier
of K and it is denoted by |K]. Let us define the boundary of a p-cell &
as 9o = @ \ 0, where ¢ is the closure of ¢. To indicate relationships
between cells, we write 7 > ¢ (or ¢ < 7) and we say that ¢ is a face
of tif 0 # tand o C 7, where 7 is the closure of 7. We write T > ¢ if
either t=0 or t>ao.

A cell complex K = {K;};_, embedded in E’ is a finite collection of
n cells {o\" € K,}!, of different dimensions 0 < r < ¢ such that:

() [K|=U" 01 =Ko |U|Ki [U... UK, |,
(ii) ainoj=0(i # j),
(iii) if dim(o;) = p, then da; c |J/5'K; (where 0 < p < £).

The set K, consists of all the r—cells of K, for 0 <r < /. It is pos-
sible that K; = () for some 0<i < /.

We say that a cell o is a facet of a cell T when ¢ is a proper face
of 7 of maximal dimension.

If all the cells of K are convex sets of Ef, then K is called convex
cell complex. Simplicial, cubical and some polyhedral complexes are
special cases of convex cell complexes. A cell complex is specified
by the face poset (the partial order determined by the cells) and its
boundary relations.

2.2. Homology of chain complexes

Roughly speaking, the idea of homology of a cell complex con-
sists of analyzing its degree of connectivity by using formal sums
of cells.

A differential operator for a cell complex K with coefficients in A
is a linear map d: A[K] — A[K], such that the image of a p-cell ¢ is a
linear combination of some (p — 1)-cells of the boundary 6(¢) and
satisfying d o d = 0. Considering a cell complex K embedded in F,
its geometric realization |K]| is a regular triangulable cell complex
and therefore a differential operator 9 with coefficients in the field
A can always be defined. This operator, called boundary operator,
completely determines the singular homology of |K| (Hatcher,
2001) (see Fig. 1).

The chain complex canonically associated to the cell complex K
is the graded differential vector space (C/(K),0), where
Gy(K) = A[Kp), for all p=0,1,...1, and 9: C.(K) —» C,_1(K) is the pre-
vious boundary operator for the cell complex K. For instance, to
find a boundary operator o for a simplicial complex is straightfor-
ward, but it is not, in general, an easy task for others cell com-
plexes. The following is one of the fundamental results in the
theory of cell complexes (see for instance (Hatcher, 2001)).

VAN

5

Fig. 1. A cell complex.

Theorem 1. Let K a finite cell complex. There are algebraic boundary
maps 9p:Cy(K, A) - C,_1(K, A), for each p, so that d,_1009,=0 and
such that the resulting differential complex {C,(K, A), 81,}[’,:0 calcu-
lates the homology of |K|. That is, if we define Hy(C d)=Ker (9,)/
9p+1(C). In other words, Hy(C,0) = Hy(| K|, A).

3. Algebraic Discrete Morse Theory

The aim of Discrete Morse Theory is to find simplicial collapses
that transform a complex K to a simpler one. This can be done
using an essentially algebraic framework in which discrete Morse
functions are convenient tools to keep track of the collapses, and
the order in which they are done.

Now, we recover all the algebraic machinery underlying in Dis-
crete Morse Theory, establishing a new framework for dealing with
special chain complexes associated to finite cell complexes and we
show that trees are a convenient combinatorial tool for solving the
homological computation problem.

Definition 1. An integral chain complex (C,d, ¢) is a graded module
C = {Cy},_o endowed with two linear maps: a differential operator
d: C, —» C,_1, and an integral operator ¢: C, — C,+1, satisfying the
global nilpotency properties dod=0 and ¢ o ¢ =0.

This integral operator, can also be called chain homotopy opera-
tor (Eilenberg and Mac Lane, 1953,1954). We will represent an
integral operator by an arrow from the cell of lower dimension
to the cell of higher dimension (see Fig. 2).

Definition 2. An integral chain complex (C,d,¢) is d-pure if the
condition d =d o ¢ o d (called homology condition) is satisfied. An
integral chain complex (C,d,¢) is ¢-pure if the condition ¢ = ¢
odo ¢ (called Strong Deformation Retract condition) is satisfied.
An integral chain complex that is both, d-pure and ¢-pure, is called
homology integral chain complex. In this case, d (resp. ¢) is a
homology differential (resp. integral) operator.

For instance, the integral chain complex in Fig. 3, is a homology
integral chain complex (the conditions d=do¢od and ¢=¢
odo ¢ are satisfied for every cell of the complex).

Given two integral chain complexes (C,d,¢) and (C,d’,¢'), a map
of integral chain complexes (f,g): (C,d,¢) = C,d', ¢') is a couple of
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Fig. 2. An integral chain complex and an integral operator (represented by an
arrow).
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Fig. 3. A homology integral chain complex. The homology integral operator is
represented by arrows.

linear maps f: C—» C and g:C' - C such that fo
god'=dog fop=¢'ofandgo¢’' =¢o

d=d of,

Definition 3. Given two integral chain complexes (C,d,¢) and
(C,d',¢'), we say that they are integral chain equivalent if there
exists a map of integral chain complexes (f,g), such that
fog=ide —d o¢ —¢' od and gof=idc—d o — pod.

Two integral chain equivalent complexes are shown in Fig. 4.

The homology H,(C,d, ¢) of an integral chain complex (C,d, ¢) is
the graded abelian group H,(C), such that (H,(C),0,0) is integral
chain equivalent to (C,d, ¢). The differential (resp. integral) homol-
ogy of an integral chain complex (C,d, ¢) is the homology of (C,d,0)
(resp. the homology of (C,0,¢)). If (C,d,¢) is a homology integral-
chain complex, then H,(C,d,¢) ~ H,(C,d,0) ~ H,(C,0,¢).

The notion of pure integral chain complex is underlying in the
work of Sergeraert (1994), Forman (1995, 1998) and that of theory
of discrete differential forms (Desbrun et al., 2006). The integral
chain equivalence relation can be seen as the natural extension
of the classical chain homotopy equivalence between chain com-
plexes to the integral case (see, for example, (Eilenberg and Mac
Lane, 1953,1954)).

The computation of the homology of a chain complex (C,d) can
be directly obtained from an integral operator ¢:C, — C,+, satisfy-
ing the strong deformation retract (SDR, for short) and homology
conditions with regards to the differential operator d (Gugenheim
et al., 1989, 1991).

Proposition 1. Let (C,d,¢) be an integral chain complex. Let m:
C, — C, be the linear map (called the flow of (C/d,¢)) defined by

=idc—do¢ —¢od and let A:C, — C,be the linear map (called
Laplacian of (C,d, ¢)) defined by A=d o ¢ + ¢ o d. Then, the following
properties hold:

(A)dom=d—-do¢pod=mod and pom=¢ —podod=7o ¢.
In the case of a homology integral chain complex,

dom=0=mmodand ponm=0=7o ¢.
(b)doA=dogpod=Aod and poA=¢podop=Aod¢. In the
case of a homology integral chain complex, do A=d=A od
and po A=¢p=Ao ¢.
(c) Given a p-chain a, we have the following equality a = n(a) +
A(a).

o(0)

<17 27 37 4>

Fig. 4. (a) Two integral chain equivalent complexes (C,d, ¢) and (C,d’,¢’'). (b) The d
and ¢ values of the complex (C,d, ¢).

(d) 7T2=7I—gbo(d—do¢od)—d—do
7¢odo ¢)7¢7¢Odo¢)od.

(e) A?=d+¢)A(d + ).

f)moA=d—-dopod)ogp+¢ o(d—do
odop)+¢p —¢podog)od=Aom.

¢pod)op=m—do(¢

pod)=do(p—¢

Definition 4. The integral chain complex =(C,d, ¢)= (7(C),
d|c)> Plac)) is the harmonic complex associated to (C.d,¢). If
(C,d,¢) is a d-pure or a ¢-pure integral chain complex, then
n?=mo 7 =mand n(C) = {x € Cx = m(x)}.

In other words, the harmonic complex (71(C),d|(c),0) associated
to a pure integral chain complex (C,d, ¢) is formed by the m-equi-
variant chains of C. If (C,d, ¢) is a homology integral chain complex,
its harmonic complex is of the kind (n(C),0,0) and given any p-
chain the chain map 7 describes a representative cycle of the
homology class associated to this p—chain.

In Fig. 4 two integral chain equivalent complexes (C,d,¢) and
(C,d,¢') are shown. The complex (C,d,¢) on the left is a ¢-pure
integral chain complex. The complex (C,d’,¢’) on the right is the
harmonic complex of the complex (C,d, ¢). (C,d’,¢’) is a homology
integral chain complex (d'(¢)=0,¢'(¢)=0 Vo €C).

Definition 5. The integral chain complex A(C,d, ¢) = A(C)(d|ac)¢
|aoy) is the Laplacian complex associated to (C,d, ¢). If (C,d,¢) is a
d-pure or ¢-pure integral chain complex, then Ao A=A and
A(C) = {x € Clx = A(x)}.

In other words, the Laplacian complex A(C,d, ¢) associated to a
pure integral chain complex (C,d,¢) is formed by all the A-equi-
variant chains.

Proposition 2. If (C,d, ¢) is a (differential or integral) pure integral-
chain complex, we can derive the following properties:

(pl) toA=0=Aom.

(p2)(C.d, ) =7(C/d, ) & A(C,d, $) as integral-chain complexes. In

particular, KerA = (C) and A(C) = Kerm.

(p3) A(C)=¢(C)@® do ¢)(C) as graded modules.

In order to emphasize the dependency of = and A with regards
to d and ¢, we will denote these maps by 74, 4) and Aq,), respec-
tively.

The following proposition will be fundamental in developing an
integral-chain framework for Discrete Morse Theory. In fact, it
shows that to use pure integral operators as chain homotopies
decomposing finitely generated chain complexes is a key point:

Proposition 3. If (Cd,¢) is a (differential or integral) pure integral-
chain complex, we have that

Ker¢ = 71(C) @ ¢(C) = KerA(C) @ ¢(C)

as graded modules.

In particular, a map of integral-chain complexes (f,g) satisfies
that
foTay =gy of §oMay) =Tup o8& foluy =Agy of and
oAy 4y =Ady) ©8 That lS fand g are compatible with regards
to the respective flows and Laplacians.

In spite of its simplicity, the following result is essential for
developing our homological theory of integral-chain complexes:

Lemma 1 (Integral-chain Lemma). An integral chain complex
(Cd,¢) is integral-chain equivalent to its harmonic complex
7(C, d, ¢). This last harmonic complex 7(C,d, ¢) is of the form
(n(C),dr, 7) where dn(7(x))=d —(dood)(x) and ¢x(m(x))=¢
—(¢o dop)x).
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Proof. Let f:C — 7(C) be the linear map defined by f(x) = n(x), Vx € C..
Let g:7(C) — Cbe the linear map defined by g(x) = x, Vx € ©(C). Then, it
is a simple exercise to show that (f,g) is a couple of maps of integral
chain complexes which induces the integral-chain equivalence. The
rest of assertions can be directly deduced from Proposition 1 (a). O

Corollary 1. The harmonic complex ©(C,d, ¢) associated to a d-pure
(resp. ¢-pure) integral-chain complex (C,d,¢) is of the form
(n(C),0,¢7) (resp. (n(C),dr,0)), ¢n(7(x))=¢ — (¢ odod)(x) (resp.
dn(n(x))=d —(do ¢ od)(x)).

An example of Lemma 1 can be seen in Fig. 4, where (C,d, ¢) is a
¢-pure integral-chain complex, and (C,d’,¢') is its harmonic
complex.

Now, we give some definitions related to integral-chain pertur-
bation of complexes.

Definition 6. An integral chain complex (C,d,¢) is called d-
pointwise nilpotent (resp. ¢-pointwise nilpotent) if for any a € C
there is some n(a) e N with do (idc—do ¢ — ¢ o d)® =0 (resp.
with ¢ o (idc —do ¢ — ¢ o d)"@ = 0). The smallest value for n(a) is
called the degree of differential (resp. integral) nilpotency of a.

Proposition 4. Given an ¢-pointwise (resp. d-pointwise) nilpotent
chain complex(C,d, ¢), it is integral chain equivalent to a ¢-pure (resp.
d-pure) integral chain complex (C, d, ¢) (resp. (C, d, ¢)).

Proof. We only prove the existence of the ¢-pure integral chain
complex (C, d, ¢). The other result can be derived directly from
the fact that (C, ¢,d) is also a ¢-pointwise nilpotent integral-chain
complex. Define ¢ : C, — C..1 by ¢ = Yoo (idc — d o ¢)*. This
is well defined due to the pointwise nilpotency of (C,d,¢), since
all but finitely many terms vanish on the right hand side. The
map ¢ satisfies ¢ o ¢ = 0 and the SDR condition ¢ o d o ¢ = ¢. The
couple of maps (7(d, ¢), idc) establishes the integral chain equiva-
lence between (C,d,¢) and (C, d, ¢). O

From now on, all the integral chain complexes considered in the
paper will be ¢-pointwise nilpotents. Analogous results can be
determined for d-pointwise nilpotent chain complexes.

In the next section, we define some notions in order to do the
link with the algebraic work underlying in Discrete Morse Theory.

4. Discrete Morse Theory and optimality

In this section, we will show that all the results above can be
used as a tool for reaching interesting combinatorial results in DMT.

Definition 7. Let (K,0) a finite cell complex. An operator h:
C(K) - C.er(K) is said to be combinatorial if V p — cell ¢,
h(g'?) = ;8P*") where 1c Z and gisa (p+ 1) — cell.

Now, we give some basic notions of DMT with some slight mod-
ifications and without using, in principle, discrete Morse functions.

Definition 8. A combinatorial vector field V defined on a con-
nected cell complex K is a collection of disjoint pairs of cells
{O((P) < /f(P*U}.

Definition 9. A V-path or gradient path y is an alternating
sequence of cells a?’, b*V a® pP*V o . such that for each
pair of consecutive cells, one is a facet of the other, and the follow-

ing condition is satisfied: either {a?’) < b?’i”} or {b;”i” <aP)
belongs to V, Vi > 0.

If the final cell in the gradient path y above is o/”’, then we say
that y has length r Forman (2002). If it ends at g"=" then we say
that y has length rl. If the cells b; of the gradient path y are of
dimension p + 1 and it has length rJ, the gradient path 7 is called
upper V-path or upper gradient path. For any cells a and b, let
T'(a,b) denote the set of gradient paths from a to b (of any
length), i.e., such that the first cell in the sequence is a and the
last cell in the sequence is b. A V-path is non trivial and
closed if r > 1 and the first and last cells in the sequence are
the same.

Definition 10. A discrete gradient vector field is a combinatorial
vector field with non trivial closed V-paths. In this way, it can be
seen as an acyclic cells pairing. A cell « is a critical cell of V if it is
not paired with any other cell in V.

Definition 11. A combinatorial integral operator defined on a cell
complex K is a collection of disjoint pairs of (not necessary inci-
dent) cells {o(P, pP*1} of the same connected component.

Therefore, a discrete gradient vector field is a special kind of
combinatorial integral operator.

Forman, 1995, 1998 proved that the topology of a discrete manifold
is related to the critical cells of a discrete function defined on it, mim-
icking the results of Morse in the smooth case. The number of critical
cell depends on the discrete gradient vector field considered (see
Fig. 5). In (Lewiner et al., 2003), the problem of the optimality (that
is minimizing the number of critical cells for combinatorial vector
fields) on a 2-manifold is analyzed using Hasse diagram and hyper-
graph tools. However, this problem has not been solved for the general
case.

If we restrict ourselves to use DMT techniques, it is not always
possible to obtain a number of critical cells that coincides with the
Betti numbers of the complex. This is the case of the Bing’s house
and the Dunce hat complexes, that are contractible but not collaps-
ible (see (Ayala et al., 2010)).

The next results will show that by using integral operators for
chain complexes, we can solve this problem, and always reduce
the initial complex to the minimum number of critical cells, that
corresponds with the Betti numbers. This means that we are able
to guarantee homological optimality (what is called perfection in
the DMT context, see Ayala et al. (2010)).

Definition 12. Given an upper gradient path y = I'(a,b) formed by
the alternating sequence y:al, b+ al? pPV P pPh
its corresponding chain homotopy path is defined by the sequence
by, b P

)

First, the combinatorial integral operators derived from combi-
natorial vector fields are ¢—pointwise nilpotent.

Proposition 5. A discrete gradient vector field V gives rise to a
¢-pointwise nilpotent integral-chain complex (C(K),d, V).

Proof. Let us emphasize that two pairs {a,b} and {a’,b’} of V have
no elements in common. The combinatorial vector field V gives rise
to a linear map V:C,(K) —» C.+1(K), defined by V(a)=b if {a,b} €V
and V(a) = 0 for the rest of the cells. It is clear that Vo V=0. The
map V is an integral operator for C,(K). It is straightforward to
prove that (((K),d,V) is ¢-pointwise integral-chain complex. O

Combining Propositions 1-3, we assert the following result
which is the key for reinterpreting DMT in terms of an integral-
chain complex:
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1 2

3 '495 3 4 5

Fig. 5. A cell pairing on the left ((1), (5 ), (3,4) and (2,5) are critical), and an optimal
one on the right ((1) and (2,4) are critical). The pairing is represented with an arrow
from the cell of lower dimension to its paired cell of higher dimension.

2 1 2
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) e
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Fig. 6. A combinatorial vector field (on the left). On the right a gradient set of trees
where cells (1) and ( 1,3) do not belong to the forest, (2,5) and (2,4,5) belong to the
tree of dimension 1 — 2 and the rest of cells belong to the tree of dimension 0 — 1.

Proposition 6. If (Cd,V) is a ¢-pointwise nilpotent integral-chain
complex being V a gradient vector field, then there is an integral-chain
equivalent ¢-pure complex (C, d, \7), such that its harmonic complex
n(C,d, V) = (KerV \ V(C), dg, 0).

This last integral-chain complex is constituted by finite linear
combinations of the different critical cells of V and d,; can be seen
as the boundary operator of the corresponding cell complex deter-
mined by the critical cells, also called harmonic Morse cell complex
M(C, d, V) associated to (C,d,V). Analogously, the Laplacian com-
plex A(C, d, \7) can be seen as the acyclic chain complex of the cell
complex M(C, d, V), also called Laplacian Morse complex associated
to (G d,V). Moreover, its boundary operator 9, is determined by
Om(A(@P)) =do Vod(c®), Vo e C.

Proof. Due to Propositions 3 and 1 and defining V:C.—C.q by
V=3¢ Vo l(ide —do V) =3¢ (idc — V o d)*V, we have that

(f,g) : KerV\ V(C) =~ n(C,d, V)

is an isomorphism of chain complexes, with f:KerV\ V(C) —
n(C, d, ¢) and g : 7(C, d, V) — KerV \ V(C) respectively defined by
flo)= . ;)(0) =0-Vod(0), Yoe:KerV\ V(C) and g(n(d%)(ﬁ) =
B—doV{l) vpec. ‘

Now, let us prove that KerV = KerV and V(C) = V(C).

It is clear that KerV c KerV. Let x € KerV be an element
such that x¢ KerV. That means that Y%_,7(d, V)¥(x) € KerV. That
implies that V(ide — n+1)(x) = V(doV + Vod)o (Z,ﬂzon(d, V)")

(b)

(x) =0and, then V(x)=V n'!(x)=0. In a similar manner, it is
possible to deduce that V(C)=V(C) and that it also admits a
combinatorial basis.

Let us now prove that the chain complex (V(C) & (d o V)(C), d)
is acyclic. We have that d(V(C)) c (d o V)(C) and d((d o V)(C)) = 0.
Now, let us suppose that there is a chain

X=X +x € V(C)® (do V)(C) such that d(x)=0. This means that
d(x')=0. Since x' = V(z), then (do V)(z) = 0. Due to the fact that
the integral operator satisfy the SDR condition Vodo V =V, we
conclude that x' = 0.

Finally, the boundary operator of M(C, d, V) is the differential
operator d restricted to the complex and its acyclicity can be

proved using Proposition 3. O

Let us note that H.(M(C,d,V))=H.(K,A). Moreover, the
boundary operator d, of the Morse cell complex M(C, d, V) has a
clear interpretation in terms of gradient paths of V.

Proposition 7. In the conditions of Proposition 6, and given a p-cell

o, V(a) is a chain homotopy path.

In (Molina-Abril and Real, 2011), an integral operator ¢ giving
rise to a homology integral chain complex is determined from a
filtered cell complex by using an incremental technique. Given a
p-cell o, ¢(o) is a sum of (p + 1)-cells in which at least one cell T
satisfies that ¢ € 9(t). This operator ¢ gives rise in a natural way
to a combinatorial integral operator on K.

Due to the fact that V(C) admits a combinatorial basis, and the
chain complex V(C) & (d o V(C), d) is acyclic, we can assume that
the sum w of the elements in the combinatorial basis of V(C) sat-
isfies that d(w) = 0. That means that o can be represented in terms
of graphs using trees. In these trees, the nodes are p-cells and
(p +1)-cells Vp > 0 of the complex. The neighbors of a p-cell are
(p + 1)-cells and vice versa (see Fig. 6). This forest, is a representa-
tion in homological terms of the cell complex K, and it is called
homological spanning forest or HSF, for short (see (Molina-Abril
and Real, 2009, 2011)).

Given a HSF, it is possible to distinguish two kind of trees: homo-
logically essential and inessential trees. In a homologically
inessential tree the number of p-cells is the same as the number of
p + 1-cells. In a homologically c-essential tree, the difference be-
tween the number of p-cells and p + 1-cells is a positive integer c.
In this last case there exist ¢ p-cells within this tree that represent
a critical cell, that is, a homology generator. Therefore, given a HSF,
a combinatorial integral operator can be directly deduced by
maximally pairing each p-cell with a (p + 1)-cell using some specific

(c)

St
1 X

Fig. 7. A torus cell complex, part of its homological spanning forest representation, and the obtained optimal combinatorial pairing.
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Fig. 8. A bing’s house cell complex (a) and its homological spanning forest
representation (b) 0-1, (c) 1-2 and (d) 2-3 cells).

strategy (eventually, allowing the pairing of non-incident cells) for
each homologically essential or inessential tree. In this process, only
cp-cells (critical cells) of a homologically c-essential tree will remain
unpaired.

Let us emphasize that the notion of optimality here is guaran-
teed in terms of finding a combinatorial integral operator. There-
fore, the minimum number of critical cells will always coincide
with the Betti numbers. In the pairing process, we might find some
pairs of non-incident cells {o,8}. In order to obtain optimality in
the sense of Forman (pairing of incident cells), classical cancella-
tion results (see (Forman, 1998)) involving the single path joining
o and B can be applied.

5. Examples

In this section, some examples showing the previous results are
presented. We have developed a C++implementation that allows us
to visualize and better understand them.

In Fig. 7 a) we can see the cell complex K of a torus. Fig. 7 b) and
c) represent the tree structure of a chain homotopy operator ¢ de-
scribed over the {0-cells, 1-cells} and the {1-cells, 2-cells} of the
initial complex respectively. The corresponding optimal combina-
torial pairing, is shown in Fig. 7 d) and e). The different colors in
Fig. 8 e) represent the different trees of the homological spanning
forest of 1-cells and 2-cells. The triple (((K),d, ¢) is a homology
integral-chain complex.

In Fig. 8 the results obtained for an example of the bing’s house
with two rooms is shown. Due to the fact that this example is a
contractible complex which is not collapsible, it is not possible to
get an optimal discrete gradient vector field. Nevertheless, we ob-
tain a combinatorial integral operator involving all the cells from
its associated HSF structure, guaranteeing homological optimality.

6. Conclusions

In this paper, a graph version of the notion of optimal discrete
gradient vector field is appropriately integrated into a new frame-

work of computational homological algebra that is suitable for ad-
vanced (algebraic) topological computation. A homology-based
heuristic approach to find optimal gradient vector fields is also car-
ried out. Some relations between classical algebraic topology, dis-
crete differential form techniques Desbrun et al. (2006) and
Discrete Morse Theory have been established, and a common dic-
tionary of terms has been defined. Geometric (local and global cur-
vature, geodesics, Ricci flow,...) and analytical information (area,
volume,...) of a finite cell complex K embedded in R" can be de-
rived from an optimal discrete gradient vector field or, equiva-
lently, its homological spanning forest, if we fix coordinates to
each of its nodes (cells) and we install a metric on its space of
chains. In future work, we plan to exploit the interplay of this
framework with geometric or analytical information and to intro-
duce new algebraic operators in our homological algebra frame-
work “measuring” advanced algebraic-topological invariants.

Finally, the mathematical approach we develop here opens a
door for advancing in the topological recognition of discrete struc-
tures and images, defining models in which combinatorics, algebra,
analysis, geometry and topology ingredients are armonious and
efficiently combined.
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