
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.patrec.2012.09.002

http://hdl.handle.net/10251/37326

Elsevier

Giménez Pastor, A.; Ihab Alkhoury; Andrés Ferrer, J.; Juan Císcar, A. (2014). Handwriting
word recognition using windowed Bernoulli HMMs. Pattern Recognition Letters. 35:149-
156. doi:10.1016/j.patrec.2012.09.002.



Handwriting word recognition using windowed Bernoulli

HMMs
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Abstract

Hidden Markov Models (HMMs) are now widely used for off-line handwriting

recognition in many languages. As in speech recognition, they are usually

built from shared, embedded HMMs at symbol level, where state-conditional

probability density functions in each HMM are modeled with Gaussian mix-

tures. In contrast to speech recognition, however, it is unclear which kind of

features should be used and, indeed, very different features sets are in use to-

day. Among them, we have recently proposed to directly use columns of raw,

binary image pixels, which are directly fed into embedded Bernoulli (mix-

ture) HMMs, that is, embedded HMMs in which the emission probabilities

are modeled with Bernoulli mixtures. The idea is to by-pass feature extrac-

tion and to ensure that no discriminative information is filtered out during

feature extraction, which in some sense is integrated into the recognition

model. In this work, column bit vectors are extended by means of a sliding

window of adequate width to better capture image context at each horizontal

position of the word image. Using these windowed Bernoulli mixture HMMs,
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good results are reported on the well-known IAM and RIMES databases of

Latin script, and in particular, state-of-the-art results are provided on the

IfN/ENIT database of Arabic handwritten words.

Keywords: HTR, Bernoulli HMM, Latin, Arabic, Sliding window

1. Introduction1

Hidden Markov Models (HMMs) are now widely used for off-line hand-2

writing recognition in many languages and, in particular, in languages with3

Latin and Arabic scripts (Dehghan et al., 2001; Günter and Bunke, 2004;4

Märgner and El Abed, 2007, 2009; Grosicki and El Abed, 2009). Following5

the conventional approach in speech recognition (Rabiner and Juang, 1993),6

HMMs at global (line or word) level are built from shared, embedded HMMs7

at character (subword) level, which are usually simple in terms of number of8

states and topology. In the common case of real-valued feature vectors, state-9

conditional probability (density) functions are modeled as Gaussian mixtures10

since, as with finite mixture models in general, their complexity can be eas-11

ily adjusted to the available training data by simply varying the number of12

components.13

After decades of research in speech recognition, the use of certain real-14

valued speech features and embedded Gaussian (mixture) HMMs is a de-facto15

standard (Rabiner and Juang, 1993). However, in the case of handwriting16

recognition, there is no such a standard and, indeed, very different sets of17

features are in use today. In Giménez and Juan (2009) we proposed to by-18

pass feature extraction and to directly feed columns of raw, binary pixels into19

embedded Bernoulli (mixture) HMMs (BHMMs), that is, embedded HMMs20
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in which the emission probabilities are modeled with Bernoulli mixtures. The21

basic idea is to ensure that no discriminative information is filtered out during22

feature extraction, which in some sense is integrated into the recognition23

model. In Giménez et al. (2010), we improved our basic approach by using24

a sliding window of adequate width to better capture image context at each25

horizontal position of the text image. This improvement, to which we refer26

as windowed BHMMs, achieved very competitive results on the well-known27

IfN/ENIT database of Arabic town names (Pechwitz et al., 2002).28

Although windowed BHMMs achieved good results on IfN/ENIT, it was29

clear to us that text distortions are more difficult to model with wide windows30

than with narrow (e.g. one-column) windows. In order to circumvent this dif-31

ficulty, we have considered new, adaptative window sampling techniques, as32

opposed to the conventional, direct strategy by which the sampling window33

center is applied at a constant height of the text image and moved horizon-34

tally one pixel at a time. More precisely, these adaptative techniques can35

be seen as an application of the direct strategy followed by a repositioning36

step by which the sampling window is repositioned to align its center to the37

center of gravity of the sampled image. This repositioning step can be done38

horizontally, vertically or in both directions. Although vertical repositioning39

was expected to have more influence on recognition results than horizontal40

repositioning, we decided to study both separately, and also in conjunction,41

so as to confirm this expectation.42

In this paper, the repositioning techniques described above are introduced43

and extensively tested on different, well-known databases for off-line hand-44

writing recognition. In particular, we provide new, state-of-the-art results on45
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the IfN/ENIT database, which clearly outperform our previous results with-46

out repositioning (Giménez et al., 2010). Indeed, the first tests on IfN/ENIT47

of our windowed BHMM system with vertical repositioning were made at the48

ICFHR 2010 Arabic Handwriting Recognition Competition, where our sys-49

tem ranked first (Märgner and El Abed, 2010). Moreover, the test sets used50

in this competition were also used in a new competition at the ICDAR 201151

and none of the participants improved the results achieved by our system at52

the ICFHR 2010 conference (Märgner and El Abed, 2011). Apart from state-53

of-the-art results on IfN/ENIT, we also provide new empirical results on the54

IAM database of English words (Marti and Bunke, 2002) and the RIMES55

database of French words (Grosicki et al., 2009). Our windowed BHMM56

system with vertical repositioning achieves good results on both databases.57

In what follows, we briefly review Bernoulli mixtures (Sec. 2), BHMMs58

(Sec. 3), maximum likelihood parameter estimation (Sec. 4) and windowed59

BHMMs repositioning techniques (Sec. 5). Empirical results are then re-60

ported in Sec. 6 and concluding remarks are given in Sec. 7.61

2. Bernoulli Mixture62

Let o be a D-dimensional feature vector. A finite mixture is a probability63

(density) function of the form:64

P (o | Θ) =
K∑

k=1

πk P (o | k,Θk) , (1)

where K is the number of mixture components, πk is the k-th component65

coefficient, and P (o | k,Θk) is the k-th component-conditional probability66

(density) function. The mixture is controlled by a parameter vector Θ com-67
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prising the mixture coefficients and a parameter vector for the components,68

Θk. It can be seen as a generative model that first selects the k-th component69

with probability πk and then generates o in accordance with P (o | k,Θk).70

A Bernoulli mixture model is a particular case of (1) in which each com-71

ponent k has a D-dimensional Bernoulli probability function governed by its72

own vector of parameters or prototype pk = (pk1, . . . , pkD)
t ∈ [0, 1]D,73

P (o | k,Θk) =

D∏

d=1

podkd (1− pkd)
1−od , (2)

where pkd is the probability for bit d to be 1. Note that this equation is just74

the product of independent, unidimensional Bernoulli probability functions.75

Therefore, for a fixed k, it can not capture any kind of dependencies or76

correlations between individual bits.77

3. Bernoulli HMM78

Let O = (o1, . . . , oT ) be a sequence of feature vectors. An HMM is a79

probability (density) function of the form:80

P (O | Θ) =
∑

q1,...,qT

T∏

t=0

aqtqt+1

T∏

t=1

bqt(ot) , (3)

where the sum is over all possible paths (state sequences) q0, . . . , qT+1, such81

that q0 = I (special initial or start state), qT+1 = F (special final or stop82

state), and q1, . . . , qT ∈ {1, . . . ,M}, being M the number of regular (non-83

special) states of the HMM. On the other hand, for any regular states i and j,84

aij denotes the transition probability from i to j, while bj is the observation85

probability (density) function at j.86
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A Bernoulli (mixture) HMM (BHMM) is an HMM in which the probabil-87

ity of observing the binary feature vector ot, when qt = j, follows a Bernoulli88

mixture distribution for the state j89

bj(ot) =
K∑

k=1

πjk

D∏

d=1

potdjkd (1− pjkd)
1−otd , (4)

where otd is the d-th bit of ot, πjk is the prior of the k-th mixture component90

in state j, and pjkd is the probability that this component assigns to otd to91

be 1.92

Consider the upper part of Fig. 1, where a BHMM example for the num-93

ber 3 is shown, together with a binary image generated from it. It is a94

three-state model with single prototypes attached to states 1 and 2, and a95

two-component mixture assigned to state 3, where Bernoulli prototypes are96

depicted as a gray image (black=1, white=0, gray=0.5). It is worth noting97

that prototypes do not account for the whole digit realizations, but only for98

single columns. This column-by-column emission of feature vectors attempts99

to better model horizontal distortions at character level and, indeed, it is the100

usual approach in both speech and handwriting recognition when continuous-101

density (Gaussian mixture) HMMs are used. The reader can check that, by102

direct application of (3) and taking into account the existence of two different103

state sequences, the probability of generating the binary image generated in104

this example is 0.063.105

As discussed in the introduction, BHMMs at global (line or word) level106

are built from shared, embedded BHMMs at character level. More precisely,107

let C be the number of different characters (symbols) from which global108

BHMMs are built, and assume that each character c is modeled with a dif-109
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Figure 1: BHMM examples for the numbers 3 (top) and 31 (bottom), together with binary

images generated from them. Note that the BHMM example for the number 3 is also

embedded into the number 31 example. Bernoulli prototype probabilities are represented

using the following color scheme: black=1, white=0,gray=0.5 and light gray=0.1.
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ferent BHMM of parameter vector Θc. Let Θ = {Θ1, . . . ,ΘC}, and let110

O = (o1, . . . , oT ) be a sequence of feature vectors generated from a sequence111

of symbols S = (s1, . . . , sL), with L ≤ T . The probability of O can be calcu-112

lated, using embedded HMMs for its symbols, as:113

P (O | S,Θ) =
∑

i1,...,iL+1

L∏

l=1

P (oil, . . . , oil+1−1 | Θsl) , (5)

where the sum is carried out over all possible segmentations of O into L114

segments, that is, all sequences of indices i1, . . . , iL+1 such that115

1 = i1 < · · · < iL < iL+1 = T + 1;

and P (oil, . . . , oil+1−1 | Θsl) refers to the probability (density) of the l-th116

segment, as given by (3) using the HMM associated with symbol sl.117

Consider now the lower part of Fig. 1. An embedded BHMM for the118

number 31 is shown, which is the result of concatenating BHMMs for the119

digit 3, blank space and digit 1, in that order. Note that the BHMMs for120

blank space and digit 1 are simpler than that for digit 3. Also note that the121

BHMM for digit 3 is shared between the two embedded BHMMs shown in the122

figure. The binary image of the number 31 shown above can only be generated123

from two paths, as indicated by the arrows connecting prototypes to image124

columns, which only differ in the state generating the second image column125

(either state 1 or 2 of the BHMM for the first symbol). It is straightforward126

to check that, according to (5), the probability of generating this image is127

0.0004.128
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4. Maximum Likelihood Parameter Estimation129

Maximum likelihood estimation (MLE) of the parameters governing an130

embedded BHMM does not differ significantly from the conventional Gaus-131

sian case, and it is also efficiently performed using the well-known EM (Baum-132

Welch) re-estimation formulae (Rabiner and Juang, 1993; Young et al., 1995).133

Let (O1, S1), . . . , (ON , SN), be a collection of N training samples in which the134

n-th observation has length Tn, On = (on1, . . . , onTn
), which corresponds to135

a sequence of Ln symbols (Ln ≤ Tn), Sn = (sn1, . . . , snLn
). At iteration r,136

the E step requires the computation, for each training sample n, of its corre-137

sponding forward (α) and backward (β) recurrences (see Rabiner and Juang138

(1993)), as well as139

z
(r)
nltk(j) =

π
(r)
snljk

∏D

d=1 p
(r)
snljkd

ontd

(1− p
(r)
snljkd

)
1−ontd

b
(r)
snlj

(ont)
, (6)

for each t, k, j, l. In (6), z
(r)
nltk(j) is the probability of ont to be generated140

in the k-th mixture component, given that ont has been generated in the141

j-th state of symbol sl. The conditional probability function b
(r)
snlj

(ont) is142

analogous to that defined in (4).143

In the M step, the Bernoulli prototype corresponding to the k-th compo-144

nent of the state j for character c has to be updated as145

p
(r+1)
cjk =

1

γck(j)

∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)ont

P (On | Sn,Θ(r))
, (7)

where γck(j) is a normalization factor146

γck(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ(r))
, (8)

9



and ξ
(r)
nltk(j) is the probability of On when the t-th feature vector of the n-th147

sample corresponds to symbol sl and is generated by the k-th component of148

the state j,149

ξ
(r)
nltk(j) = α

(r)
nlt(j)z

(r)
nltk(j)β

(r)
nlt(j) . (9)

Similarly, the k-th component coefficient of the state j in the HMM for150

character c is updated by151

π
(r+1)
cjk =

1

γc(j)

∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ(r))
, (10)

where γc(j) is a normalization factor152

γc(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 α
(r)
nlt(j)β

(r)
nlt(j)

P (On | Sn,Θ(r))
. (11)

Finally, it is well-known that MLE tends to overtrain the models. In153

order to amend this problem Bernoulli prototypes are smoothed by linear154

interpolation with a flat (uniform) prototype, 0.5,155

p̃ = (1− δ)p+ δ 0.5 , (12)

where δ is usually optimized in a validation set or fixed to a sensible value156

such as δ = 10−6
157

5. Windowed BHMMs158

Given a binary image normalized in height to H pixels, we may think of a159

feature vector ot as its column at position t or, more generally, as a concate-160

nation of columns in a window of W columns in width, centered at position161
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t. This generalization has no effect neither on the definition of BHMM nor162

on its MLE, although it would be very helpful to better capture the image163

context at each horizontal position of the image. As an example, Fig. 2164

shows a binary image of 4 columns and 5 rows, which is transformed into165

a sequence of four 15-dimensional feature vectors (first row) by application166

of a sliding window of width 3. For clarity, feature vectors are depicted as167

3×5 subimages instead of 15-dimensional column vectors. Note that feature168

vectors at positions 2 and 4 would be indistinguishable if, as in our previous169

approach, they were extracted with no context (W = 1).170

Although one-dimensional, “horizontal” HMMs for image modeling can171

properly capture non-linear horizontal image distortions, they are somewhat172

limited when dealing with vertical image distortions, and this limitation173

might be particularly strong in the case of feature vectors extracted with174

significant context. To overcome this limitation, we have considered three175

methods of window repositioning after window extraction: vertical, horizon-176

tal, and both. The basic idea is to first compute the center of mass of the177

extracted window, which is then repositioned (translated) to align its center178

to the center of mass. This is done in accordance with the chosen method,179

that is, horizontally, vertically, or in both directions. Obviously, the feature180

vector actually extracted is that obtained after repositioning. An example181

of feature extraction is shown in Fig. 2 in which the standard method (no182

repositioning) is compared with the three methods repositioning methods183

considered.184

It is helpful to observe the effect of the repositioning with real data. Fig. 3185

shows the sequence of feature vectors extracted from a real sample of the186
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+
+ + +

o1 o2 o3 o4

Repositioning

None

+
+ + +

Vertical + + + +

Horizontal

+
+ + +

Both + + + +

Figure 2: Example of transformation of a 4 × 5 binary image (top) into a sequence of

4 15-dimensional binary feature vectors O = (o1,o2,o3,o4) using a window of width

3. After window extraction (illustrated under the original image), the standard method

(no repositioning) is compared with the three repositioning methods considered: vertical,

horizontal, and both directions. Mass centers of extracted windows are also indicated.
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IFN/ENIT database, with and without (both) repositioning. As intended,187

(vertical or both) repositioning has the effect of normalizing vertical image188

distortions, especially translations.189

Figure 3: Original sample pf069 011 from IFN/ENIT database (top) and its sequence

of feature vectors produced with and without (both) repositioning (center and bottom,

respectively).

6. Experiments190

Our windowed BHMMs and the repositioning techniques described above191

were tested on three well-known databases of handwritten words: the IfN/ENIT192

database (Pechwitz et al., 2002), IAM words (Marti and Bunke, 2002) and193

RIMES (Grosicki et al., 2009). In what follows, we describe experiments and194

results in each database separately.195

6.1. IfN/ENIT196

The IfN/ENIT database of Arabic handwritten Tunisian town names197

is a widely used database to compare Arabic handwriting recognition sys-198

tems (Pechwitz et al., 2002). As in the Arabic handwriting recognition com-199

petition held at ICDAR in 2007 (Märgner and El Abed, 2007), we used200
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IfN/ENIT version 2.0, patch level 1e (v2.0p1e). It comprises 32492 Arabic201

word images written by more than 1000 different writers, from a lexicon of202

937 Tunisian town/village names. For the experiments reported below, each203

image was first rescaled in height to D = 30 rows, while keeping the original204

aspect ratio, and then binarized using Otsu’s binarization method. The re-205

sulting set of binary images was partitioned into five folds labeled as a, b, c,206

d and e, as defined in (Märgner and El Abed, 2007).207

In a first series of experiments, we tried different values for the sliding208

window width W (1, 3, 5, 7, 9 and 11) and also different values for number of209

mixture components per state K (1, 2, 4, 8, 16, 32, 64). However, taking into210

account our previous, preliminary results in Khoury et al. (2010), we only211

tried BHMMs with 6 states as character models. For K = 1, BHMMs were212

initialized by first segmenting the training set with a “neutral” model anal-213

ogous to that in Young et al. (1995), and then using the resulting segments214

to perform a Viterbi initialization. For K > 1, BHMMs were initialized by215

splitting the mixture components of the models trained with K/2 mixture216

components per state. In each case, 4 EM iterations were run after initial-217

ization. As usual with conventional HMM systems (Young et al., 1995), the218

Viterbi algorithm was used in combination with a table of prior probabilities219

so as to find the most probable transcription (class) of each test image.220

Fig. 4 (top) shows the Word Error Rate (WER%) as a function of the221

number of mixture components, for varying sliding window widths. Each222

WER estimate (plotted point) was obtained by cross-validation with the first223

4 standard folds (abcd). It is clear that the use of sliding windows improves224

the results to a large extent. Specifically, the best result, 7.4%, is obtained225
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for W = 9 and K = 32, although very similar results are obtained for W = 7226

and W = 11. It is worth noting that the best result achieved with no sliding227

windows (W = 1) is 17.7%, that is, 10 absolute points above of the best228

result achieved with sliding windows.229

For better understanding of BHMM character models, the model for char-230

acter p, trained from folds abc with W = 9 and K = 32, is (partially) de-231

picted in Fig. 5 (top) together with its Viterbi alignment with a real image232

of the character p drawn from sample de05 007. As in Fig. 1 (bottom),233

Bernoulli prototypes are represented as gray images where the gray level of234

each pixel represents the probability of its corresponding pixel to be black235

(white = 0 and black = 1). From these prototypes, it can be seen that each236

state from right to left accounts for a different local part of p, as if the sliding237

window was moving smoothly from right to left. Also, note that the main238

stroke of the character p appears almost neatly drawn in most prototypes,239

whereas its upper dot appears blurred, probably due to a comparatively240

higher variability in window position.241

Following previous results in Khoury et al. (2010), in the first series of242

experiments discussed above we only tried BHMMs with 6 states. However,243

in a recent work by Dreuw et al. (2009) where conventional (Gaussian) HMMs244

are tested on IfN/ENIT, the authors claim that Arabic script might be better245

modeled with character HMMs of variable number of states since Arabic246

letters are highly variable in length (as opposed to Latin letters). In oorder to247

check this claim, experiments similar to those described above were repeated248

with character BHMMs of different number of states. To decide on the249

number of states of each character BHMM, we first trained BHMMs of 4250
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Figure 4: WER(%) on IfN/ENIT as a function of: the number of mixture components

(K) for several sliding window widths (W ) (top); and the factor F for varying values of

the number of mixture components (K) (bottom).
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6 5 4 3 2 1

24203232212424201122

�é J
 �K A 	® 	J Ë @

�é J
 	K A 	k Y Ë @

Figure 5: Top: BHMM for character p, trained from folds abc with W = 9 and K = 32,

together with its Viterbi alignment with a real image of the character p, drawn from

sample de05 007. Bottom: the sample dm33 037 is incorrectly recognized as
�éJ
�K A

�	® 	JË @ with
BHMMs of 6 states, but correctly recognized as

�éJ
 	K @
�	kYË@ with BHMMs of variable number

of states; the background color is used to represent Viterbi alignments at character level.
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states which were then used to segment each training sample by the Viterbi251

algorithm. For each character c, its average length T̄c was computed over all252

occurrences of c in the segmented training data. Then, its number of states253

was set to F · T̄c, where F is a factor measuring the average number of states254

that are required to emit a feature vector. The inverse of F , 1
F

is easily255

understood since it can be interpreted as a state load, that is, the average256

number of feature vectors that are emitted in each state. For instance, a257

factor of F = 0.2 implies that only a fraction of 0.2 states is required to emit258

a feature vector or, alternatively, that 1
0.2

= 5 feature vectors are emitted on259

average in each state.260

Fig. 4 (bottom) shows the WER as a function of the factor F , for different261

number of mixture components K and a window width ofW = 9 (with which262

we obtained the best results in the previous experiments). The best result263

now, 7.3% (obtained with F = 0.4 and K = 32), is similar to the 7.4%264

obtained with 6 states per character. Therefore, in our case, the use of265

character models of different number of states does not lead to a significant266

improvement of the results.267

Although the results with variable number of states do not lead to signif-268

icant improvements, it is interesting to see that there are cases in which, as269

expected, Arabic letters are better modeled with them. An example is shown270

in Fig. 5 (bottom) using the sample dm33 037. This sample was recognized271

using BHMMs with W = 9, K = 32 and both, 6 states (top) and variable272

number of states with F = 0.4 (bottom). In both cases, the recognized word273

is Viterbi-aligned at character level (background color). Although it was in-274

correctly recognized as
�éJ
�KA

�	® 	JË @ with BHMMs of 6 states (top), it was correctly275
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recognized as
�éJ
 	K @

�	kYË@ with BHMMs of variable number of states (bottom).276

Note that there are two letters, ’Ë’ and ’X’, that are written at the same ver-277

tical position (or column) and thus it is very difficult for our BHMMs to278

recognize them as two different letters. Anyhow, the incorrectly recognized279

word (top) is actually not very different in shape from the correct one; e.g.280

the characters ’ 	K’ and ’�K’ are very similar.281

As indicated in the introduction, this work is largely motivated by the282

development of window repositioning techniques to deal with text distortions283

that are difficult to model with our windowed BHMMs. To test these tech-284

niques on IfN/ENIT, we used the best settings found above, that is, W = 9,285

K = 32 and BHMMs of variable number of states with F = 0.4. We com-286

pared the standard technique (no repositioning) with the three repositioning287

techniques introduced in this work: vertical, horizontal and both directions288

(see Sec. 5). Results are given in Table 1 for each of the four partitions289

considered above (abc-d, abd-c, acd-b, and bcd-a) and the partition abcd-e,290

which is also often used by other authors.291

Table 1: WER% on five IfN/ENIT partitions of four repositioning techniques: none (no

repositioning), vertical, horizontal and both. We used W = 9 and BHMMs of variable

number of states (F = 0.4) and K = 32.

Training Test None Vertical Horizontal Both

abc d 7.5 4.7 8.4 4.8

abd c 6.9 3.6 7.7 3.8

acd b 7.7 4.5 8.1 4.4

bcd a 7.6 4.4 8.2 4.6

abcd e 12.3 6.1 12.4 6.1
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From the figures in Table 1 it is clear that vertical window reposition-292

ing significantly improves the results obtained with the standard method or293

horizontal repositioning alone. To our knowledge, the result obtained for the294

abcd-e partition with vertical (or both) repositioning, 6.1%, is the best result295

reported on this partition to date. Indeed, it represents a 50% relative error296

reduction with respect to the 12.3% of WER obtained without repositioning297

which, to our knowledge, was the best result until now. As said in the in-298

troduction, our windowed BHMM system with vertical repositioning ranked299

first at the ICFHR 2010 Arabic Handwriting Recognition Competition. In300

Table 2 we provide the best results on the test sets f and s (only known by301

the organization) from the last four competition editions (Märgner and El302

Abed, 2011).303

Table 2: Best results from last four editions of the Arabic Handwriting Recognition Com-

petition. Systems are based on HMM, NN (Neural Networks) or a combination of both.

System Technology Conference ACC%

set f set s

Siemens HMM ICDAR 2007 87.22 73.94

MDLSTM NN ICDAR 2009 93.37 81.06

UPV PRHLT (This work) HMM ICFHR 2010 92.20 84.62

RWTH-OCR HMM+NN ICDAR 2011 92.20 84.55

6.2. IAM Words304

The IAM database comprises forms of unconstrained handwritten English305

text drawn from the LOB corpus and written by a total of 657 writers. This306

dataset was semi-automatically annotated to isolate text line images and307
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individual handwritten words in them, from which two main versions of the308

dataset were built: IAM words and IAM lines. For the results reported below,309

we have used IAM words on the basis of a standard protocol for IAM lines,310

which is a writer independent protocol comprising 6 161 lines for training,311

920 for validation and 2 781 for testing. Only words annotated as correctly312

segmented were used, which resulted in 46 956 words for training, 7 358 for313

validation and 19 907 words for testing. We used a closed vocabulary of314

10 208 words for recognition, that is, the vocabulary of all words occurring315

in the training, validation and test sets. Class priors were computed as a316

smoothed unigram language model.317

A first series of experiments was conducted on the training and validation318

data so as to determine appropriate preprocessing and feature extraction op-319

tions. We tested different preprocessing alternatives, from no preprocessing320

at all to a full preprocessing method consisting of three conventional steps:321

gray level normalization, deslanting, and size normalization (Pastor, 2007).322

It is worth noting that, in this context, size normalization refers to a proce-323

dure for vertical size normalization of three different areas in the text line324

image (ascenders, text body and descenders), which of course might not be325

correctly located in all cases. On the other hand, feature extraction com-326

prised three steps: rescaling of the preprocessed image to a given height D,327

binarization by Otsu’s method, and final feature extraction by application of328

a window of a given width W and a particular repositioning technique. We329

tested different values of D (30 and 40) and W (9 and 11), and also each of330

the four repositioning techniques discussed above.331

The best results in our first series of experiments were obtained with a332
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two-step preprocessing including gray level normalization and deslanting, fol-333

lowed by feature extraction with D = 40, W = 9 and vertical repositioning.334

Using these settings, a second series of experiments was conducted on the335

training and validation data in which we tested different values for the num-336

ber of states Q (4, 6, 8, 10 and 12) and the number of mixture components337

per state K (1, 4, 16 and 64). BHMMs were trained as described in Sec. 5338

for the IfN/ENIT database. The results are shown in Fig. 6. Note that our339

best result in it, 24.8%, was obtained with K = 64 and Q = 8.340
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Figure 6: WER(%) on IAM words as a function of the number of states (Q) for several

number of mixture components (K).

As usual in recognition of handwritten text lines, we may fine-tune sys-341

tem performance by adequately weighting the importance of class priors with342
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Table 3: Test-set WER on IAM words obtained with BHMMs and other techniques re-

ported in (Bianne-Bernard et al., 2011).

System WER %

BHMM (this work) 25.8

Context-independent HMM (CI) 35.4

Context-dependent HMM (CD) 32.7

Combination (CI+CD+Hybrid) 21.9

respect to class-conditional likelihoods. This is done by introducing a gram-343

mar scale factor G to scale class priors. We tested several values of G on the344

validation set using a system trained in accordance with the best results ob-345

tained in the previous series of experiments. A WER of 22.4% was achieved346

with G = 90.347

In our final experiment on the IAM words dataset, we trained a system348

on the training and validation sets, using the best settings found above for349

preprocessing, feature extraction and recognition. It achieved a WER of350

25.8% on the test set, which is quite good in comparison with other recent351

results on IAM words using the protocol described here (Bianne-Bernard352

et al., 2011). In particular, as it can be seen in Table 3, BHMMs are much353

better than the two systems based on HMM technology alone, though the354

combination of these two systems with a third, hybrid system (combining355

HMMs and Neural Networks) achieves even better results.356

It must be noted that we had already tested conventional BHMMs (with357

one-column windows and no repositioning) on IAM words (Giménez and358

Juan, 2009), but we used the experimental protocol followed by Günter and359
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Bunke (2004), which is quite different to that used by Bianne-Bernard et al.360

(2011) and also here. Although the results are not directly comparable, our361

previous result with BHMMs, 29.6%, was not as good as the 25.8% of WER362

reported here.363

6.3. RIMES364

The Reconnaissance et Indexation de données Manuscrites et de fac-365

similÉS (RIMES) database of handwritten French letters was designed to366

evaluate automatic recognition and indexing systems of handwritten letters.367

Also, it has been used in several international competitions on handwritten368

words and line recognition (Grosicki and El Abed, 2009, 2011). For the ex-369

periments reported below, we have adopted the WR2 protocol used in the370

handwritten word recognition competition held at ICDAR 2009. It comprises371

44 196 samples for training, 7 542 for validation and 7 464 for testing. The372

lexicon to be used during recognition is that of the set to be recognized (1 636373

words for validation and 1 612 for testing), and the alphabet consists of 81374

characters. As above, class priors were computed as a smoothed unigram375

language model.376

As with IAM words, a first series of experiments was conducted on the377

training and validation data to decide on adequate options and parameter378

values for preprocessing, feature extraction and recognition. In particular, we379

tried three preprocessing alternatives, two repositioning techniques and dif-380

ferent number of states (Q = 4, 6, 8, 10) and mixture components (K = 1,381

4, 16 and 64). Other parameter values used were D = 30 and W = 9.382

The best WER, 21.7%, was obtained with a two-step preprocessing includ-383

ing deslanting and size normalization, followed by feature extraction with384
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D = 30, W = 9 and vertical repositioning; and then BHMM trained with385

Q = 8 and K = 64. Also as with IAM words, the performance of this system386

was fine-tuned by trying several values of the grammar scale factor G on the387

validation data. We achieved a WER of 18.7% with G = 120.388

The best options and parameter values found on the validation set were389

used to train a system from the training and validation data, which was finally390

evaluated on the test set. We obtained a WER of 16.8%. In Table 4, this391

result is compared with those reported at the ICDAR 2009 competition (using392

the WR2 protocol) (Grosicki and El Abed, 2009). From these results, it393

becomes clear that our windowed BHMM system with vertical repositioning394

achieves comparatively good results.395

Table 4: Test-set WER on RIMES obtained with BHMMs and different systems partic-

ipating at the ICDAR 2009 competition (using the WR2 protocol). NN and MRF refer,

respectively, to Neural Networks and Markov Random Fields.

System Technology WER %

TUM NN 6.8

UPV NN+HMM 13.9

BHMM (this work) HMM 16.8

SIEMENS HMM 18.7

ParisTech (1) NN+HMM 19.8

IRISA HMM 20.4

LITIS HMM 25.9

ParisTech (2) HMM 27.6

ParisTech (3) HMM 36.2

ITESOFT MRF+HMM 40.6
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7. Concluding Remarks396

Windowed Bernoulli mixture HMMs (BHMMs) for handwriting word397

recognition have been described and improved by the introduction of window398

repositioning techniques. In particular, we have considered three techniques399

of window repositioning after window extraction: vertical, horizontal, and400

both. They only differ in the way in which extracted windows are shifted to401

align mass and window centers (only in the vertical direction, horizontally or402

in both directions). In this work, these repositioning techniques have been403

carefully described and extensively tested on three well-known databases for404

off-line handwriting recognition. In all cases, the best results were obtained405

with vertical repositioning. We have reported state-of-the-art results in the406

IfN/ENIT database, and also good results on IAM words and RIMES.407

Our current work is focused on the application of BHMMs to handwrit-408

ten text line images and the use of different training techniques. We are also409

studying the application of repositioning techniques to other models, par-410

ticularly conventional (Gaussian) HMMs. In the mid-term, we plan to try411

systems combining our BHMM technology with other technologies such as412

Neural Networks.413
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