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Abstract
We propose two novel distance measures, normalized between 0 and 1, and based on normalized
cross-correlation for image matching. These distance measures explicitly utilize the fact that for
natural images there is a high correlation between spatially close pixels. Image matching is used in
various computer vision tasks, and the requirements to the distance measure are application
dependent. Image recognition applications require more shift and rotation robust measures. In
contrast, registration and tracking applications require better localization and noise tolerance. In
this paper, we explore different advantages of our distance measures, and compare them to other
popular measures, including Normalized Cross-Correlation (NCC) and Image Euclidean Distance
(IMED). We show which of the proposed measures is more appropriate for tracking, and which is
appropriate for image recognition tasks.
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1. Introduction
Many computer vision tasks require a comparison between pairs of images, where the
distance measure is used to describe quantitatively how much one image is similar to
another. In registration and stereo pair matching, the images are aligned to obtain the highest
similarity between them. In visual tracking and robotic navigation, the current video frame is
searched for the predefined target templates or features, and the location of best match is
associated with the true target's location. The image can be retrieved from a large database
by sending the request of matching to a given pencil sketch. Similarly, the content of an
image can be extracted, analyzed, and recognized by comparing to the predefined templates.
In this paper we will concentrate on the tracking and image recognition applications.
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Unfortunately, there is no a single distance measure that works well for all tasks. Different
tasks demand different measure properties. For example, in image recognition we are
interested to find out if the extracted object is of certain type or not. Therefore, small
deformations (translations, rotations, scaling, etc.) should not change the distance a lot (if at
all). In tracking, we want to localize the target, thus the distance should be much less
tolerant to the translation, but robust to additive and multiplicative noise which is found in
the real world scenes. But even in the tracking there may be equivocal requirements to the
distance measure. If only the binary decision (target located or not) is needed, then we want
the distance to be zero at the right location and the infinity otherwise, but if the distance is
used to adjust the location by some iterative algorithm (from the current measurement), then
we want the distance to increase gradually when moving out from the desired location.
When searching for an image in the database, we want the distance to rise gradually with the
enlarging deformation. In the Subsection 1.1, we will describe a few popular distance
measures, their properties, and their appropriateness to the tracking and image recognition.

Image matching has a huge literature devoted to it, and so we will only be able to briefly
sketch some of the most relevant methodologies for this paper. Some earlier low level image
distance measures (e.g., SAD, SSD, NCC) are described in Brown [1]. The comparison of
different properties of 19 similarity measures is given in Aschwanden and Guggenbuhl [2].
More recent survey of the distance and similarity measures is found in Zitova and Flusser
[3]. The basic region-based image similarity measures can be divided roughly into two
groups: Euclidean distance based and correlation based [2]. In many cases the correlation
based measures provide superior performance [4], but they are more computationally
demanding. For a popular Zero-mean Normalized Cross-Correlation (ZNCC) the methods
for fast computation have been developed by Lewis [4] and recently by Yoo and Han [5].
The algorithm [5] do not use multiplications in the computing of ZNCC. To improve the
image matching results, Pratt [6] uses low pass filtering of the compared images before
applying the correlation, and Zhong et al. [7] proposed a nonlinear preprocessing procedure
to improve the matching.

Another interesting approach by Trujillo and Izquierdo [8] is the median NCC, which uses
the median function instead of the mean in ZNCC. The aforementioned correlation
similarity measures are not appropriate for matching scaled or rotated targets. Scaling
invariant correlation is proposed by Cahn von Seelen and Bajcsy [9]. Rotation and scaling
invariant correlation is introduced in Zhao et al. [10].

Unfortunately, many of the aforementioned measures do not consider the spatial relationship
between different pixels of each image, thus enlarging a deformation is not necessarily cause
increasing dissimilarity, and images that look not similar to a human observer may have a
high similarity measure. Moreover, gradual deformation of the image may exhibit abrupt
changes in the distance or similarity measure. Our algorithms are proposed to fill the
aforementioned deficiencies.

A very interesting approach to measuring distances between images was proposed by Wang
et al. [11]. This distance is called IMage Euclidean Distance (IMED), and takes into account
the spatial relationships between the pixels. Sun and Feng [12] proposed an algorithm for
improving the computation time of IMED. This distance can be easily embedded into
another high and medium level matching procedures, and it is robust to small image
deformations and perturbations [11]. These properties made IMED appropriate for image
recognition and visual tracking [13]. Also the generalization of IMED for tolerance to affine
transform have been proposed by Liao et al. [14]. Recently, Li and Lu [15] proposed
adaptive IMED, and Sun et al. [16] proposed learning IMED, which can learn the distance
from the training set of images.
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Inspired by the work by Wang et al. [11], we use an idea similar to correlation instead of
Euclidean distance in Section 2. The general idea is that for natural images the correlation of
gray-levels between the adjacent pixels is high, thus one should compute the correlation for
each pixel by weighted average of correlations with the neighboring pixels. The radial
weight should fade with the increasing distance from the current pixel. Moreover, the
proposed similarity measure is normalized to the interval [0, 1]. We propose two different
normalizations, one is based on the Normalized Cross-Correlation (NCC), and another on
Zero-mean NCC (ZNCC) [2]. We show how NCC and ZNCC can be obtained from the
generalized cross-correlation formulation.

In Section 3, we test the robustness of the proposed distance measures to small deformations
that may occur in tracking. Regarding the tolerance to translation, rotation, scaling and
additive noise, we compare our distance measures with Euclidean distance, NCC, ZNCC,
and IMED. We conclude on our findings in the Section 4.

1.1. Background
In this subsection, we describe a few popular template matching techniques, and outline
their properties. We suppose that both compared images are of the same size.

Let X and Y denote the intensity values of two M × N images. By lexicographic ordering, X
and Y can be transformed to the MN × 1 vectors x and y. Using this notation, we define four
different image similarity measures.

Euclidean Distance (ED) [2]:

(1)

This distance is used as matching criteria: the smaller distance is an indication of the better

match. In general, dED can get the values in the range , where F denotes the
maximum gray-level value (F = 255 for regular 8 bit images). Thus, the absolute distance
value is image size dependent. As in all pixel-wise distances, where the spatial connections
between the pixels are not concerned, the Euclidean distance may be large for small
deformations (e.g., the ED between shifted by one pixel edge images is large). In addition,
ED is sensitive to noise and constant change in brightness (e.g., for small change of the
brightness by 1, Y = X + 1, the distance is ).

Normalized Cross-Correlation (NCC) [2] :

(2)

The NCC gets the values in the interval [0, 1], where 1 indicates the best match. On the one
hand, this measure is more robust than ED for noisy scenes. On the other hand, NCC is not
invariant under the constant change in brightness. To provide this invariance, Zero-mean
Cross-Correlation is used.

Zero-mean Normalized Cross-Correlation (ZNCC) [2]:
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(3)

where x̄ and ȳ are the mean intensity values.

The distance range is the interval [–1, 1] (1 for perfect match, and 0 for “no correlation”).
Although ZNCC is invariant to constant brightness changes, but it is not defined for constant
intensity images, and shows close to one correlation between approximately white and black
images. This measure is known also as Pearson correlation coefficient, and is used widely in
tracking applications. Note that in tracking only the positive correlation is of interest, thus
max (0, ZNCC) is used as the similarity measure.

All the above similarity measures and distances were pixel-wise, and ignored the spatial
connection between the pixels. In contrast, the following distance measure, proposed by
Wang et al. [11], explores this spatial connection, and uses it to improve the tolerance and
robustness of Euclidean distance.

IMage Euclidean Distance (IMED) [11]:

(4)

where G = {gij}MN × MN is symmetric positive definite matrix created by some positive
definite function of the distance between the i and j pixels.

Wang et al. [11] argued that for any reasonable image distance this function should be
continuous and monotonically decreasing with the increasing distance between the pixels,
and proposed the following Gaussian function:

(5)

where dist (Pi, Pj) denote the spatial distance between the pixels i and j.

With this distance measure, smaller deformation cause smaller changes in the distance. Note
that in the particular case where G is the identity matrix IMN×MN, then dIMED = dED, but
such matrix is created not by continuous function, thus it is not IMED.

The clear advantage of IMED over the other similarity measures can be shown by
comparing the distances and the correlations for two images with vertical white lines, one
pixel spaced, where the second image is shifted one pixel horizontally. These images may
look very similar to human. For example, for the following images:

(6)
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The Euclidean distance gets the maximal possible value ED = 1020, and the Normalized
Cross-Correlation is zero, and ZNCC = –1. In contrast, IMED = 274, which is more
reasonable for the proposed images.

2. Image Normalized Cross-Correlation
We denote the vectorized images as in subsection 1.1 by x and y, with dimensions MN × 1.

Let  be continuous function, and G = {gij}MN × MN be symmetric positive
definite matrix.

The Generalized Cross-Correlation is defined by:

(7)

The NCC (2) and ZNCC (3) are particular cases of this general definition. For NCC, G =

IMN × MN and . For ZNCC, G = IMN × MN and

.

We propose to investigate two more important particular cases, where G is not the identity
matrix, but it is chosen similarly to the IMED matrix (5). The idea is to use locally weighted
normalized cross-correlation for each pixel, where the weight is decreases with the
increasing distance from the current pixel. In other words, we use all pair-wise pixel
correlations in the computation, and incorporate the spatial relations in the computation.
Following the discussion in [11], the angle between the metric coefficients gij is smaller than
π/2, and it can be adjusted using parameter σ. Thus, the proposed measures are robust to
small perturbations, and their tolerance to deformation can be adjusted.

The new similarity measures are defined as follows.

IMage Normalized Cross-Correlation (IMNCC):

(8)

where gij is defined as in IMED (5).

IMage Zero mean Normalized Cross-Correlation (IMZNCC):

(9)

where x̄ and ȳ are the mean intensity values,  and

.

It is interesting to note that for gij ≡ 1 (equal weight for all pairs of pixels) there is no mutual
information computed between the images, and the absolute value of both similarity
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measures is identically equal to 1. This can be easily proven by separating i and j dependent
variables in (8) and (9).

Lemma 1. |IMNCC| ≤ 1 and |IMZNCC| ≤ 1.

Proof. For IMNCC, we have to prove that

In matrix form it can be written as [17]: |xTGy|2 ≤ (xTGx) (yTGy). Note that for symmetric
positive definite matrix G, xTGy is a general inner product 〈x, y〉. We apply Cauchy-
Schwartz inequality, which states |〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉, to this inner product, and conclude
the proof for IMNCC. For IMZNCC the same proof steps can be applied to the transformed
variables x ← x – x̄ and y ← y – ȳ.

From the Lemma 1 it is clear that the distance measure associated with the IMNCC and
IMZNCC, and normalized between 0 and 1, can be defined by:

(10)

and

(11)

2.1. Translation Analysis
Let the image y be a pure translation t of the image x. Since the metric coefficients gij are
translation invariant (gij is not a function of absolute pixel locations),

, which does not depend on the translation t. In the
matrix form, IMNCC = (XTGX)–1XTGY, where (XTGX)–1XTG is a constant vector of
weights that does not depend on t. Thus, IMNCC of translated images can be interpreted as a
weighted average of the translated image y. For simplicity of computation, let us assume
that the translation and images are continuous, and M × N rectangle image is translating
vertically from top to bottom. Then IMNCC is proportional to XTGY, and thus [17]:

For small translation t < σ, this expression is close to its maximum (good tolerance for small

deformations). For σ < t << M, , which is almost
linear function of t (dashed line in Figure 1).

To demonstrate visually the behavior of IMNCC distance with regard to other distances, we
have chosen 10 random images of the same size, and shifted them vertically from t = 0 to t =
15. Then we normalized the distances from 0 to 1. The results can be seen in Figure 1.

Similar analysis can be done for IMZNCC, where the mean is reduced from images x and y.
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2.2. Noise Tolerance Analysis
Suppose that y is a noisy version of x, i.e., y = x + η, where η ~ N(0, Σ) is normally
distributed noise. In this case,

Since the noise is independent and identically distributed, and the expected correlation
between the noise and image should be zero,

For zero noise variance, the expression is identically equal to 1 (best correlation). The term

 is proportional to noise variance, and so the IMNCC will decrease with increasing
noise variance, but it will decrease slower than NCC, because average correlation of random
noise with image region should be lower than the correlation with a single pixel.

In the following section, we will describe representative results for IMNCC and IMZNCC
measures, and we will compare their tolerance to translation, rotation, scaling, and additive
noise with another measures that were discussed in the subsection 1.1.

3. Experiments and Discussion
In all the experiments the function G was chosen to be as in (5), and σ was chosen to be 1.

3.1. Tracking
In this subsection, we have chosen a noisy and low contrast video sequence of 10 frames,
and manually selected the target in these frames (see Figure 2 top row). Also, we have
selected randomly 10 different images of the same size from the video, one for each frame
(see Figure 2 bottom row). Then we have computed the pairwise Euclidean Distance (ED),
IMED, IMNCC and IMZNCC distance measures between all possible pairs of these 20
images.

The graphical result is shown in Figure 3. The distances are color coded: black is for zero
distance, and white is for maximal distance. The color bar under the distances map shows
the range of the distances. The left 10 × 10 part of the distances matrix shows the distances
between the selected true targets in different frames, thus we want it to be as close to black
as possible. Naturally this matrix is symmetric. The right 10 × 10 part shows the distances
between the true targets and the random images (not targets), thus we expect this part to be
as white as possible.

3.2. Tolerance to translation
In this subsection we have chosen to test the distances on a “camera man” image [18] (see
Figure 4). We have taken the 15 × 15 sub-image (inside the rectangle) and shifted it in
different directions. For each shift we have measured and compared the shifted image with
the original image below it (cropped to the same size) by the distance measures described in
subsection 1.1.
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In order to obtain the distances of the same order, the ED and IMED were divided by
 (see subsection 1.1), and NCC and ZNCC were associated with distances similarly

to (10) or (11). The representative result for the vertical translation is shown in Figure 5a.

3.3. Tolerance to scale
We have resized the 15 × 15 sub-image from 5 × 5 to 25 × 25 sizes and computed the
distances between the scaled and the centered (and cropped) original image. The results are
shown in Figure 5b.

3.4. Tolerance to rotation
We have rotated the image between –45° and 45° and compared the cropped image with the
15 × 15 sub-image. The results are shown in Figure 5c.

3.5. Tolerance to noise
We have computed the distances between the 15 × 15 sub-image and the noised version of
this sub-image. We have used additive Gaussian (Normally distributed) noise with the
standard deviations from 0 to 90. The results are shown in the Figure 5d.

3.6. Discussion
We can see a gradual improvement in the selectivity in Figure 3 from (a) to (d), therefore
IMZNCC shows the best performance in tracking. We have repeated this test with several
video sequences with the similar results. The proposed distances can be easily incorporated
into the high-level tracking algorithms, and they have a clear advantage of the normalized
[0, 1] range, which is easy to handle. The disadvantage is in the higher computational load.

From the Figure 5 we see that IMNCC is the most tolerant to small deformations, thus it is
appropriate for image recognition tasks. On the other hand, IMZNCC is less tolerant, and
similarly to ZNCC is more appropriate for the localization tasks. Both IMNCC and
IMZNCC has better than ZNCC robustness to noise, comparable with IMED robustness.
The response to translation of IMNCC and IMZNCC is almost linear, thus intuitively
reasonable gradual change in the distances may be expected when the target is slightly off-
center. Regarding the rotations, the results are inconclusive. Similar results were obtained
with different distance measures. This should be expected, because when the image is
rotated, the pixels that are closer to the center of rotation moved less than the farther pixels,
thus the spatial relations between the pixels are different for different image regions. Unlike
the IMNCC and IMZNCC where we assumed “equal rights” for all image pixels, to enlarge
the tolerance to rotation, one need to emphasize far from the center pixels by choosing high
σ weights gij.

In addition, we have tested the same algorithms of ZNCC and IMZNCC with median used
instead of the mean, as proposed by Trujillo and Izquierdo [8]. This change seems to
improve the tracking results.

4. Conclusion
We have proposed a generalization to the popular Normalized Cross-Correlation similarity
measures, which consider the spatial relations between the pixels in images. The IMNCC is
tolerant to noise and scaling, and is almost linearly changing with translation. The
conclusion is that this measure may be appropriate for image recognition applications, where
small object deformations should not influence the distance. The IMZNCC has shown high
selectivity in visual tracking task, where falsely detected background image patches should
be separated from the true targets. Both measures have a predefined range of values
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(between 0 and 1), and can be incorporated in high-level algorithms for tracking or image
recognition.

Although IMNCC and IMZNCC has shown in our tests a superior performance in the
matching used for tracking applications and good tolerance to small deformations, they are
computationally difficult, and the algorithm for their fast computation should be developed.
If more tolerance to rotation is needed, then more complex spatial relations between the
pixels can be taken into account, by adjusting the weights gij. Also, the influence of median
(instead the mean) on IMZNCC should be investigated more in depth.
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• Two novel distance measures, normalized between 0 and 1, for image matching

• Advantage: Robustness of our distance measures to translation, scaling, and
noise

• Comparison to other popular measures

• The first distance measure, IMNCC, is more appropriate for recognition tasks

• The second distance measure, IMZNCC, is more appropriate for visual tracking
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Figure 1.
Comparison of IMNCC with Euclidean Distance (ED), NCC, and IMED, with regard to
translation of 10 random images. The distances are normalized between 0 and 1.
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Figure 2.
(Top row) Manually selected target, walking woman, in 10 consecutive frames [18].
(Bottom row) Ten randomly selected images (same size, but different from the targets) from
the same consecutive frames.
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Figure 3.
Pairwise distances between the images in Figure 2. For the left 10×10 matrix: darker is
better. For the right 10×10 matrix: brighter is better.
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Figure 4.
Camera man image with the outlined by the rectangle tested image.
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Figure 5.
(a) Distance measures comparison for vertical translation from -10 to 10 pixels. (b) Distance
measures comparison for scaling from 5 × 5 to 25 × 25 image sizes (original image size is
15×15). (c) Distance measures comparison for rotation in [–45°, 45°] interval. (d) Distance
measures comparison for normal noise addition up to σ = 90.
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