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Abstract

In certain applications based on multimodal interaction it may be crucial to deter-

mine not only what the user is doing (commands), but who is doing it, in order

to prevent fraudulent use of the system. The biometric technology, and partic-

ularly the multimodal biometric systems, represent a highly efficient automatic

recognition solution for this type of applications.

Although multimodal biometric systems have been traditionally regarded as

more secure than unimodal systems, their vulnerabilities to spoofing attacks have

been recently shown. New fusion techniques have been proposed and their perfor-

mance thoroughly analysed in an attempt to increase the robustness of multimodal

systems to these spoofing attacks. However, the vulnerabilities of multimodal
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approaches to software-based attacks still remain unexplored. In this work we

present the first software attack against multimodal biometric systems. Its per-

formance is tested against a multimodal system based on face and iris, showing

the vulnerabilities of the system to this new type of threat. Score quantization is

afterwards studied as a possible countermeasure, managing to cancel the effects

of the proposed attacking methodology under certain scenarios.

Keywords:
Multimodal system, security, vulnerabilities, hill-climbing, countermeasures.

1. Introduction1

Multimodal systems represent a new direction for computing that embraces2

users’ natural behaviour as the center of human-computer interaction [1]. As with3

any other novel discipline, the research community is just beginning to understand4

how to design robust and well integrated multimodal systems. But only trough5

multidisciplinary cooperation among those with expertise in individual compo-6

nent technologies can multimodal systems reach its final aim: building more gen-7

eral and robust systems that will reshape daily computing tasks and have signifi-8

cant commercial impact [2].9

One of the main areas of research in multimodal interaction, where specific ex-10

pertise is needed, is recognition, generally regarded as a form of processing users’11

commands. However, for certain applications based on multimodal interaction, a12

second form of recognition is crucial: it is not only necessary to distinguish what13

the user is doing, but who is doing it, so that non-authorized individuals cannot use14

the system. For these cases, a robust personal automatic recognition solution such15

as the one provided by biometrics is required. Although being relatively young16

compared to other mature and long-used security technologies, biometrics have17
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emerged in the last decade as a pushing alternative for applications where auto-18

matic recognition of people is needed. Certainly, biometrics are very attractive19

and useful for the final user: forget about PINs and passwords, you are your own20

key [3, 4]. However, we cannot forget that as any technology aimed to provide21

a security service, biometric systems are exposed to external attacks which could22

compromise their integrity [5]. Thus, it is of special relevance to understand the23

threats to which they are subjected and to analyse their vulnerabilities in order to24

prevent possible attacks and increase their benefits for the users.25

External attacks to biometric systems are commonly divided into: direct at-26

tacks (also known as spoofing attacks), carried out against the sensor, and indirect27

attacks, directed to some of the inner modules of the system. In the last recent28

years important research efforts have been conducted to study the vulnerabilities29

of biometric systems to both direct and indirect attacks [6, 7, 8, 9].30

This new concern which has arisen in the biometric community regarding the31

security of biometric systems has led to the appearance of several international32

projects, like the European Tabula Rasa [10], which base their research on the33

security through transparency principle [11, 12]: in order to make biometric sys-34

tems more secure and reliable, their vulnerabilities need to be analysed and useful35

countermeasures need to be developed.36

In this scenario, biometric multimodality has been regarded as an effective37

way of increasing the robustness of biometric-based security systems to external38

attacks. Combining the information offered by several traits would force an even-39

tual intruder to successfully break several unimodal modules instead of just one.40

However, it has already been proven that this is not necessary in spoofing attacks:41

breaking into the module based on the most accurate biometric trait grants access42
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to the multimodal system in many occasions [13, 14, 15].43

In addition to research works which address the vulnerabilities of multimodal44

systems to spoofing attacks [13, 14, 15, 16, 17, 18, 19, 20], different studies45

may be found in the literature regarding the analysis of indirect attacks against46

unimodal systems [8, 9, 21]. However, the problem of whether multimodal ap-47

proaches are vulnerable or not to software-based attacking methodologies still48

remains unexplored.49

In the present work we propose and analyse a general multimodal indirect at-50

tack, which can be used to study the vulnerabilities of biometric systems based on51

different number of traits, different fusion strategies and different types of tem-52

plates (e.g., real valued, binary). Without loss of generality, the attack is applied53

to the particular case of a face- and iris-based recognition system. This trait com-54

bination is regarded as one of the most popular and user-friendly, since the acqui-55

sition of both traits can be transparent to the user [22, 23, 24, 25]. This provides56

a straight-forward integration of both modalities, a complex topic on multimodal57

computation [26]. Furthermore, the experimental protocol used is fully replicable,58

so that the results obtained can be fairly compared.59

Score quantization is studied afterwards as a possible countermeasure against60

the proposed attack. Two different approaches are analysed: quantizing the score61

before and after the fusion of the partial face and iris scores. While the second62

scheme barely reduces the success rate and efficiency of the attack, the first one63

succeeds in preventing an intruder from breaking into the system.64

Thus, following the same transparency principle which is starting to prevail in65

the biometric community through European Projects such as Tabula Rasa [11, 12],66

the main objectives and contributions of the present work are: i) proposal of a67
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fully novel software-based attacking methodology against multimodal systems,68

ii) study of the vulnerabilities of a realistic multimodal system to the previous at-69

tack under a replicable scenario, iii) comparison of the performance of the attack70

to that obtained against the unimodal modules in order to determine if the mul-71

timodal approach increases the security of the system against this type of threat,72

and iv) study of some biometric-based countermeasures which may prevent such73

an attack.74

The paper is structured as follows. Related works are summarised in Sect. 2.75

The novel multimodal attacking algorithm used to evaluate the system is presented76

in Sect. 3. Then the multimodal verification system evaluated is described in77

Sect. 4. The database and experimental protocol followed are presented in Sect. 5.78

In Sect. 6 we describe and analyse the results obtained. Score quantization is79

studied as a possible countermeasure in Sect. 7. Conclusions are finally drawn in80

Sect. 8.81

2. Related Works82

In 2001, Ratha et al. identified and classified in a biometric recognition sys-83

tem eight possible points of attack [27]. These vulnerable points can be broadly84

divided into direct and indirect attacks.85

Direct attacks. Also known as spoofing-attacks, these are attacks at the sensor86

level, carried out with synthetic biometric traits, such as gummy fingers or high87

quality printed iris images, and thus requiring no knowledge for the attacker of88

the inner parts of the system (matching algorithm used, feature extraction method,89

template format, etc.) Some research regarding the vulnerabilities of multimodal90

systems to these attacks has been carried out over the last recent years: in 2005,91
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Chetty and Wagner [14] tested the performance of spoofing attacks against a novel92

multimodal system based on face and voice; in 2009, Tan [28] investigated meth-93

ods for increasing the security of multimodal systems based on face and voice94

against spoofing attacks; in 2010 [16] and 2011 [15], Rodrigues et al. evaluated95

the vulnerabilities of a multimodal system based on face and fingerprint, using96

different fusion techniques and proposing new ones; in 2010, Johnson et al. [19]97

analysed the effect of spoofing attacks against a multimodal system based on face98

and iris, proposing a method for the vulnerabilities assessment of these systems;99

later in 2010, Marasco [20] analysed the security risks in multimodal biometric100

systems based on face and fingerprint coming from spoofing attacks; in 2011, Ak-101

thar et al. [13, 17] used real rather than simulated spoof samples for the evaluation102

of the vulnerabilities of a multimodal system based on fingerprint, face and iris,103

proposing a new learning algorithm able to improve the security offered by the104

system against spoofing attacks. All these works have proven that combining sev-105

eral traits in one system for person authentication does not necessarily increment106

the security offered against spoofing attacks, since the system can be bypassed by107

breaking only one of the unimodal traits.108

Indirect attacks. These attacks are directed to the inner modules of the system109

and can be further divided into three groups, namely: i) attacks to the communi-110

cation channels between modules of the system, extracting, adding or changing111

information; ii) attacks to the feature extractor and the matcher may be carried112

out using a Trojan Horse that bypasses the corresponding module; and iii) at-113

tacks to the system database which manipulate it in order to gain access to the114

application, by changing, adding or deleting a template. While for direct attacks115

the intruder needed no knowledge about the inner modules of the system, this116
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Figure 1: Diagram of a general hill-climbing attack (top), with the specific modification scheme

for the combined algorithm (bottom).

knowledge is a main requisite here, together with access to some of the system117

components (database, feature extractor, matcher, etc.). Most of these indirect118

attacks are based on some variation of a hill-climbing algorithm, consisting on119

iteratively changing some synthetically generated templates until access to the120

system is granted. Even though some research has been done in this area using121

unimodal systems [8, 9, 21, 29], to the best of our knowledge there is no previ-122

ous analysis of the vulnerabilities of multimodal biometric systems to this kind of123

attacks.124

3. Proposed Attack125

Until now, only the vulnerabilities of unimodal systems to indirect attacks have126

been analysed. In this section we present the first algorithm for the evaluation of127
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the vulnerabilities of multimodal systems to this type of threat. As can be observed128

in Fig. 1 (top), the input to the algorithm are the scores given by the matcher, and129

the output the templates to be compared to the client account.130

For simplicity, the attacking methodology is described here for the particu-131

lar case of a multimodal system based on the score fusion of a real valued (e.g.132

face) and a binary (e.g. iris) matcher. However, the proposed approach is general133

and may be applied with very small modifications to attack multimodal systems134

working on: i) more than two traits represented with real-valued or binary tem-135

plates (by adding new blocks after the switch in Fig. 1), or ii) feature-based fusion136

strategies (by rearranging the template disposition).137

In order to attack a multimodal biometric system where one of the biometric138

traits is represented with real values and the other is binary (most iris recognition139

systems work on binary templates), the algorithm here presented combines two140

sub-algorithms. Each of them attacks one segment of the template: the real-valued141

or the binary segment. In the following subsections, each of the individual sub-142

algorithms is described. Finally, the multimodal attacking algorithm based on the143

previous two models is presented.144

3.1. Sub-Algorithm 1: Hill-Climbing based on the Uphill Simplex Algorithm145

Problem statement. Consider the problem of finding a K-dimensional vector146

of real values xface which, compared to an unknown template Cface (in our case re-147

lated to a specific client), produces a similarity score bigger than a certain thresh-148

old δface, according to some matching function Jface, i.e., Jface(Cface, xface) > δface.149

The template can be another K-dimensional vector or a generative model of K-150

dimensional vectors.151

Assumptions. Let us assume:152
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• That there exists a statistical model G (K-variate Gaussian with mean µG153

and a diagonal covariance matrix ΣG, with σ2
G = diag(ΣG)), in our case154

related to a background set of users, overlapping to some extent with Cface.155

• That we have access to the evaluation of the matching function Jface(Cface, xface)156

for several trials of xface.157

Algorithm. The problem stated above can be solved by adapting the Downhill158

Simplex algorithm first presented in [30] to maximize instead of minimize the159

function Jface. We iteratively form new simplices by reflecting one point, xl
face, in160

the hyperplane of the remaining points, until we are close enough to the maximum161

of the function. The point to be reflected will always be the one with the lowest162

value given by the matching function, since it is in principle the one furthest from163

our objective. Thus, as can be observed in Fig. 2, the different steps followed by164

the sub-algorithm 1 are:165

1. Compute the statistical model G(µG, σG) from a development pool of users.166
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2. Take K + 1 samples (xi
face) defining the initial simplex from the statistical167

model G and compute the similarity scores Jface(Cface, xi
face) = siface, with168

i = 1, . . . , K + 1.169

3. Compute the centroid x̄face of the simplex as the average of xi
face: x̄face =170

1
K+1

∑
i x

i
face.171

4. Reflect the point xl
face according to the next steps, adapted from the Down-172

hill Simplex algorithm [30]. In the following, the indices l and h are defined173

as h = argmaxi(s
i
face), l = argmini(s

i
face).174

4. a) Reflection: Given a constant α > 0, the reflection coefficient, we

compute:

a = (1 + α)x̄face − αxl
face.

Thus, a is on the line between xl
face and x̄face being α the ratio between175

the distances [ax̄face] and [xl
facex̄face]. If slface < saface < shface we replace176

xl
face by a. Otherwise, we go on to step 4b.177

4. b) Expansion or contraction.178

i. Expansion: If saface > shface (i.e., we have a new maximum) we

expand a to b as follows:

b = γa+ (1− γ)x̄face,

where γ > 1 is another constant called expansion coefficient,179

which represents the ratio between the distances [bx̄face] and [sx̄face].180

If sbface > shface, we replace xl
face by b. Otherwise, we have a failed181

expansion and replace xl
face by a.182

ii. Contraction: If we have reached this step, then saface ≤ slface (i.e.

replacing xl
face by a would leave saface as the new minimum). We
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compute

b = βxl
face + (1− β)x̄face,

where 0 < β < 1 is the contraction coefficient, defined as the183

ratio between the distances [bx̄face] and [xl
facex̄face]. If sbface >184

max(slface, s
a
face), then we replace xl

face by b; otherwise, the con-185

tracted point is worse than xl
face, and for such a failed contraction186

we replace all the xi
face’s by (xi

face + xh
face)/2.187

5. With the new xl
face value, update the simplex and return to step 3.188

Stopping criteria. The algorithm stops when: i) the maximum similarity189

score of the simplex vertices is higher than the threshold δface (i.e., the account is190

broken), ii) the variation of the similarity scores obtained in a number of itera-191

tions is lower than a certain threshold or iii) a maximum number of iterations is192

reached.193

Additional note. It is important to notice for the computation of the Efficiency194

(defined in Sect. 5.3) of this sub-algorithm that at each iteration (except for the195

initial one) a maximum of 2 matchings will be performed (i.e., saface + sbface). On196

average, the number of matchings computed per iteration will be lower than 2 and197

greater than 1.198

The hill-climbing based on the Uphill Simplex algorithm was first presented in199

[31], where it was used to successfully attack a signature verification system. The200

performance of the proposed algorithm showed a clear improvement in the attack-201

ing capabilities with respect to previously proposed state-of-the-art approaches,202

which motivated its choice for the present multimodal vulnerability study.203
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3.2. Sub-Algorithm 2: Indirect Attack based on a Genetic Algorithm204

Problem statement. Consider the problem of finding an L-dimensional bi-205

nary vector xiris which, compared to an unknown template Ciris (in our case related206

to a specific client), produces a similarity score bigger than a certain threshold δiris,207

according to some matching function Jiris, i.e., Jiris(Ciris, xiris) > δiris. The tem-208

plate can be another L-dimensional vector or a generative model of L-dimensional209

vectors.210

Assumptions. Let us assume:211

• That we have access to the evaluation of the matching function Jiris(Ciris, xiris)212

for several trials of xiris.213

Algorithm. The problem stated above may be solved by using a genetic algo-214

rithm, which has shown a remarkable performance in binary optimization prob-215

lems [32], to optimize the similarity score given by the matcher, that is, the fitness216

value for an individual is siris = Jiris(xiris, Ciris). As can be seen in Fig. 3 the steps217

followed by the sub-algorithm 2 are:218
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1. Generate an initial population Pi with N individuals of length L, L being219

the length of the iris code.220

2. Compute the similarity scores si of the individuals (xi
iris) of the population221

Pi, si = J(xi
iris, Ciris) with i = 1, . . . , N .222

3. Four rules are used at each iteration to create the next generation Pn of223

individuals from the current population:224

3. a) Elite: the two individuals with the maximum similarity scores are kept225

unaltered for the next generation.226

3. b) Selection: certain individuals, the parents, are chosen by stochastic227

universal sampling [33]. This way, the individuals with the highest fit-228

ness values (similarity scores) are more likely to be chosen as parents229

for the next generation: one subject can be selected from 0 to many230

times. From the original N individuals, N/2− 1 fathers and N/2− 1231

mothers are chosen.232

3. c) Crossover: parents are combined to form the N − 2 children of the233

next generation, following a scattered crossover method. A random234

binary vector is created and the genes (bits) of the child are selected235

from the first parent where the value of the random vector is 1, and236

from the second when it is 0 (vice versa for the second child).237

3. d) Mutation: random changes are applied to the bit values of the new238

children with a mutation probability pm.239

4. Redefine Pi = Pn and return to step 2.240

Stopping criteria. The algorithm stops when: i) the best fitness score is241

higher than the threshold δiris (i.e., the account is broken), ii) the variation of the242

14



similarity scores obtained in a number of generations is lower than a previously243

fixed value, or iii) when the maximum number of generations is reached.244

Additional note. It is important to notice for the computation of the Efficiency245

(defined in Sect. 5.3) of this sub-algorithm that at each iteration (i.e., generation)246

N matchings are performed (one for each of the members of the population).247

This particular implementation of a genetic algorithm was first presented in248

[34], where it was used to analyse the vulnerabilities of the same iris recogni-249

tion system considered in this work. The performance of the proposed algorithm250

showed a very high attacking potential with very encouraging results and was the251

first one, to our knowledge, working on a binary input (such as the iriscodes).252

Therefore, its use as part of the global multimodal attack presented here seemed253

like a promising choice.254

3.3. Multimodal Attack: Combination of Sub-Algorithms 1 (Uphill-Simplex) and255

2 (Genetic-Algorithm)256

Problem statement. Consider the problem of finding a (K +L)-dimensional257

vector x of real and binary values which, compared to an unknown template C258

(in our case related to a specific client), produces a similarity score bigger than259

a certain threshold δ, according to some matching function J , i.e., J(C, x) > δ.260

The template can be another (K + L)-dimensional vector or a generative model261

of (K + L)-dimensional vectors.262

Assumptions. Let us assume:263

• That we know the distribution of the two subtemplates (real-valued xface264

and binary xiris) within the multimodal template x.265
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• That we have access to the evaluation of the matching function J(C, x) for266

several trials of x.267

Algorithm. The problem stated above may be solved by dividing the template268

x into its real-valued (xface) and binary parts (xiris) and alternately optimize each269

of them as can be seen in Fig. 1. In order to optimize each of the parts, the270

algorithms described in the previous subsections are used: the Sub-Algorithm 1271

for the real-valued segment (face) and the Sub-Algorithm 2 for the binary segment272

(iris). Thus, the steps followed are:273

1. Generate a synthetic template (x) randomly initializing the real-valued (xface)274

and binary (xiris) segments, and compute the similarity score S = J(C, x),275

which will be used as optimization criterion.276

2. Leaving one of the segments unaltered, optimize the other segment of the277

template using the appropriate sub-algorithm until one of the stopping cri-278

teria of the sub-algorithm is fulfilled.279

3. Change the optimization target to the segment which was previously left280

unaltered and go back to step 2.281

Stopping criteria. The algorithm stops when: i) the verification threshold is282

reached (i.e., access to the system is granted) or ii) the total number of iterations283

(i.e., changes between the optimized segments) exceeds a previously fixed value284

(i.e., the attack has failed).285

Additional note. As will be analysed in the experimental section this algo-286

rithm may present different results depending on whether it starts attacking the287

real-valued or binary part of the template.288
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It is very important to notice that the multimodal attacking algorithm does not289

have access at any point to the partial scores of the unimodal modules (sface and290

siris) but only uses the final fused score given by the system (S). This way, in the291

description of the previous two sub-algorithms, sface ad siris should be changed by292

S when they are used as part of the multimodal attack and not individually.293

Both attacking sub-algorithms stop when the improvement of the final multi-294

modal score saturates (i.e., the variation of the multimodal similarity scores ob-295

tained in a number of iterations or generations is lower than a certain threshold).296

This “switching” methodology is preferred over a “sequential” approach based on297

the assumption that once the algorithm has saturated attacking one of the unimodal298

subsystems, further changes in the other modality will lead to new improvements299

in the final multimodal score.300

4. Multimodal Verification System Attacked301

The multimodal verification system evaluated in this work is the fusion of two302

unimodal systems, namely: i) a modified version of the iris recognition system303

developed by L. Masek2 [35], which is widely used in many iris related publica-304

tions; and ii) an Eigenface-based face verification system [36], used to present305

initial face verification results for the recent Face Recognition Grand Challenge306

[37].307

4.1. Face Verification System308

The system evaluated uses Multi-Layer Perceptron (MLP) and a cascade of309

Haar-like classifiers in order to segment the faces in the images, together with310

2The source can be freely downloaded from www.csse.uwa.edu.au/ pk/studentprojects/libor/sourcecode.html
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the position of the eyes on them. Principal Component Analysis (PCA) is used311

afterwards so that face images can be represented in a lower dimensional space [8].312

80% of the variance is retained when training the PCA vector space with cropped313

face images of size 64×80, reducing the original 5120-dimensional space to only314

100 dimensions or eigenvectors.315

Finally, the similarity scores are computed in this PCA vector space using the316

Euclidean distance.317

4.2. Iris Verification System318

The system comprises four different steps, namely: i) segmentation, where319

the method proposed in [38] is followed, modelling the iris and pupil bound-320

aries as circles; ii) normalization, using a technique based on Daugman’s ruber321

sheet model that maps the segmented iris region into a 2D array [39]; iii) fea-322

ture encoding, which produces a binary template of 20 × 480 = 9, 600 bits and323

the corresponding noise mark (representing the eyelids areas) by convolving the324

normalized iris patter with 1D Log-Gabor wavelets; and iv) matching, where the325

inverse of a modified Hamming distance is used, which takes into account the326
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noise mask bits.327

This way, the similarity score between two templates is computed as 1/HD

(so that a higher score implies a higher degree of similarity):

HD =

∑L
j=1Xj(XOR)Yj(AND)X̄nj(AND)Ȳ nj

L−
∑L

k=1Xnk(OR)Y nk

where Xj and Yj are the two bitwise templates to compare, Xnj and Y nj are the328

corresponding noise masks for Xj and Yj , and L is the number of bits comprised329

in each template. X̄nj denotes the logical not operation applied to Xnj .330

4.3. Multimodal Verification System331

Given an input vector x, the system performs the following tasks in order to332

obtain the final score, S, as can be seen in Fig. 4:333

1. Compute the similarity scores obtained by the face (sface) and iris (siris)334

traits, as given by the matchers described in Sect. 4.1 and Sect. 4.2.335

2. Normalize the scores sk, with k = {face, iris}, using hyperbolic tangent

estimators (its robustness and high efficiency are proven in [40]):

s′k =
1

2

{
tanh

(
0.01

sk − µ

σ

)
+ 1

}
where sk is the original similarity score obtained by the iris (respectively336

face) section of the template, µ and σ the mean and standard deviation of337

the scores distribution of the iris (respectively face), and s′k the normalised338

score. This way, both partial scores (face and iris) lie in the interval [0, 1].339

3. Finally, both normalised scores are fused with a sum, given the very good

results that this fusion rule has presented even when compared with more

sophisticated methods like decision trees [41] or neural networks [22]:

S = s′iris + s′face
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There may be other fusion strategies that can improve the performance of340

the multimodal system. However, simple summation gives very good re-341

sults, and it is not the scope of the paper to find the optimal fusion strategy.342

5. Database and Experimental Protocol343

Prior to any vulnerability assessment study a performance evaluation of the344

systems being attacked should be carried out. The performance evaluation will345

permit to determine how good is the system and, more important, the operating346

points where it will be attacked as the success chances of this kind of attacking347

algorithms are, in principle, highly dependent on the False Acceptance and False348

Rejection rates of the system. While the FRR measures the probability of rejecting349

a genuine user, the FAR gives a measure of the probability of an impostor being350

taken as a genuine user. Therefore, in general, the higher the FAR, the easier for an351

eventual attacker to break into the system. Moreover, for the particular case of the352

proposed method, attacking the system at a lower FAR implies reaching a higher353

threshold, which leads to a decrease on the success chances of the algorithm.354

Furthermore, defining the operating points will enable us to compare, in a355

more fair fashion, the vulnerabilities of the different systems to the same attack356

(i.e., we can determine for a given FAR or FRR which of them is less/more robust357

to the attacking approach).358

Both the database and the protocol used for the performance and security eval-359

uations of the multimodal system are the same ones used for the evaluation of360

the unimodal subsystems, so that the results are fully comparable. This way, we361

will be able to determine whether the multimodality enhances the system security362

against the proposed attacking approaches with respect to the unimodal traits.363
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5.1. Database364

The experiments are carried out on the face and iris subcorpora included in365

the Desktop Dataset of the multimodal BioSecure database [42], which comprises366

voice, fingerprints, face, iris, signature and hand of 210 users, captured in two367

time-spaced acquisition sessions. This database was acquired thanks to the joint368

effort of 11 European institutions and has become one of the standard benchmarks369

for biometric performance and security evaluations [43]. It is publicly available370

through the BioSecure Foundation3.371

The database comprises three datasets captured under different acquisition372

scenarios, namely: i) Internet Dataset (DS1, captured through the Internet in an373

unsupervised setup), ii) Desktop Dataset (DS2, captured in an office-like envi-374

ronment with human supervision), and iii) the Mobile Dataset (DS3, acquired on375

mobile devices with uncontrolled conditions). The face subset used in this work376

includes four frontal images (two per session) with an homogeneous grey back-377

ground, and captured with a reflex digital camera without flash (210 × 4 = 840378

face samples), while the iris subset includes four grey-scale images (two per ses-379

sion as well) per eye, all captured with the Iris Access EOU3000 sensor from LG.380

In the experiments only the right eye of each user has been considered, leading381

this way as in the face case to 210× 4 = 840 iris samples.382

5.2. Performance evaluation383

As the iris and face subcorpus present identical sample distributions, the pro-384

tocol followed for the performance evaluation of the unimodal modules and the385

multimodal system is the same. As can be seen in Fig. 5, each subcorpus of the386

3http://biosecure.it-sudparis.eu/AB
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Figure 5: Partition of the BioSecure DS2 DB according to the performance evaluation protocol

defined.

database is divided in two sets, namely: i) a training set comprising the first three387

samples of 170 clients, used as the enrolment templates; ii) a test set formed by388

the fourth image of the 170 clients above (used to compute the genuine scores)389

and the 4 images of the remaining 40 users (used to compute the impostor scores).390

As a result of: i) using the same subjects for PCA training and client enrol-391

ment for the face verification subsystem, and ii) manually segmenting those eyes392

that were not successfully segmented automatically (3.04%), the system perfor-393

mance is optimistically biased, and therefore harder to attack than in a practical394

situation (in which the enrolled clients may not have been used for PCA training395

and the image segmentation would be fully automatic). This means that the results396

presented in this paper are a conservative estimate of the attack’s performance.397

The final score given by the system is the average of the scores obtained after398

matching the input template to the three face and iris templates of the client model399

C. Table 1 shows that the ERR of the unimodal face and iris modules and of the400

whole multimodal system computed according to the protocol described above.401

In this chart we can observe that: i) the performance of the unimodal modules is402

not noticeably affected by score normalization (i.e., the EER barely changes after403

normalising the scores), and ii) the performance of the multimodal system (0.83%404
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Table 1: EER of the unimodal and multimodal systems, based on face and iris, before and after

the normalization of the scores.

EER (%)

Face Iris Multimodal

Before Norm. 6.55 4.11 -

After Norm. 6.61 4.04 0.83

EER) clearly improves that of the unimodal systems (4% and 6% respectively). In405

Fig. 6 the Detection Error Tradeoff (DET) curves of the unimodal and multimodal406

systems obtained using the described protocol are shown. As can be seen, the407

multimodal system clearly outperforms both unimodal systems at all points.408

5.3. Experimental Protocol for the Attacks409

The user accounts to be attacked by the algorithm are generated with the train-410

ing set defined in the performance evaluation protocol (i.e., the first three sam-411

ples of the 170 users in Fig. 5). The performance of the attack is evaluated in412

terms of: i) its Success Rate (SR) or expected probability of bypassing the sys-413

tem, computed as the ratio SR = AB/AT , where AB is the number of broken414

accounts and AT is the total number of attacked accounts; and ii) its Efficiency415

(Eff), or inverse of the average number of comparisons needed to break an ac-416

count, Eff = 1/
(∑AB

i=1 ni/AB

)
, where ni is the number of comparisons made to417

bypass the ith account, with i = 1, . . . , AB.418

It has to be emphasized that the Eff is computed in terms of the number of419

matchings performed by the attacking algorithm and not according to the number420

of iterations needed (i.e., two algorithms performing the same number of itera-421
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Figure 6: DET curves of the unimodal and multimodal systems.

tions to break an account do not necessarily have the same Eff).422

The SR gives an estimation of how dangerous the attack is: the higher the SR,423

the bigger the threat. On the other hand, the Eff tells us how easy it is for the424

attack to bypass the system in terms of speed: the higher the Eff, the faster the425

attack.426

The different attacks have been evaluated at three operating points which cor-427

respond to FAR = 0.1%, FAR = 0.05% and FAR = 0.01%, which, according to428

[44], offer a low, medium and high security level.429

6. Results: Attack Performance430

The objectives of this first study of the vulnerabilities of a multimodal system431

to an indirect attack are: i) to evaluate the performance of the proposed attack-432

ing methodology, and ii) to test whether the use of two different biometric traits433
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Table 2: Eff and SR for the Sub-Algorithm 1 (Uphill-Simplex) and Sub-Algorithm 2 (Genetic Al-

gorithm) attacks carried out against the corresponding unimodal systems, and for the Multimodal

Attack against the multimodal system.

Unimodal Attacks Multimodal Attack

FAR
Sub-Alg. 1 vs Face Sub-Alg. 2 vs Iris Starts Face Starts Iris

SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4)

0.10% 100% 22.472 91.18% 1.400 100% 1.9372 100% 1.4180

0.05% 100% 22.124 80.89% 1.255 100% 1.8218 100% 1.3585

0.01% 100% 21.930 62.36% 1.102 100% 1.3702 100% 1.1112

increments the security level and robustness of the system to this kind of attacks.434

In the first set of experiments, the performance of the two attacking sub-435

algorithms against the unimodal systems is studied, so that later a comparison436

between the unimodal and the multimodal systems can be established. In the sec-437

ond set, the performance of the attack against the multimodal system is tested.438

Score quantization is afterwards analysed as a possible countermeasure, studying439

its impact in the SR and the Eff of the multimodal attacking scheme.440

6.1. Sub-Algorithm 1 vs Face Verification System441

The performance of the Sub-Algorithm 1 against the unimodal system based442

on eigenfaces is tested at the three operating points mentioned before, namely: i)443

FAR = 0.10%, ii) FAR = 0.05%, iii) FAR = 0.01%. The results of the experi-444

ments are detailed in Table 2, where we can observe that the algorithm success-445

fully breaks all the attacked accounts. Also worth noting that for this attack the446

efficiency remains almost invariant, regardless of the operating point considered.447
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It should also be emphasized that in the present work the hill-climbing attack448

is initialized from a normal distribution of zero mean and unit variance, that is,449

the first simplex is generated without needing any training faces, contrary to what450

happened in other state of the art attacking methods [8]. Furthermore, the param-451

eters α, β and γ used here are the same that were optimized in [31] to break a452

signature verification system, which proves the robustness of the algorithm: it is453

able to break totally heterogeneous systems working on different biometric traits454

without adjusting its parameters.455

6.2. Sub-Algorithm 2 vs Iris Verification System456

As before, the performance of the Sub-Algorithm 2 against the unimodal sys-457

tem based on iris is tested at the three operating points mentioned before, namely:458

i) FAR = 0.10%, ii) FAR = 0.05%, iii) FAR = 0.01%. The results of the experi-459

ments are also shown in Table 2, where we can observe that the algorithm is able460

to successfully break more than 90% of the accounts for the point of operation461

corresponding to a low security level, and more than 60% for the point corre-462

sponding to a high security level. As in the previous case the efficiency of the463

attack remains almost invariant, slightly decreasing, as would be expected, for464

higher security points where the attack needs more iterations to break the system465

(i.e., it becomes slower).466

6.3. Combined Attack vs Multimodal System467

We run two sets of experiments, namely: i) the algorithm starts attacking468

the face section of the template (Sub-Algorithm 1), and ii) the algorithm starts469

attacking the iris section (Sub-Algorithm 2). Between 40% and 60% of the times470

that the algorithm starts attacking the iris section of the template it is able to break471
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the account without changing to the face segment. This does not happen when the472

algorithm starts attacking the face segment. This way, as it was already proven for473

spoofing attacks in [13, 15, 19], attacking only the best individual matcher (i.e.,474

the unimodal system with the lowest EER, the iris one in our case) grants in many475

cases access to the system under attack.476

Secondly, in Table 2 we also show the results obtained by the multimodal ap-477

proach when it starts attacking the face segment (randomly initializing the iris478

section) or iris segment (randomly initializing the face section). As can be ob-479

served, in both cases the SR is as high as 100% for all the operating points tested.480

However, the Eff of the attack decreases about 25% when starting with the Sub-481

Algorithm 2 (Genetic Algorithm) compared to the case of starting with the Sub-482

Algorithm 1 (Uphill-Simplex). The reason lies on the Eff of the individual Sub-483

Algorithms. On the left columns of Table 2 (Unimodal Attacks) we can observe484

that the Eff of the Sub-Algorithm 1 is between 15 and 20 times higher than the485

Eff of Sub-Algorithm 2 (for a similar number of iterations performed to break an486

account the number of matchings carried out is significantly higher for the binary487

attack as was presented in Sects. 3.1 and 3.2). When the multimodal algorithm488

starts attacking the iris segment, in many occasions it is able to break the system489

without changing to the face segment. This way, the multimodal attacking algo-490

rithm can not benefit from the higher Eff of the Sub-Algorithm 1, and has a lower491

Eff than that achieved when the attack is started against the face section.492

From the previous observations none of the two main vulnerability scenarios493

considered for the multimodal attack is clearly better than the other. On the one494

hand, when it starts attacking the face segment, it is faster but it needs to use both495

sections of the template to break the system (i.e., face and iris). On the other496
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Figure 7: Evolution of the score in each iteration for two broken accounts in the two different

scenarios studied: the algorithm starts attacking the face section of the template (left) or the iris

section (right). The verification threshold is represented with a dashed horizontal line. In the left

plot, the different phases of the algorithm, alternatively attacking the face and iris sections, are

marked with letters A-D.

hand, when it starts attacking the iris segment, it becomes slower but it has a good497

chance of gaining access to the system using just one of the template sections (i.e.,498

iris) with the advantage that this may entail in terms of simplification of the attack.499

In Table 2 we can also observe that the most robust system in terms of Eff and500

SR is the unimodal system based on iris and not the multimodal approach as would501

be expected. This shows that, as already demonstrated for spoofing attacks [13,502

15, 19], although in general multimodal systems offer a better performance than503

their unimodal subsystems (for our particular case the EER decreases from 5% to504

0.8%), they are not necessarily less vulnerable to software attacks. These results505

reinforce the importance of reporting the SR of the attack always in terms of the506

operating point at which it was evaluated (i.e., FAR), so that a fair comparison507

across different recognition systems may be established.508

Finally, in Fig. 7 the evolution of the score for each iteration of the algorithm509
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can be observed. On the left, the face section of the template is first attacked, and510

several areas with different slopes can be observed (marked with letters A, B, C511

and D), depending on what part of the template is being attacked. In segments512

A and C, it can also be observed that the algorithm switches to attack the other513

section of the template after the score remains almost constant for a fixed number514

of iterations. On the other hand, on the graph on the right, no “steps” can be ob-515

served on the curve: the attack started attacking the iris section and never changed516

to the face segment as the template was successfully broken using only the iris517

part.518

7. Countermeasuring the Attack: Score Quantization519

Given the high vulnerability of the multimodal system evaluated to the com-520

bined attacking algorithm proposed, some attack protection needs to be incorpo-521

rated in order to increase the robustness of the system. When a countermeasure is522

introduced in a biometric system to reduce the risk of a particular attack, it should523

be statistically evaluated considering two main parameters:524

• Impact of the countermeasure in the system performance. The inclusion of525

a particular protection scheme might change the FAR and FRR of a system,526

and these changes should be evaluated and reported (other performance in-527

dicators such as speed or computational efficiency might also change, but528

are not considered here).529

• Performance of the countermeasure, i.e. impact of the countermeasure in530

the SR and Eff of the attack.531
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It is often argued that a simple account lockout policy (i.e., blocking the user532

accounts after a number of consecutive unsuccessful access attempts) would be533

enough to prevent an attack such as the one proposed in the present work. How-534

ever, such countermeasures still leave the system vulnerable to a spyware-based535

attack that interlaces its false attempts with the attempts by genuine users (suc-536

cessful attempts) and collects information over a period of time (i.e. piggyback537

attack). Furthermore, it may be used by the attacker to perform an account lock-538

out attack (i.e., the intruder tries to illegally access a great amount of accounts539

blocking all of them and collapsing the system).540

In this scenario, a specific design of the matching algorithm can also be im-541

plemented in order to reduce the effects of this type of threats, providing this way542

an additional level of security through a biometric-based protection scheme com-543

plementary to other possible non-biometric countermeasures.544

Among the biometric-based approaches to reduce the effects of hill-climbing545

attacks, score quantization has been proposed as an effective countermeasure [29].546

In fact, the BioApi Consortium [45] recommends that biometric algorithms emit547

only quantized matching scores. Such quantization means that small changes in548

the randomly generated templates will normally not result in a modification of the549

matching score, so that the attack does not have the necessary feedback from the550

system to be carried out successfully.551

With this precedents, in this section we analyse the performance of score quan-552

tization as a possible countermeasure against the proposed attack. In the exper-553

iments we will consider the multimodal system operating at a medium security554

operating point (FAR = 0.05%). For the combined attack we will assume the555

same configuration used in the vulnerability assessment experiments.556
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Table 3: Performance (in terms of SR and Eff) of the combined attack against the system consid-

ering different quantization steps (QS), applied before and after the fusion of the scores.

QS 10−4 10−3 10−2 10−1

Before Fusion
SR 100% 100% 0% 0%

Eff (×10−4) 1.8932 1.6113 - -

After Fusion
SR 100% 100% 100% 0%

Eff (×10−4) 1.7806 1.7921 1.7470 -

Since the global score in this multimodal system is obtained from two previous557

partial (face and iris) scores that are normalised and then fused, the quantization558

can take place either before or after this sum or fusion. Both possible schemes are559

studied in this section.560

In order to select the appropriate quantization step according to the trade-off561

that should be met in terms of its impact on the system performance (ideally as562

small as possible) and on the attack performance (as big as possible), several563

Quantization Steps (QS) are tested in terms of their corresponding Positive Incre-564

ment, PI (i.e., percentage of iterations that produced an increase in the similarity565

score higher than the quantization step considered). The EER of the system with566

the different QS is computed when the quantization is applied before and after567

the score fusion. The QS considered range from 10−8 and 10−1. For the last QS568

(10−1), the EER increases considerably (i.e., the QS is too big), while for the re-569

maining values the performance of the system is not significantly affected. The570

multimodal attack is therefore repeated applying four QS values, namely: i) QS =571

10−4, ii) QS = 10−3, iii) QS = 10−2, and iv) QS = 10−1. The first three QS values572
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guarantee a similar performance of the system, while the last one can be useful for573

very high-security applications, when a lower performance of the system might be574

acceptable if it leads to a much higher protection against the analysed attacks.575

In Table 3 the results of these experiments are shown. As can be seen, the576

quantization of the scores is effective as a countermeasure against the combined577

attacking algorithm presented in this work when it is applied:578

• Before the fusion with a QS = 10−2. Since the rounding effect of quantiz-579

ing the scores and then summing them is bigger than that obtained when580

fusing the scores before applying the quantization, the performance of the581

attack decreases more when applying the quantization before the fusion.582

This leads to a SR = 0% for the QS = 10−2 when the partial scores are583

quantized before fusing them.584

• Before or after the fusion with a QS = 10−1. With this QS, the system is able585

to stop the attack regardless of the point where the scores are quantized. As586

in the previous case, the attack does not receive the necessary feedback from587

the system on whether it has managed to increase or not the similarity score,588

and thus fails to achieve its objective.589

In both cases listed above, no account is broken, while for the remaining trials590

the SR of the attack is still 100%, only decreasing its Eff (i.e., more comparisons591

are needed to break an account). However, while the performance of the system is592

not considerably affected in the first case (EER = 1.37%), it is barely acceptable593

with a QS = 10−1: the EER is as high as 32.06%.594
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8. Conclusions595

In this work, we have presented and evaluated the first software attack against596

multimodal biometric systems. As case study, we have tested it on a system based597

on face and iris, a trait combination regarded as user-friendly: the features of both598

traits may be extracted from images the can be captured at the same time, being599

the acquisition process transparent to the user. The attacking algorithm shows a600

remarkable performance, thus proving the vulnerabilities of multimodal systems601

to this type of attacks. Furthermore, the multimodal system has not presented602

an improvement in the security level against this kind of attack compared to the603

face and iris modules on their own. This fact confirms what previous studies604

on spoofing attacks pointed out: even though multimodal systems recognition605

performance is higher, they do not necessarily increase the robustness of unimodal606

approaches to external attacks.607

The quantization of the scores given by the matcher is analysed as a possible608

countermeasure. Two different approaches are studied and compared: the partial609

scores can be quantized before fusing them, or the final score can be quantized610

after the fusion. The first scenario leads to a null success rate without affecting611

the verification performance of the system, being thus a suitable countermeasure612

for the proposed attack. The second case also protects the system against the613

attack but at the cost of drastically reducing its verification performance.614

Research works such as the one presented in this article pretend to bring some615

insight into the difficult problem of biometric security evaluation through the sys-616

tematic study of biometric systems vulnerabilities and the analysis of effective617

countermeasures that can minimize the effects of the detected threats, in order to618

increase the confidence of the final users in this rapidly emerging technology.619
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