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Abstract

Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing 

biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of 

providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer 

control of a robot, while also giving us new tools to better understand the brain’s use of electrical 

signals. However, the biomimetic approach presents challenges in integrating technologies across 

multiple hardware and software platforms, so that the different components can communicate in 

real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking 

neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to 

drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error 

convergence on a single target. We utilized the output of this model in real time to drive mirroring 

motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) 

interface. The robotic arm sent back information on its joint positions, which was then used by a 

visualization tool on the remote computer to display a realistic 3D virtual model of the moving 

robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-

effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a 

platform for developing biomimetic learning algorithms for controlling real-time devices.
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1. Introduction

Understanding the human brain has become one of the great challenges of this century 

(Lytton, 2012). It has the potential to significantly benefit human health by providing tools 

to treat neural disease and repair neural damage. Greater understanding will also 

revolutionize our interactions with the world through development of BMIs for motor 

control that enable patients with central nervous system injuries or lost limbs to regain 

autonomy. Neuroscience research is also beginning to make progress towards understanding 

how neurons encode information, and how the complex dynamical interactions within and 

among neuronal networks lead to learning, and produce sensorimotor coordination and 

motor control. With this knowledge, we can begin to use computers both to decode brain 

information and to autonomously produce brain-like signals to control prosthetic devices, or 

to control a real arm (Carmena et al., 2003).

A key problem with simulation technology is that one can not be sure whether something 

critical, known or unknown, has been left out. This concern suggests an approach whereby 

we embed biomimetic neuronal networks in the actual physical world in which the real brain 

is embedded. We thereby both take advantage of the benefits of physicality and ensure that 

our systems are not omitting some factor that is required for actual functionality. Physicality 

provides a form of memory, since the arm is actually located in space and will later be in the 

same location unless operated on by external forces such as gravity. It also provides inertia, 

which is memory for the 1st derivative of position. However, these mnemonic attributes, 

features under what set of circumstances, can be limitations (bugs) when the system is 

presented with other operational requirements.

The physical world also plays an essential role in learning and behavior (Almassy et al., 

1998; Edelman, 2006; Krichmar and Edelman, 2005; Lungarella and Sporns, 2006; Webb, 

2000). For example, the selection hypothesis emerges from embodiment: the environment 

can select neuronal dynamics that are suitable for producing desired behaviors through the 

agency of a limb or other effector (Edelman, 1987). Embodiment can be used to make 

predictions for how changes will occur during the perception-action-reward-cycle 

(Mahmoudi and Sanchez, 2011), as the embedding of a system in the environment provides 

adaptation opportunities. Further levels of embedding are achieved by the development of 

hybrid systems that use co-adapting symbiotic relations between brain (the prosthetics-user) 

and artificial agents (biomimetic systems and smart prosthetic devices) and among these 

artificial agents. The co-adaptions occur as the system moves towards common goals, e.g., 

reaching for an object (Sanchez et al., 2012). In this context, one can readily see the 

advantages of biomimesis: the biomimetic system is a partial model of the natural agent’s 

brain processes that facilitates the transfer of neural encodings without explicit decoding, 

providing representations based on those of the brain and then serving as intermediary 

between brain and devices. We note that co-adaptation is further extended to include the 

environment itself, as when we redesign objects so as to make them easier to manipulate 

with artificial limbs, or easier to navigate for individuals in wheelchairs.

Biomimetic brain models (BMMs) are able to replicate many experimental paradigms, such 

as sensorimotor learning experiments (Chadderdon et al., 2012; Neymotin et al., under 
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review) or cellular microstimulation (Kerr et al., 2012). They are also able to accurately 

reproduce physiological properties observed in vivo, including firing rates, stimulus-induced 

modulations and local field potentials (Neymotin et al., 2011). The system presented here 

will be extended into a framework to link real-time electrophysiological recordings with 

supercomputers that run the BMMs, and thence to control of prosthetic devices. This co-

adaptive brain-machine interface extends the classical BMI paradigm by engaging both 

subject and computer model in synergistic learning.

Major challenges in assembling a system that incorporates a BMM into the neural decoder/

smart prosthetic data stream are 1. getting the components to communicate with one another, 

and 2. achieving this communication in real-time. There are a plethora of different systems 

for acquiring electro- physiological data from animal or human subjects (Buzsáki, 2004), a 

number of potential neuronal simulators (biomimetic and state-space) that might be 

assembled together to provide the brain model (Brette et al., 2007), and a wide array of 

potential prosthetic links with different physical characteristics that require different control 

strategies. Software components within this data stream may run on, for example, machines 

running MATLAB under Windows, or on machines running Python or C++ code under 

Linux. A networking framework needs to be developed that can not only permit messages to 

be passed between these disparate environments and hardware platforms, but to do so in a 

timely fashion so that the prosthetic-using subject does not perceive a disruptive lag in the 

performance of a prosthetic limb.

In this paper, we address the initial problems of developing the larger real-time co-adaptive 

BMI system. We begin with the design of inter-system communications between the BMM 

and the prosthetic limb, leading towards a real-time interface between a model of 

sensorimotor cortex and a robotic arm (Barrett Technology’s Whole Arm Manipulator – 

WAM (Barrett Technology Inc, 2012b)). We provide the NEURON-based BMM and the 

robotic arm, each running on a separate Linux-based machine. Our implementation of the 

real-time interface then provides a Python application that forwards data from the BMM to 

the WAM arm and passes robot arm position information back to a display window.

2. Methods

We used a BMM previously developed within the NEURON simulation environment using 

an extended synaptic functionality Lytton et al. (2008a). The original model drove a simple 

kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a 

single target. We utilized the output of this model to drive mirroring motion of a Barrett 

Technology WAM robotic arm in real time through a UDP interface. Additionally, the 

position information from the robot arm was fed back into the model. This feedback then 

drived a virtual WAM robotic arm developed within V-REP, an open-source robot 

simulation environment (Freese et al., 2010). This permitted the remote computer to display 

a representation of the moving robotic arm in real time.

A set of interfaces was designed to provide communication between the NEURON model 

and the WAM robotic arm. The external PC ran NEURON code, which called a set of 

Python functions. These interfaced with the WAM arm via UDP communication, and with 
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the V-REP virtual robotic arm via a Python application programming interface (API). The 

robot code ran on the WAM internal PC, utilizing functions developed in the C++ Libbarrett 

library (Barrett Technology Inc, 2012a) to provide interface with the NEURON simulation 

via UDP communication.

The BMM, the robotic arm, the virtual robotic arm and the network interface between these 

components are described below in more detail.

2.1. NEURON-based biomimetic brain model

2.1.1. Overview of the system and background—For our BMM, we used the spiking 

neuronal model of sensorimotor cortex previously developed (Fig. 2.1.1) (Chadderdon et al., 

2012; Neymotin et al., under review). This model had been trained to perform a simple 

movement task: rotating a two-joint virtual arm to a target by learning an appropriate 

mapping between the neural populations through reinforcement learning mechanisms. From 

the pattern recognition perspective, our model can be interpreted as a classifier that learns to 

generate the required output (motor command) based on the input patterns (joint positions 

and target). Although it is possible that machine learning techniques, such as gradient-based 

deterministic algorithms, can efficiently solve this problem, our model has the advantage of 

being based on realistic neuronal learning mechanisms and dynamics. This is a key aspect 

for the long-term goals of this work, which are described in Introduction and Discussion.

Reinforcement learning is used as a mechanism for learning. The essence of this learning 

mechanism was summarized over 100 years ago in Thorndike’s Law of Effect (Thorndike, 

1911): stimulus-response mappings are strengthened by global reward and weakened by 

global punishment. Reinforcement learning methods (Sutton and Barto, 1998) have been 

used extensively in machine learning and offer an advantage over teacher-supervised 

learning methods in that they do not require a known desired output representation to match 

against the models current (behavioral) output. However, unlike unsupervised learning 

methods, they do offer some feedback regarding fitness of the behavior.

A further framework for explaining motor reinforcement learning is the perception-action-

reward cycle. The learning system is divided into an actor, mapping perceptions to actions 

(P to A), and a critic providing reward and punishment feedback to the actor (Chadderdon, 

2009; Joel et al., 2002). To utilize this scheme, the naive actor must produce some actions 

that can be critiqued. This is the role of motor babble (random movements), produced in our 

model via noise.

One challenge in the learning of actor/critic RL systems is the distal reward or credit 

assignment problem (Izhikevich, 2007): reinforcers are delivered after the behavior is 

complete, after synaptic and neuronal activations leading up to the output are no longer 

active. A synaptic eligibility trace is typically used to solve this problem: neuron synapses, 

where learning occurs, are tagged to receive a credit or blame signal that arrives later 

(Sutton and Barto, 1998). In the current model we trained synaptic weights between spiking 

units using global reward and punisher signals.
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2.1.2. Model implementation—Individual neurons were modeled as rule-based 

dynamical units with several key features found in real neurons, including adaptation, 

bursting, depolarization blockade, and voltage-sensitive NMDA conductance (Lytton and 

Stewart, 2005, 2006; Lytton and Omurtag, 2007; Lytton et al., 2008b,a; Neymotin et al., 

2011b; Kerr et al., 2012). The model consisted of 384 excitatory and 128 inhibitory cells, 

each with three types of synaptic inputs commonly found in cortex (AMPA, NMDA and 

GABAA). Cells were connected probabilistically (only a subset of all possible connections 

were made) with connection densities and initial synaptic weights varying depending on pre- 

and post-synaptic cell types.

The cells were arranged into three different populations with realistic and anatomical 

properties. Input to the sensory cells was provided by 96 position (P) cells, representing the 

four muscle lengths (flexor and extensor muscles for each joint). The sensory population, 

which received spiking input from position cells, included 192 excitatory sensory (ES) cells, 

44 fast spiking sensory interneurons (IS), and 20 low-threshold spiking sensory interneurons 

(ILS). The motor population, which received spiking input from sensory cells, consisted of 

192 excitatory motor (EM), 44 fast spiking motor interneurons (IM), and 20 low-threshold 

spiking motor interneurons (ILM). The EM population was divided into four 24-cell 

subpopulations which controlled each of the four muscles. Joint positions were updated at 

50 ms intervals, based on extensor and flexor EM spike counts.

2.1.3. Model training and evaluation—During training, plasticity was present at three 

sites in the sensorimotor network: E→E recurrent connections in both S and M areas; 

bidirectional E→E connections between S and M areas; and local E→I connections within S 

and M areas; where E refers to excitatory, I to inhibitory, S to sensory and M to motor. The 

Critic, a global reinforcement signal, was driven by the first derivative of error between 

position and target during two successive time points (reward for decrease; punishment for 

increase). We used a spike-timing-dependent rule to trigger eligibility traces to solve the 

credit assignment problem (Izhikevich, 2007). When reward or punishment was delivered, 

eligibility-tagged synapses were potentiated (long-term potentiation LTP), or depressed 

(long-term depression LTD), correspondingly. Reinforcement occurred at the time of joint 

position updating (every 50 ms). The system was able to learn the appropriate mappings 

between neural populations required for target acquisition.

Model evaluation involved over 2000 simulations, each with a duration of 15 seconds, of 

previously trained networks. Multiple networks were produced using five different random 

wirings and five different pseudorandom driving-input streams in order to ensure that 

positive, or negative, results, were not simply the result of particular wiring or input settings 

which biased the learning. We additionally assessed five different targets, using sixteen 

different initial arm positions for each. Initial training required 400,000 simulations (five 

random wirings, five input streams, five targets, sixteen initial arm positions, two hundred 

reaches from each position), each with a duration of 15 seconds.

Learning produced multiple alterations in the activity map and in consequent network 

dynamics. These changes included a 3-fold increase in excitatory weight gains between the 

different populations after training to reach the two-degree-of-freedom virtual arm towards a 
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single target. Several of the populations also showed enhanced synchrony, visible as vertical 

stripes in the raster (Fig. 2.1.3). P cells tuned to a specific subset of joint angles (green: 

shoulder; orange: elbow), demonstrate the arm’s position and follow a trajectory in reaching 

towards the target. Model performance, measured as a fraction of trials where joint positions 

ended within 10 degrees of target location, was substantially augmented with training 

(Chadderdon et al., 2012; Neymotin et al., under review). After training and across targets, 

the average success ratio was 73% and 68% for shoulder and elbow angles, respectively, 

compared to only 19% and 24% for the naive networks. Success was calculated for naive 

and trained networks from identical initial conditions (starting position and random inputs).

The model of sensorimotor cortex was implemented in NEURON 7.2 (Carnevale and Hines, 

2006) for Linux and is available on ModelDB (Peterson et al., 1996) (https://

senselab.med.yale.edu/modeldb).

2.2. WAM robotic arm

Barrett Technology has developed the Whole Arm Manipulator (WAM) as a compact, low 

weight, low power consumption robotic arm providing smooth and precise joint motion. 

These features make it well suited for robotics control research. We used 2 degrees of 

freedom (shoulder flexion/extension, elbow flexion/extension) out of the 7 available in our 

WAM configuration. The WAM internal PC, embedded in the base of the WAM arm, 

controlled the robot arm motors through a 2-wire differential serial bus (CAN bus) that 

provided digital communication at 1 Mbps. The control loop, which runs by default at 500 

Hz, sent motor torques from the WAM internal PC to the WAM arm motors and sent back 

the motor positions from the motors to the internal PC (see Fig. 2.3). An open-source C++ 

library, Libbarrett, provided by Barret Technology, included high-level functions to control 

the WAM arm from the internal PC. When a command was sent from the internal PC, it was 

translated into CAN signals and addressed to the appropriate motors. The WAM included a 

small router attached to the outside of the robot’s base that allows an external PC to connect 

to the internal WAM PC, to both remotely run code in the internal PC to provide 2-way 

communication in real-time between internal and external PCs. In the interface described in 

this paper, we employed this mechanism to control the robot arm from an external PC and 

receive information on the joint positions in real time.

2.3. V-rep virtual robotic arm

V-REP is a new open-source robot simulation platform that allows creation of detailed and 

realistic simulations of robots and experimentation with them in virtual worlds. It included 

communication APIs with common programming languages (Python, Matlab (MathWorks, 

Inc., 2012), C++, and others) that allowed control of a virtual robot from any external 

application and receiving of feedback from the simulator. Additionally, the virtual robot 

output can be used to control a real robot in real-time. The simulation environment provided 

easy-to-use and powerful tools, including a library of 3D objects, robots and devices, several 

types of sensors (vision, tactile, etc.) that can feed data to the robot, and the ability to plot 

graphs of any of the variables in the simulation.
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We added a model of the Barrett WAM arm to the V-REP simulator, appending to an 

existing model of the Barrett hand. This virtualization characterized over 20 physical, 

kinematic, and dynamical parameters of the real device. It provided inverse and forward 

kinematics calculations and 2 physics engines for dynamics calculations, enabling 

simulations of real-world physics and object interactions, including collisions and grasping. 

The WAM virtualization was used for two purposes: 1. replace the real robot arm during 

experimentation (tested by sending BMM output to both the real and virtual WAM in 

parallel); 2. provide real time 3D visualization of the arm movements.

2.4. Biomimetic brain model and network communication on external PC

The Python interface functions are used to set up the communication sockets during 

initialization and to periodically send and receive joint angles to and from the WAM PC. In 

the arm mirroring scheme, we transpose the single horizontal plane of the NEURON-

simulated 2D arm into the vertical plane of the WAM arm.

The Python interface functions are loaded into the NEURON simulation environment and 

called directly from NEURON. Python being one of the two scripting languages used in the 

NEURON simulator (Carnevale and Hines, 2006). The communication function worked by 

opening a UDP socket between the external PC and the WAM internal PC. It then converted 

the output NEURON joint angles into UDP packets, and forwarded these through the socket 

to the robot arm. Finally, it received the joint position information coming back from the 

robot arm via the same UDP socket and saved it to a data file (Fig. 2.3). The current 

simulation model performed these operations at 50 ms simulated-time intervals (currently 

150 ms real-time). UDP packets were time-stamped by both simulated time and by real-

time, both measured from simulation start. The rate of incoming packets was, however, 

much higher, as they originated in the WAM PC, which operates strictly at 500Hz (2 ms 

intervals). For this reason, when the buffer was read, all incoming packets were discarded, 

except the last one which contained the most up-to-date information from the WAM.

The joint angles received from the robotic arm were available to the BMM. In future, these 

will be provided as feedback information to the model during learning. Currently, we used 

these angles only to provide real-time visualization of the movements on the external PC 

using the WAM virtualization in V-REP. This required development of the real-time 

interface between the BMM and the virtual WAM arm using a Python API provided by V-

REP. The interface worked in a similar fashion to that of the real WAM, sending packets 

containing the shoulder and elbow angles. However, in this case, the data was sent locally 

within the same computer.

2.5. Robot control and network communication on WAM internal PC

The open-source Libbarrett C++ library was the primary code base used to control and 

operate the WAM arm from the WAM internal PC. It connected functional blocks called 

Systems, which are small virtual machines that process information from inputs to outputs. 

The output of a System can be connected to the input of one or several Systems in order to 

obtain the desired functionality. This is similar to the process of linkage used in MathWorks’ 

Simulink (MathWorks, Inc., 2012).
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We implemented two Systems: a Network System (NS), to handle UDP communication, and 

a Control System (CS), for controlling and interacting directly with the robot arm. The NS 

established the UDP socket, received UDP packets from the external PC containing the 

desired joint angles, and sent back to the external PC the joint angles of the WAM arm 

received from the CS. The CS received joint angles from the NS, converted them to joint 

torques, and sent these to the robot motors. Additionally, the CS fed back the joint angles 

from the robot motors to the NS (Fig. 2.3).

Communication between CS and robot arm motors must run in hard real-time, operating at a 

fixed frequency of 500 Hz. In each cycle, joint torques were sent to the motors and joint 

angles were received back. Any delay in this process resulted in a fault, causing the robot to 

shut down. By contrast, communication between NS and external PC can run in soft real-

time: the delays for each cycle may vary significantly due to the local-area-network 

properties. Additionally, a small percentage of packets may be lost. In order to prevent the 

soft real-time NS from adversely affecting the hard real-time CS, the former was 

implemented using non-blocking UDP communication. Additionally, in cases where UDP 

packets were not received, the NS continued to output the joint angles from the last packet it 

had received from Python interface. This ensured that the CS received a constant input of 

joint angles even when the NS lagged. This also eliminated the need for sending replicated 

joint angle packets from the Python interface, and led to smoother trajectories.

Currently the arm is controlled using positional, rather than velocity or force information. 

We therefore needed a way of adjusting the speed or transition smoothness between the joint 

angles sent from the BMM simulation to the WAM arm. In collaboration with the Barrett 

software team, a new class was added to the Libbarrett library in order to permit the setting 

of a fixed speed for each joint, in radians per cycle, so as to make it possible to directly use 

positional information to control the WAM arm. This new method was employed to 

transform the output of the NS before it was fed to the CS to control the arm. In this way, we 

generated a smooth trajectory that could be safely followed by the WAM arm. The speed 

parameters used were 0.0018 and 0.00275 radians per cycle, for the shoulder and elbow 

joints, respectively.

Internally, the WAM arm is controlled using a proportional-integral-derivative (PID) 

controller that gathers positional error feedback and attempts to minimize that error by 

adjusting the motor torque. More specifically, the PID operates proportionally to the error 

(kp), the integral of the error (ki), and the derivative of the error (kd). We tuned these 

parameters to our system, based on the rate of incoming packets and on the joint speed 

parameters. The resulting values were kp = 4375, ki = 5, kd = 10 the shoulder joint, and kp = 

875, ki = 0.5, kd = 1 for the elbow joint.

3. Results

3.1. Experimental setup

The BMM ran on an external PC (laptop with 2.66GHz Intel Core i7) and sent joint angles 

via wireless LAN to the WAM internal PC controlling the WAM arm. The resultant WAM 

joint angles were fed back to the BMM via wireless LAN and forwarded to the WAM 
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virtual virtualization, running under V-REP on the same external PC (Fig. 3.1). The joint 

angles are passed through the BMM software so that they can later be used as inputs for the 

learning loop. The left window on the Fig. 3.1 laptop screen shows the textual output of the 

BMM, while the right window of the laptop shows the V-REP virtual WAM arm. A 

demonstrative video is available at: www.neurosimlab.org/salvadord/

PRL_WAMarm_video.m4v.

We tested four different trajectories generated by the BMM using different targets, starting 

positions and network wirings. Each simulation ran for 30 seconds of simulated time, which 

required approximately 100 seconds of real time. The difference in times was due to the 

slowness of the current BMM, rather than to delays in the communication loops. To evaluate 

interface performance, we synchronized the PC clocks using Network Time Protocol (NTP), 

and recorded sent and received time-stamped joint angles both at BMM and WAM, as well 

as time-stamped data packets.

3.2. Communication delay

Mean communication delay over all trajectories was 9.16 ms, well within the bounds 

required for real-time performance (Fig. 3.2). The communication delay of packets sent 

from the external PC (BMM) to the WAM PC, over the first 100 packets, was comparable 

for all four trajectories (left panel). Mean duration of each iteration over all trajectories was 

174.76 ms, a time that included calculating the shoulder and elbow angles based on the 

model neural populations, sending and receiving packets to/from the WAM arm, and 

sending packets to V-REP for visualization. The time per iteration was similar accross 

trajectories (right panel). These results indicate that the overall temporal bottleneck was not 

imposed by the network interfaces, but by the BMM itself, which only sent and received 

packets at every 50ms (simulated-time) iteration, with real-time per iteration varying 

depending on the amount of processing required.

3.3. Shoulder and elbow angles

We obtained good correspondence between BMM target angles and resultant WAM angles 

(Fig. 3.3). Angles sent by the BMM (red) oscillate near the target lines (green), reflecting 

ongoing babble in the system. WAM (blue) followed with excellent accuracy over the full 

95 clock-sec simulation.

The detailed angle trajectories shown in Fig. 3.3 demonstrated delay of 100–200 ms, as well 

as some undershoot. Undershoot was greater at the shoulder than at the elbow due to the 

greater inertia at the proximal joint. Markers provide precise times when packets were sent 

or received from/to BMM (top), illustrating the time per update iteration, summarized in 

Fig. 3.2 (right panel). Angles recorded at the WAM, with sampling at 2ms, look continuous 

at this time scale (Fig. 3.3 bottom). The horizontal red line segments show the intermittency 

of packets received from the BMM, demonstrating persistence of angles from the prior 

packet while awaiting the next packet’s arrival. The abrupt (instantaneous) angle change 

commands from the BMM must then be smoothed for the WAM by imposing the speed 

constraints using the techniques described in Methods.
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To quantify the accuracy of the trajectory followed by the WAM, we compared angles sent 

to and received from the WAM, recorded at the BMM; and those sent to and received from 

the BMM, recorded at the WAM Fig. 3.3). We discarded angle differences due to time delay 

by comparing the sent trajectory at iteration n with the received trajectory at iteration n + 1. 

Mean angle difference recorded at the BMM, averaged for the 2 joints and all trajectories 

was 0.84 degrees. Taking into account the range of operation of the WAM joints is 226 

degrees (shoulder) and 230 degrees (elbow), the overall relative angle difference amounts to 

only 0.36%.

3.4. Spatiotemporal trajectory

As noted in our previous papers Chadderdon et al. (2012), the presence of babble produces 

irregular spatiotemporal paths from starting point to target (Fig. 3.4). The four trajectories 

tested were however closely matched from the BMM commands (red) to the WAM end-

effector with feedback to the BMM (blue).

The location difference recorded at the BMM, averaged over all trajectories, was 1.29 cm. 

Given that the range of operation of the WAM arm is 2.02 metres, this indicates a relative 

end-effector location difference of only 0.64%.

4. Discussion

We have developed a real-time interface between a BMM of sensorimotor cortex and a 

robotic device in the real-world. We used our model to demonstrate the feasibility of using 

realistic neuronal network models to control devices in real-time. We evaluated the system 

using four different reaches each lasting greater than 1 minute. We demonstrated that the 

robot arm could follow these BMM trajectories in real time.

The trajectories generated by the BMM exhibited significant fluctuations as a result of the 

babble noise used to produce random movement for modulation through reinforcement 

learning. An additional factor was the large discrepancy between the update frequency of the 

model (~ 6 Hz) compared to that of the robot arm (500 Hz). These two factors made it 

physically impossible for the arm to follow the abrupt instantaneous changes of several 

degrees received from the model. However, in this study we are not evaluating the BMM 

itself but rather its interface with a robotic arm. In this context, the large fluctuations and the 

discrepancy in update frequency provided a greater challenge to producing a workable 

system, which we were able to solve by imposing a fixed speed at each joint. In this way, the 

arm’s control system was able to generate an approximate smoothed version of the trajectory 

for the arm to follow. This explains the small differences in the trajectories sent to and 

received from the WAM.

In order to improve the trajectories generated by our BMM we have begun work on adding 

an intermediate step between the BMM and the WAM robotic arm: a musculoskeletal arm 

model. The interposition of this arm should increase the biological realism of our motor 

control system, A virtual musculoskeletal arm model will take as input neural excitation for 

each muscle and will provide realistic limb position information including muscle fiber 

length, tendon length, and force or joint angles. The model will then feed muscle neural 
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activation patterns to the virtual arm, whose output will then be used to control the robot 

arm, leading to more realistic movements. This feedback information, whether from the 

robotic arm or from the mus-culoskeletal arm model, will then provide the position 

information used for reinforcement learning in the brain model. Additionally, we are 

parallelizing out BMM so that it can run in our high performance computing (HPC) cluster 

leading to a higher update rate and smoother trajectories.

The software/hardware design reported here sets the stage for our future work, which will 

include a closed-loop brain-machine-interface with a non-human primate. This interface will 

acquire signals from the primate’s brain, pass it to the BMM, and pass motor commands to 

the robotic arm. The monkey will receive visual and sensory feedback and then modulate its 

brain state, affecting the signals it sends to the sensorimotor cortex model. This type of 

system will be a new form of brain-machine interface where the robotic and biological sides 

are both learning to work together (Digiovanna et al., 2010; Sanchez et al., 2012).

As our models become more realistic, we will use them as stand-ins for actual brain regions 

that are damaged or temporarily inactivated. For example, a biomimetic brain model might 

take input from dorsal premotor cortex (PMd) in subjects that have damage to the motor 

cortex (M1) and serve to translate the PMd command signals into reaching movements that 

would have been generated in undamaged M1. These models will also be used to predict the 

results of in vivo experiments. We have recently developed computer models of sensory 

cortex, and modeled the effects of electrical microstimulation (Kerr et al., 2012). At a later 

stage, it should be possible to use signals from the virtual or robotic limb to generate 

microstimulation signals for sensory areas of brain to allow a user to feel his or her 

prosthetic limb.
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Highlights

• Output of biomimetic sensorimotor cortex model sent to robotic arm via UDP

• Robot arm joint positions sent back via UDP to external PC running model

• Communication between external PC and robot arm happens in real time

• Compared visualization of model’s virtual arm with robotic arm

• Sets stage for future closed-loop BMI with monkey based on realistic spiking 

model
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Figure 1. Overview of the biomimetic model of sensorimotor cortex
A 2-joint virtual arm is trained to reach towards a target using reinforcement learning. A 

proprioceptive preprocessing area feeds arm information to the sensory region, which is 

connected to the motor units that drive the muscles to change the joint angles. The Actor is 

trained by the Critic which evaluates error and provides a global reward or punishment 

signal. Reproduced from Chadderdon et al. (2012) with permission
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Figure 2. Raster plot of BMM after training
Raster plot, where blue (red) dots are spikes in inhibitory (excitatory) cells; 

ES,IS,ILS,EM,IM,ILM (E excitatory; I inhibitory fast-spiking; IL inhibitory low-threshold 

spiking interneurons; S higher-order sensory; M motor; P position sensory; green: shoulder; 

orange: elbow).
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Figure 3. Diagram of interface between BMM and WAM robot arm
The external PC running the BMM sends the desired joint angles to the WAM internal PC, 

which converts them into joint torques that are sent to the WAM arm. The process also 

occurs in the opposite direction, where joint angles are fed from the WAM arm to the WAM 

internal PC and then via UDP to the external PC back into the BMM.
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Figure 4. Screen capture of video taken during experiment
The BMM, running in the laptop (left window), controls in real time both the real WAM 

arm, via LAN network, and the V-REP virtual WAM arm, running in the same laptop (right 

window).
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Figure 5. Communication delay and time per iteration
left) Box-and-whisker plot of the communication delay of packets sent from the BMM to the 

WAM via LAN. right) Box-and-whisker plot of the time per iteration in the BMM.
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Figure 6. Comparison of joint angles over a 95-second trajectory
The arm shoulder (left) and elbow (right) angles recorded at the BMM (top) and at the 

WAM (bottom). Red lines: angles generated by the BMM and sent to the WAM PC; blue 

dotted lines: actual angles where the WAM arm moved and which were fed back to the 

BMM; green lines: target angles.
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Figure 7. Comparison of joint angles (5 seconds zoom)
Same as Figure 3.3 but zoomed in 20x to illustrate discrepancy in update frequencies (~ 6 

Hz for BMM and 500Hz for WAM) and how the WAM smoothes the BMM instantaneous 

trajectory changes.
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Figure 8. Difference between angles
Mean and standard deviation (error bars) of the difference between the angles sent to and 

received from the WAM, recorded at the BMM (top); and received from and sent to the 

BMM, recorded at the WAM (bottom).
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Figure 9. Spatiotemporal trajectories of arm end-effector
The horizontal and vertical locations over time of the WAM end-effector, sent to (red) and 

received from (blue) the WAM, based on the recorded angles and the robot dimensions. 

Green line represents the target.
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