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Skin detection by dual maximization of detectors agreement for video monitoringI
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Abstract

This paper presents an approach for skin detection which is able to adapt its parameters to image data captured from
video monitoring tasks with a medium field of view. It is composed of two detectors designed to get high and low
probable skin pixels (respectively, regions and isolated pixels). Each one is based on thresholding two color channels,
which are dynamically selected. Adaptation is based on the agreement maximization framework, whose aim is to find
the configuration with the highest similarity between the channel results. Moreover, we improve such framework by
learning how detector parameters are related and proposing an agreement function to consider expected skin properties.
Finally, both detectors are combined by morphological reconstruction filtering to keep the skin regions whilst removing
wrongly detected regions. The proposed approach is evaluated on heterogeneous human activity recognition datasets
outperforming the most relevant state-of-the-art approaches.
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1. Introduction

Detecting skin regions in images that correspond to
human body parts is an important task in many areas
such as human-computer interaction, gesture analysis and
content-based image retrieval. Recently, recognition of hu-
man activities in video has become a relevant topic where
the detection and tracking of body parts, via skin de-
tection, plays a key role [1][2]. However, such detection
faces many challenges related to the scenario (illumination
changes and backgrounds with skin-like surfaces), the field
of view (medium-small skin areas) and the limited avail-
ability of training data, which decrease the performance
of traditional skin detection approaches for this recogni-
tion task. An adaptable detector to scenario conditions
(requiring few training data) is therefore needed.

Traditional skin detection consists on two stages namely
training and classification phases [3]. First, the input color
space (RGB) of the images is transformed to get a bet-
ter representation of the skin color distribution only us-
ing chrominance information (the luminance one is usu-
ally dropped). Then, second phase performs skin classi-
fication over such distribution through parametric (e.g.,
Neural Network [4]), non-parametric (e.g., Naive Bayes
histograms [5]) and explicit methods (e.g., manual thresh-
olding [6]). There exist many studies addressing combi-
nations among color spaces and state-of-the-art classifiers
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[7][8][9][10]. It is commonly agreed that detection perfor-
mance increases by transforming input data to cylindri-
cal color spaces (HSV, HSI). However, different conclu-
sions are found for the use of the luminance component as
some studies indicate that it might improve detection [8]
whereas others do not [10]. Among classifier methods,
Random Forest obtained the best performance [11] due to
its good generalization properties and low requirements of
training data. Moreover, detectors can be combined to
improve overall detection by sequentially removing false
detections [12]. The main drawback of traditional ap-
proaches is the static modeling (using large training sets)
that can not be efficiently adapted to each test condition.

Adaptation of skin detection has been usually targeted
to address illumination changes. Skin illumination depen-
dency can be removed through color constancy correc-
tion [7]. However, recent results [8] show that accuracy
of well-known corrections, such as gray-world and skin
locus, is data-dependent and, therefore, performance im-
provement can not always be guaranteed. Another adap-
tation consists on combining previously trained (or global)
skin models with local models extracted from high prob-
able skin pixels of each considered condition such as the
adaptations of Hue [13] and Bayes [14] histogram-based
models. Moreover, local models can be also computed
via the color of detected face regions [15][16]. However,
these approaches require large amounts of training data
for global models and manual setting of the combination
factor, where non-adequate values might introduce errors
of local models into the final skin detection. The threshold-
based Gaussian Mixture Model (GMM) [5] is extended
in [17] where high-confidence regions for skin and non-skin
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are obtained via detectors (for faces and people). Then,
these regions are used for threshold optimization and mix-
ture weight adaptation. However, [17] has some limita-
tions as it uses large training sets, heuristically defines
the optimization function and assumes accurate detection,
which can not be always guaranteed. Unlike previous
work, detector adaptation can be achieved by maximiz-
ing its agreement with other independent detector through
their output similarity or agreement [18]. Hence, both de-
tectors will have high and low agreement for, respectively,
correct and false skin detections. Demonstrated over ex-
plicit thresholding on the three HSV channels, it obtained
very promising results without requiring global or local
modeling [18]. However, there exist problems with skin-
like background surfaces and low percentages of skin data
in the image, which make the adapted thresholds tend to
increase the number of false positives. Finally, adapta-
tion could be also in the modeling aspect, where optimum
color spaces are selected [19] or mixtures of their chan-
nels [20] to maximize skin detection performance. How-
ever, both approaches are limited as they require large
amounts of training data for accurate modeling (as they
employ histograms), use maximum a posteriori criteria
over test data [19] or propose heuristics over train data
that can not be generalized to all situations [20].

In this paper, we propose a skin detection approach
that adapts its parameters and selects optimum color chan-
nels for image data captured from video monitoring tasks
with a medium field of view, where few training data are
available containing medium-small skin regions. It con-
sists on two detectors that use channels of different color
spaces for getting high and medium probable skin pixels
(respectively, isolated pixels and compact regions). Each
detector is based on a two-channel thresholding scheme
which is adapted by maximizing the agreement (i.e., simi-
larity) between the two-channel results. Relations between
thresholds are learned through parametric kernels, which
improve the maximization process. Finally, both detectors
are combined through morphological opening by recon-
struction that selects the best regions indicated by high
probable skin pixels. The results demonstrate that the
proposed approach outperforms the related state-of-the-
art on public human activity recognition datasets.

The rest of the paper is organized as follows. Section 2
defines the maximization of agreement. Section 3 describes
the proposed approach. Experiments are shown in sec-
tion 4 and the conclusions are presented in section 5.

2. Theoretical framework

In the proposed approach, skin detectors are adapted
to data within an optimization framework [18][21] that se-
lects the best detectors’s configuration based on agreement
maximization (AM). It consists of three basic elements
(detectors applied, agreement measure and optimization
process) which are described as follows.

For each detector, data sources are employed (i.e., color
channels) to detect skin pixels by explicitly defining the
boundary of the cluster containing them as:

Di(x) =
{

1 if τ inf
i < Ci(x) < τsup

i

0 otherwise
, (1)

where Ci is the ith color channel (data source), {τ inf
i , τsup

i }
are its thresholds and x =(m,n) are the 2D pixel coordi-
nates. Typically, each detector uses two color channels
(i = {1, 2}) obtaining two results (D1 and D2), whose
binary outputs are combined using logical AND.

Then, the aim is to online adjust the thresholds of each
channel by maximizing the similarity between D1 and D2,
which is measured using an agreement function A(D1, D2)
such as mutual information [18] or signal correlation [21].
This function should give high or low values when both
results, respectively, agree or disagree at pixel level (i.e.,
they do not have the same binary output). For finding
the optimum parameters that maximize the agreement,
a standard optimization algorithm can be used such as
simplex [18] or gradient ascent [21], which is defined as:

Sj = Sj−1 + η∇Ã(Sj−1), (2)

where Sj = {τ inf
j1 , τsup

j1 , τ inf
j2 , τsup

j2 } is the parameter set
that controls the skin detector at jth iteration, Ã isA(D1, D2)
using Sj to obtain the results {D1, D2}, ∇Ã(Sj) is the gra-
dient of Ã particularized at Sj and η > 0 is a constant.
∇Ã(Sj) can be obtained by evaluating Ã(S) in a neigh-
borhood of Sj . This process is iteratively repeated until
the parameter set does not change (reaching the optimum
values with maximum agreement).

However, this framework has no constraints in the pa-
rameter optimization process which makes the thresholds
tend to increase the number of false positives or negatives
as agreement is high in certain non-desirable situations
(e.g., both D1 and D2 binary masks with a high num-
ber of 1’s or 0’s), which is critical when dealing with high
or low quantity of skin pixels in the image. This four-
parameter optimization might be slow if many values are
tested. Moreover, there is no indication of which channels
of color spaces are better for increasing the agreement and
complex combination schemes can be designed considering
the properties of the employed detectors. The detector
shall be able to automatically adapt to different condi-
tions (skin proportions, skin-like surfaces, lighting) whilst
selecting the optimum color space channels.

3. Dual maximization for skin detection

We propose an approach to detect skin in single images
of human activity recognition videos where, for each im-
age, it dynamically selects the best configuration starting
from a predefined one. First, we introduce such adaptation
using the AM framework [18][21], whose optimization is



3.2 Optimum channel selection 3

�����

���	
�����
���
������� ����	�
����
�

���	
�����
���
������� ����	�
����
�

�
�

�
�

���������

�����������

�
�

�
�

���������

	�
���


�

������ ������������� �����
����
 �

��

��� ��������

� � �

��	����
 ���� 
�����
�������

�

�

��������

�	
� ����
���

���������

��


���
���
��
�����

�
�����	
�

���

( �

��
�
� ���� ����	
 ���
� ������

��
�
� ���� ��
���
 ������� ������

������� �	
	��


���� ������

 ������ � ������

��������

�	
� ����
���

������ � ��	
�

(a) (b)
Fig. 1. Block diagrams of the proposed (a) detector based on agreement maximization (AM) and (b) framework for skin detection in images.

improved by learning parameter relations through kernel-
thresholding and including a new agreement measure (Fig.
1(a)). Then, two AM-based detectors are composed to de-
tect skin-like regions and high-probable skin pixels (via
optimal selection of color space channels), which are later
combined using binary morphology (Fig. 1(b)) for maxi-
mizing performance. They are described as follows.

3.1. AM-based skin detector
Kernel-based thresholding. First, we aim to constrain the
values of the thresholds {τ inf

i , τsup
i } in the optimization

process of the AM-based detectors. In certain situations,
these thresholds tend to similar or max/min values (e.g.,
τ inf

i = 0 and τsup
i = 1, if Ci(x) ∈ [0, 1]) as the agree-

ment is maximized in both cases. We propose to solve this
problem by learning their relation using training data and
performing kernel-based thresholding, which is defined as:

Di(x) =
{

1 if K (Ci(x)) > βi

0 otherwise
, (3)

where Di is the skin detection for the Ci color channel,
Ci(x) is the value at position x, K (·) is a kernel function
and βi ∈ [0, 1] is a threshold that influences the presence
of false positives in the skin detection. The objective of
K (·) is to define the relation between the lower (τ inf

i ) and
upper (τsup

i ) thresholds as well as their bounds (maximum
and minimum values), which avoids to use incorrect values
during the optimization. In addition, K (·) allows to com-
pute the probability of Ci(x) being in a range [τ inf

i , τsup
i ]

depending on just one threshold (βi) dynamically adapted
to image data. As kernel function, we can use any para-
metric or non-parametric function that describes the dis-
tribution of skin pixels in the selected color space channel.
For simplicity, we use a Gaussian kernel:

K(p) = 1
σ
√

2π
e−

(p−µ)2

2σ2 (4)

where {µ, σ} are the mean and standard deviation of the
skin distribution obtained with training data. Note that
few training data is required as we do not aim to precisely
model skin data with K (·) (only the approximate relation
between τ inf

i and τsup
i ). Moreover, the optimization pro-

cess is sped up as the number of parameters is reduced
from four (Eq. 1) to two (Eq. 3) for each detector.

After obtaining the optimum parameter values, detec-
tor output FDj is generated by a logical AND combination

of its corresponding two channel analysis Di as follows:

FDj = D1 ∩D2 (5)

Detector agreement. For the agreement function, we first
compute the expected skin pixel proportion (SPk) for each
scenario to analyze using training data:

SPk = sk

Mk ·Nk
, (6)

where sk is the number of annotated skin pixels for kth
image and {Mk, Nk} are its size. For each scenario, we
use a small set of K training images to get the maximum
and minimum values of SPk (SPmax and SPmin).

Then, we propose a correlation-based agreement func-
tion to compute the similarity between the results {D1, D2}
when their respective skin proportions fall within the ex-
pected proportion range of the scenario being analyzed:

A(D1, D2) =

{
ρ(D1, D2) if max(SP1, SP2) < w · SPmax ∩

min(SP1, SP2) > SPmin
w

0 otherwise

,

(7)
where {SP1, SP2} are the skin proportions of the sub-
detector {D1, D2} using Eq. 6, {SPmax, SPmin} are the
maximum and minimum skin proportions obtained from
training data, w is a weighting factor to consider higher or
lower proportions than the training data ones and ρ(·, ·) is
the Pearson product-moment correlation coefficient [22]:

ρ(D1, D2) =
∣∣∣∣E [(D1 − µD1)(D2 − µD2)]

σD1σD2

∣∣∣∣ , (8)

where {µD1 , µD2} and {σD1 , σD2} are, respectively, the
means and standard deviations of {D1, D2}; E[·] is the
expectation; ρ ∈ [0, 1], with values close to 1 indicating
high correlation (agreement) between both outputs.

This new agreement function A(D1, D2) improves ex-
isting ones [18][21] by enforcing a similar number of de-
tected skin pixels in both results while penalizing false
detections and proportions out of the expected range.

3.2. Optimum channel selection
For each type of scenario, we obtain the best color

space channels among the most popular ones (RGB, HSV,
YCbCr and Lab) to detect skin pixels by determining their
discriminative capabilities over the training data.
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Input image Ground-truth FD1 FD2 γrec(FD1, FD2)
(a) (b) (c) (d) (e)

Fig. 2. Sample results for an image of the EDds dataset showing the output of the skin detectors FD1(H-a, βH = .06, βa = .16) and FD2
(H-b, βH = .10, βb = .49) after optimum channel selection and their combination through mathematical morphology γrec.

As histogram modeling has proven to be an accurate
method for analyzing color spaces [7][19][20], we use it to
get a simple skin detector for each channel by a normal-
ized histogram computed using all the available training
images. Then, we apply these (channel-based) simple de-
tectors to the same training images by taking an accep-
tance probability of 0.01 (getting most of the skin pixels
in the train images) and compute the following mean ratio:

ri = 1
K

K∑
k=1

dik

sk
, (9)

where dik and sk are the number of, respectively, detec-
tions (for the ith channel) and annotated skin pixels in kth
training image; and K is the number of training images.

Then, we have experimentally observed a similar true
positive rate for all channel detectors (i.e., recall) as they
have the same acceptance probability and, therefore, we
select the channel whose detector has lowest ratio ri (i.e.,
minimum false positive rate) as the optimum one:

Cbest = argmin
i

(ri) . (10)

As at least two channels are required in the AM frame-
work, we propose to set Cbest as the base one and choose,
among the rest of the channels, those that satisfy the pre-
cision objectives of each detector. Then, we design two
AM-based detectors to get skin pixels with high precision
(i.e., isolated pixels) or low precision (i.e., compact re-
gions). For high precision detection, we use the Pearson
correlation ρ (Eq. 8) to select the channel that gives mini-
mum agreement with the optimum channel (i.e., few pixels
are detected, with high probability):

Chigh = argmin
i

(ρ(HCbest , Hi)) , (11)

where {HCbest , Hi} are the binary outputs of the histogram-
based skin detector using, respectively, the color channels
Cbest and Ci. For low precision detection (and high recall
of skin pixels), we similarly select the channel that gives
maximum agreement with the optimum channel (i.e., sev-
eral low probable pixels are detected obtaining regions,
where non-skin regions might appear in the detection):

Clow = argmax
i

(ρ(HCbest , Hi)) . (12)

Finally, the two detectors are conformed by using the
color channels {Cbest, Clow} for FD1 and {Cbest, Chigh} for
FD2. Fig. 2 shows an example of such selection and the
obtained results after the agreement maximization process.
The detector FD1 uses the channels H-a which is tuned
to get skin-like regions (see Fig. 2(c)) whereas the other
detector FD2 combines H-b to obtain high probable skin
pixels that belong to skin regions (see Fig. 2(d)).

3.3. Detector combination

After selecting the optimum channels of the AM-based
skin detectors and optimizing their parameters, they are
combined to improve the final result of the skin detec-
tion. Considering that one of the detectors obtains highly
probable pixels whereas the other gets compact skin-like
regions (that might correspond to skin or similar objects),
we propose to use a morphological reconstruction filter [23]
to retain only the skin regions marked by the highly prob-
able pixels of FD2(among all the regions of FD1).

Morphological filters by reconstruction allow to elimi-
nate undesirable details in binary images without affecting
the structure of the desirable ones. As we aim to preserve
the skin regions indicated by FD2, we apply an opening by
reconstruction of erosion, γrec(X;Y ), which requires two
elements (input image X and marker Y ) to get the result
(reconstructed image). As input image, we use the output
of FD1 (containing skin and non-skin regions) whereas the
output of FD2 for the marker (high probable skin pixels
pointing the skin regions). For applying such filtering, we
first define the conditional dilation operation as:

Yp = (Yp−1 ⊕ se) ∧X, (13)

where X is the output FD1, ⊕ is the standard morpho-
logical dilation, se is a square structuring element whose
size depends on the image size and Yp is the reconstructed
image at pth iteration. For p = 1, we use the erosion
of the marker image FD2 with se as the initial result
(Y1 = FD2Θse). Note that this conditional dilation is
computed recursively. Then, the reconstructed image is
defined as:
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γrec(X;Y ) = Y∞, (14)

which requires to define stability conditions for stopping
this infinite iterative analysis. We set the maximum num-
ber of iterations (1000) as well as the minimum difference
among consecutive iterations (||Yp−Yp−1|| < 1e−6) as such
conditions. Finally, a conditional closing morphological fil-
ter is used for performing hole filling over the reconstructed
image. Standard closing operation consists on a dilation
followed by an erosion and we extend it by conditioning
the addition of new pixels (filled holes) to their existence
in the results of the detectors (i.e., they are marked as
skin pixels in FD1 or FD2). This operation allows to add
pixels (of the holes) to the skin output avoiding the inclu-
sion of wrong pixels (i.e., non increasing the false positive
rate). The output of the proposed skin detector is the re-
constructed image filtered by this modified closing. Fig. 2
shows an example of such combination where the selected
skin regions are kept in the final results (Fig. 2(e)).

4. Experiments

We present the results of the proposed1 and related ap-
proaches for detecting skin pixels on human activity recog-
nition datasets where such detection is an important task.

4.1. Setup
As evaluation set, we have selected images from public

datasets for human activity recognition: EDds2, LIRIS3,
SSG4, UT5, and AMI6. This set covers a wide variety of
situations, viewing distances and resolutions (ranging from
320x240 to 720x576) where skin detection has many chal-
lenges due to, among others, illumination changes or poor
visibility. For each dataset, around 50 images have been se-
lected and the corresponding ground truth has been man-
ually generated at pixel level. In total, 290 images com-
pose the evaluation set containing more than 870000 skin
pixels, which have been equally divided into two sets for
training (~450000) and testing (~420000). Note that we
are not using large-scale datasets [5] as the focus is on
limited training data and the analysis of human activity
recognition datasets. Both conditions are satisfied for the
video monitoring domain.

For comparison purposes, we have selected the explicit
thresholding with fixed values for the H-S (T_HS) and
Cb-Cr (T_CbCr) channels as defined in [6], the Bayesian-
based method which thresholds the ratio of belonging to
the skin and non-skin distributions using histograms (BAY_H) [5]

1Detailed description of the evaluation set, annotated data, ad-
ditional results and software implementations can be found at
http://www-vpu.eps.uam.es/publications/SkinDetDM

2http://www-vpu.eps.uam.es/DS/EDds/
3http://liris.cnrs.fr/harl2012/
4http://www-vpu.eps.uam.es/publications/SkinDetDM
5http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
6http://corpus.amiproject.org/
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Fig. 3. Results for base optimum channel selection over the selected
datasets using mean detection ratio (Eq. 9).

and Gaussian Mixture Models (BAY_G) [5], and the Ran-
dom Forest method applied over HSV [11]. For BAY_H
and BAY_G, the threshold is empirically chosen to max-
imize performance. As adaptive approaches, we use the
global-local adaptation of the H channel (ASD) [13] and
the maximization of mutual information using a co-training
scheme (MMI) over H-S [18]. All approaches are imple-
mented in MATLAB and use the default parameters indi-
cated by their respective authors.

For evaluating detection performance, we use standard
Precision (P ), Recall (R) and F-score (F ):

P = TP/(TP + FP ), (15)

R = TP/(TP + FN), (16)

F = 2 · P ·R/(P +R). (17)

where TP , FP and FN are, respectively, the correct,
wrong and missed skin detections. Finally, we set the
following parameters of the proposed approach: w = 4
(deviation of the trained skin proportion, see Eq. 7) and
the size of the structuring element se proportional to the
image size (3× 3 for 320× 240 image sizes, see Eq. 13).

4.2. Optimum channel selection

Fig. 3 and Table 1 summarize the results for optimum
channel selection. Fig. 3 depicts the mean detection ra-
tio (Eq. 9) of the histogram-models computed for each
channel over the training set. As it can be observed, the
minimum value corresponded to the H channel (of HSV)
for all the datasets except for UT, where a channel (of
Lab) obtained best results, closely followed by H. This
indicates that H channel had stable results and high dis-
criminative power (for skin and non-skin regions) in the
considered scenarios. These results agree with previous
works [7][8][10], where cylindrical color spaces (HSV, HSI)
provided the best performance with other types of images.
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EDds LIRIS SSG UT AMI

R .081 .070 .040 .024 .109
G .108 .227 .042 .046 .129
B .116 .261 .049 .035 .127
H - - - .606 -
S .094 .057 .135 .065 .070
V .063 .103 .430 .031 .106
Y .087 .178 .055 035 .121
Cb .046 .241 .148 .140 .228
Cr .049 .159 .146 .101 .157
L .096 .101 .120 .098 .105
a .126 .337 .334 - .298
b .040 .230 .121 .163 .146

Table 1: Pearson correlation (Eq. 8) between each color space chan-
nel and the base optimum one selected for each datasets. Maximum
and minimum correlation values are bold marked.

Table 1 shows the Pearson correlation (Eq. 8) with the
optimum channel determined for each dataset. For the
two detectors that compose the proposed approach, chan-
nels with maximum correlation were selected for recogniz-
ing high probable pixels (detector FD2) whereas minimum
correlation values indicate that the result contains skin-like
regions (detector FD1). We have obtained the following
combinations for EDds (H-a and H-b), LIRIS (H-a and H-
S), SSG (H-a and H-R), UT (a-H and a-R) and AMI (H-a
and H-S) datasets.

Fig. 4 illustrates visual examples of the detectors. The
first case considers an image from EDds with the following
configurations for FD1 (βH = .06, βa = .16, AH−a = .82)
and FD2 (βH = .10, βb = .49, AH−b = .25). In the second
case, the image is from the LIRIS dataset so detector con-
figuration changes for FD1 (βH = .26, βa = .15, AH−a =
.41) and FD2 (βH = .58, βS = .90, AH−S = .03). Third
example uses SSG dataset obtaining a different detector
configuration for FD1 (βH = .35, βa = .15, AH−a = .81)
and FD2 (βH = .50, βR = .49, AH−R = .05). Last
case is from AMI dataset with the configuration for FD1
(βa = .25, βH = .05, Aa−H = .23) and FD2 (βH =
.95, βS = .31, AH−S = .10). The channels and thresholds
are dynamically adapted to each considered data. A com-
mon trend is observed in the four presented cases, chan-
nel combinations with higher agreements (detector FD1)
produce skin regions whereas lower agreements (detector
FD2) mainly provide an output with high probable skin
pixels indicating which regions correspond to skin.

4.3. Skin detection
Skin detection results of the proposed and compared

approaches are presented in Table 2. As it can be ob-
served, the results of the LIRIS dataset exhibited a clear
decrease in performance for all the approaches as com-
pared to the results of the other datasets. This is due the
office furniture used in the dataset, which contains several
skin-like surfaces affecting the precision results. It demon-
strates that skin detection in such scenarios is complex and

Fig. 4. Sample results of the detectors (FD1 and FD2) obtained
after optimum channel selection.

partially solved. In general, fixed-thresholding approaches
(T_HS and T_CbCr) got medium performance showing
that, albeit effective, the use of parameters with fixed val-
ues does not generalize well for a variety of heterogeneous
scenarios. Differences between H-S and Cb-Cr are due
to the better skin clustering properties of H-S for the se-
lected data. BAY obtained good performance demonstrat-
ing that non-skin data can be efficiently used to improve
final skin detection. In particular, the use of non-skin mod-
eling allows to have high precision values as the approach is
robust against skin-like surfaces. However, it depends on a
decision threshold which its difficult tuning is critical to get
the best performance (for the results, the optimum value is
selected after testing with a set of thresholds ranging from
0 to 4). Between the two BAY versions, BAY_G is better
than BAY_H as parametric modeling is more appropri-
ate when dealing with small training sets. The recent RF
approach similar performance among compared state-of-
the-art obtaining a good precision-recall trade-off. As this
machine learning approach also uses non-skin samples for
skin modeling, it also benefits from having high precision
values whereas keeping most of the skin (recall) as BAY_G
and BAY_H. However, the three approaches (BAY_H,
BAY_G and RF) suffer no-adaptability to each scenario
and the particularities of each image (e.g., changing illu-
mination) are treated as outliers of their skin models, thus
limiting their performance. Adaptive approaches (ASD
and MMI) presented very low performance indicating that
introducing adaptive capabilities into skin detection is not
an easy task. In some situations both approaches got high
recall detecting most of the skin pixels but their precision
was very low having high false detection rate as they pro-
duced detections covering several non-skin parts of the im-
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Table 2: Comparison for selected skin detection approaches. Best results are bold marked. Last row indicates the Percentage increase (%) of
each measure with respect to the best state-of-the-art performance.

Approach EDds LIRIS SSG UT AMI Mean
P R F P R F P R F P R F P R F P R F

T_CbCr [6] .253 .706 .373 .067 .914 .125 .148 .854 .252 .258 .839 .395 .242 .694 .359 .194 .801 .312
T_HS [6] .398 .484 .437 .122 .327 .178 .385 .548 .453 .326 .571 .415 .396 .321 .354 .326 .450 .378
BAY_H [5] .626 .502 .557 .147 .647 .239 .515 .493 .504 .330 .590 .423 .531 .804 .639 .430 .607 .503
BAY_G [5] .647 .524 .579 .158 .690 .258 .469 .476 .472 .394 .455 .422 .610 .784 .686 .455 .586 .513
RF [11] .502 .685 .580 .104 .886 .187 .436 .766 .558 .284 .897 .432 .503 .930 .653 .366 .833 .508
ASD [13] .022 .733 .043 .038 .770 .072 .164 .902 .278 .002 .251 .004 .044 .531 .082 .054 .637 .100
MMI [18] .055 .436 .099 .040 .800 .077 .056 .552 .101 .041 .141 .063 .020 .549 .039 .042 .496 .078
Proposed .623 .648 .636 .189 .698 .298 .457 .754 .569 .413 .755 .534 .598 .842 .699 .456 .739 .564
%4 best -0.03 -10.9 +9.0 +19.6 -21.2 +15.5 -15.2 -16.0 +1.9 +4.8 -15.8 +23.6 -2.1 -9.4 +1.8 +0.2 -11.2 +10.0

age. Although the proposed approach did not obtain the
best precision or recall in most of the cases, it improved all
the compared approaches using the F-score, which consid-
ers the balance between the precision and recall. Globally,
an increase around 10% is observed over the best state-
of-the-art approach BAY_G (last column of Table 2). It
evidences that by adapting simple threshold-based detec-
tors, the performance can be clearly improved. Fig. 5 il-
lustrates detection examples for each dataset showing the
previously discussed behavior and the preference of ap-
proach with highest F-score instead of only high precision
or recall values.

Regarding mean computation time (in milliseconds per
pixel), simple approaches are faster such as T_CbCr, T_HS
and BAY_H (with respectively 0.0022, 0.0020 and 0.0044).
Learning-based approaches present intermediate cost (0.0314
for BAY_G and 0.0450 for RF). Adaptive approaches have
high costs (0.152 for ASD and 0.212 for MMI). A non-
optimized implementation of the proposed approach em-
ploys 0.521 ms/pixels being the heaviest among compared
approaches which benefit from optimized code. The main
reason regards the computation of the agreement function
during the iterative optimization (Eq. 7). However, this
cost can be dramatically reduced by applying integral im-
ages [18] or other optimization approaches.

5. Conclusions

In this paper, we have presented an adaptive approach
for skin detection in images. It proposes to combine two
detectors where one is designed to get skin-like regions
whereas the other is tailored to get high probable skin pix-
els. Both detectors are combined through mathematical
morphology to effectively keep the skin regions. Moreover,
they are based on the agreement maximization framework,
which computes the similarity between the sub-detectors
of each detector and maximizes it in order to get better
performance. This framework is extended to model the
relation between the sub-detector parameters, to consider
agreement within the expected ranges and to select the
optimal channels of color spaces. Experimental results

demonstrate the adaptive capabilities of the proposed ap-
proach improves performance of parameter-fixed, adaptive
and learning-based state-of-the-art approaches.

As future work, we will explore the adaptive estimation
of skin proportions for the agreement function and the
application of the proposed approach to video sequences
exploiting temporal relations between the frames.
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Fig. 5. Sample results of the compared skin detectors. Key. OR:Original image. GT:Ground-truth. T_HS:Threshold over HS [6].
T_CbCr:Threshold over CbCr [6]. BAY_H:Histogram-based Bayesian detector [5]. BAY_G:GMM-based Bayesian detector [5]. RF:Random
Forest approach [11]. ASD:Adaptive skin detector [13]. MMI:Maximization of mutual information [18]. PRO:Proposed approach.


