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Abstract

Object recognition, human pose estimation and scene recognition are applications which are frequently solved
through a decomposition into a collection of parts. The resulting local representation has significant advantages,
especially in the case of occlusions and when the subject is non-rigid. Detection and recognition require modelling
the appearance of the different object parts as well as their spatial layout. This representation has been particularly
successful in body part estimation from depth images.

Integrating the spatial layout of parts may require the minimization of complex energy functions. This is
prohibitive in most real world applications and therefore often omitted. However, ignoring the spatial layout
puts all the burden on the classifier, whose only available information is local appearance. We propose a new
method to integrate spatial layout into parts classification without costly pairwise terms during testing. Spatial
relationships are exploited in the training algorithm, but not during testing. As with competing methods, the
proposed method classifies pixels independently, which makes real-time processing possible. We show that training
a classifier with spatial relationships increases generalization performance when compared to classical training
minimizing classification error on the training set. We present an application to human body part estimation from
depth images.

Keywords: Segmentation, Spatial layout, Deep learning, Convolutional networks, Depth images

1. Introduction

Many computer vision problems can be solved in part by
an initial step which segments an image, a video, or their
constituent objects into regions, which are called parts in
this context. The segmentation algorithm typically con-
siders local appearance information, and frequently also
models the spatial relationships between different parts.
Unfortunately, considering these relationships within the
segmentation process mostly amounts to solving con-
straint satisfaction problems or performing inference in
a graphical model with cycles and a non sub-modular
energy function, both of which are intractable in the
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general case. In this paper we address the problem of ef-
ficiently modeling spatial relationships without the need
for solving complex combinatorial problems.

This general class of problems corresponds to various
applications in computer vision. For example, pose esti-
mation methods are also often naturally solved through
a decomposition into body parts. A preliminary pixel
classification step segments the object into body parts,
from which joint positions can be estimated in a sec-
ond step. The well-known system described in (Shotton
et al., 2011), installed on millions of gaming consoles and
taking as input images from consumer depth cameras,
completely ignores spatial relationships between the ob-
ject parts and puts all of the classification burden on the
pixel-wise random forest classifier. To achieve its state-
of-the-art level of performance, it required training on
an extremely large training set of 2 · 109 examples.

A similar problem occurs in tasks where joint ob-
ject recognition and segmentation is required. Layout
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Figure 1: Different ways to include spatial layout, or not, into learning part labels yi from features Zi for pixels i: (a) pixelwise
independent classification, where spatial layout information is not taken into account; (b) A Markov random field with pairwise terms
coding spatial constraints; (c) our method: pixelwise independent classification including spatial constraints N .

CRFs and their extensions model the object as a col-
lection of local parts (patches or even individual pix-
els), which are related through an energy function (Winn
and Shotton, 2006). However, unlike pictorial structures
for object recognition (Felzenszwalb and Huttenlocher,
2005; Felzenszwalb et al., 2010), the energy function here
contains cycles which makes minimization more com-
plex, for instance through graph cuts techniques. Fur-
thermore, the large number of labels makes the expan-
sion move-type algorithms inefficient (Kolmogorov and
Zabih, 2004).

In all cases, the underlying discrete optimization prob-
lem is very similar: an energy function encoding the
spatial relationships in pairwise terms needs to be min-
imized. A typical dependency graph for this kind of
problem is shown in Figure 1b: unary terms relate each
label yi to a feature vector Zi, and pairwise terms en-
code prior knowledge on the possible configurations of
neighboring labels yi and yj .

In this paper, we propose a method which segments
an image or an object into parts through pixelwise clas-
sification, integrating the spatial layout of the part la-
bels. Like methods which ignore the spatial layout, it is
extremely fast as no additional step needs to be added
to pixelwise classification and no energy minimization is
necessary during testing. The (slight) additional compu-
tational load only concerns learning at an offline stage.
The goal is not to compete with methods based on en-
ergy minimization, which is impossible through pixelwise
classification only. Instead, we aim to improve the per-
formance of pixelwise classification by using all of the
available information during learning.

In each of the problems that we consider, the labels
we aim to predict have spatial structure. Our proposed
method uses an energy function to enforce a spatial con-

sistency in learned features which reflects the spatial lay-
out of labels. Unlike combinatorial methods, our energy
function is minimized during training (i.e. while learn-
ing features) but is unused at test time. It is based on
two main assumptions. First, different high-dimensional
features with the the same label are embedded to a
lower-dimensional manifold which preserves the origi-
nal semantic meaning. Second is our belief that greater
loss should be incurred when misclassification occurs be-
tween features coming from non-neighbor labels than
features coming from the same or neighboring labels. In
other words, the geometry of learned features, to some
extent, reflects the spatial layout of labels. We will show
that this new loss function increases the classification
performance of the learned prediction model.

Another way of looking at our contribution is to in-
terpret it as a way of structuring the prediction model
of a learning machine. Classical techniques working
on data represented in a vector space, like neural net-
works, SVMs, randomized decision trees, boosted clas-
sifiers, etc., are, in principle, capable of learning arbi-
trary complex decision functions if the underlying pre-
diction model (architecture) is complex enough. In re-
ality, the available amount of training data and compu-
tational resources available limit the complexity which
can be learned. In most cases, only a limited amount
of data is available with respect to the complexity of
the problem. It is therefore often useful to impose some
structure on the model. We already mentioned struc-
tured models based on energy minimization and their
computational disadvantages. Manifold learning is an-
other technique which assumes that the data, although
represented in a high dimensional space, is distributed
according to a lower dimensional manifold in that space.
Semi-supervised learning uses a large amount of addi-
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tional training data, which is unlabeled, to help the
learning machine better infer the structure of the de-
cision function. In this work, we propose to use prior
knowledge in the form of the spatial layout of the la-
bels to add structure to the task of learning the decision
function.

Another key aspect of our technique is end-to-end
feature learning. The dominant methodology in com-
puter vision, though changing in light of recent successes
(Krizhevsky et al., 2012), is to extract engineered fea-
tures such as SIFT (Lowe, 2004) or HOG (Dalal and
Triggs, 2005), pool responses, and learn a classifier from
this fixed representation. Our objective is to apply learn-
ing at all stages of the pipeline, from pixels to labels.
However, compared to contemporary Deep Learning ap-
proaches, we learn representations that are informed by
the spatial structure of the part labels instead of simply
their identity.

This paper proposes several contributions:

• We propose spatial learning for unsupervised pre-
training of deep convolutional networks (i.e. learn-
ing all but the topmost layer). The features learned
by spatial pre-training are more informative than
classical features, as experiments with a non-spatial
LR classifier show.

• We propose a framework which integrates spatial
part layout into supervised learning of deep neural
networks. We show that the gain of spatial learn-
ing is indeed obtained at extremely small cost: it
improves the performance of the classifier with ab-
solute zero increase in computational complexity of
testing.

• To the best of our knowledge, we are the first to
apply Deep Learning to the problem of body parts
segmentation from depth images, obtaining promis-
ing results.

2. Related work

Our framework proposes to learn a feature extractor
from raw data combining the spatial layout of labels, in
order to produce a better decision function for segmen-
tation. It is equivalent to learning a mapping function
from high-dimensional space to a low-dimensional man-
ifold space, therefore there is some partial overlap with
dimensionality reduction.

Unsupervised approaches for learning a mapping cap-
turing global structure are well-known; most notably

Principal Component Analysis (PCA) (Jolliffe, 1986)
and Multi-Dimensional Scaling (Cox and Cox., 1994).
However, our aim is to embed based on the spatial layout
of part labels, so we restrict our discussion to supervised
methods. Neighborhood Components Analysis (NCA)
(Goldberger et al., 2004) and its variants (Salakhutdi-
nov and Hinton, 2007) implicitly learn a mapping func-
tion from high dimensional space to low dimensional
space while preserving the neighbourhood relationship
defined by class labels. However, NCA is optimized for
nearest neighbor classification and does not take into ac-
count structure within the labels, only their identity. Dr-
LIM (Hadsell et al., 2006) is an online, non-probabilistic
method which explicitly learns a non-linear invariant em-
bedding function. Similarly, we parameterize our em-
bedding with a convolutional neural network (ConvNet)
(LeCun et al., 1998), however, like NCA, DrLIM does
not consider structure in the labels. Our method dif-
fers from NCA and DrLIM by incorporating the spatial
layout of labels into an energy function, rather than a
binary notion of neighbors defined by datapoints with
the same label.

ConvNets are a successful deep architecture widely
studied in various applications, such as object recogni-
tion (LeCun et al., 1998; Jarrett and Kavukcuoglu, 2009;
Krizhevsky et al., 2012), scene parsing (Grangier et al.,
2009; Farabet et al., 2012) and connectomics (Turaga
et al., 2010). By parameter tying and feature pool-
ing, ConvNets can automatically learn shift-invariant,
discriminative low- and mid-level features from the raw
pixels, avoiding the problem of generalization with hand-
engineered features.

Farabet et al. (2012) have recently introduced multi-
scale ConvNets and applied them successfuly to Full
Scene Labeling. Our work is similar in its motivation
and the fact that we adopt their multi-scale approach
to learn scale-invariant features. However, the way in
which we approach the problem is very different. They
apply sophisticated machinery based on optimal purity
cover to search the best spatial grouping of feature vec-
tors from which to predict a label. Our model has no
such notion of adaptive pooling. Instead, we use weakly-
supervised learning to introduce spatial context into the
features. We believe the two approaches are complemen-
tary, and although beyond the scope of this paper, could
be applied together.
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3. Integrating spatial constraints into deep learn-
ing

In this section, we propose a method which learns to seg-
ment an image into parts which may be articulated. We
pose this task as a typical classification problem, where
each pixel of the image is classified into one of a discrete
number of part labels L = {1 . . . L}. We aim to make
decisions pixel-wise in order to minimize computational
complexity.

We are given a set of M images {X1, . . . , XM} and
their associated labeled groundtruths. In our nota-
tion, the pixels of an image are indexed similarly index:
Xm = {Xm(i)}. We seek to learn a segmentation model
consisting of two parts:

• A parametric mapping function Z = f(X|θf ) which
embeds each image X to a feature representation.
This representation consists of Q maps, each of
which have the same dimensions as X, and therefore
can be indexed linearly: Z(i) ∈ RQ. The parame-
ters θf are learned from training data, taking into
account Euclidean distances of pairs of features in
the embedding space: d(i, j) = ||Z(i)− Z(j)||2 (see
Section 3.1).

• A classifier ŷ(i) = g(Z(i)|θg) which classifies the
features Z(i) given trained parameters θg giving an
estimate ŷ(i) of the part label (see Section 3.2).

As is common in the Deep Learning literature, the em-
bedding can be pre-trained in an unsupervised (Hinton
and Salakhutdinov, 2006) or supervised (Salakhutdinov
and Hinton, 2007) manner based on auto-encoding or
some other kind of inductive principle. Then, the classi-
fier and the embedding are jointly learned in a supervised
way by minimizing some classification-based loss1. Our
method proceeds in a similar way. We assume that the
spatial part layout remains consistent across the different
images of a corpus. In particular, adjacency information
of parts is assumed not to vary across images. In body
part estimation, for example, we suppose that the up-
per arm and the forearm are always adjacent. The next
two subsections will describe how spatial constraints can
be integrated into, respectively, the training procedure
for the embedding f(·), as well as the training proce-
dure for the classifier g(·). The two contributions can
be applied independently, or combined. The result is a

1If pre-training is supervised, the common setting is to perform
classification by k-nearest neighbor search in embedded space, re-
quiring no additional learning step.

method proceeding as illustrated in Figure 1c: the in-
formation on the neighborhood layout is injected into a
classifier working independently for each pixel i.

3.1. Spatial pre-training

Common ways of learning the embedding function f(·)
are to minimize reconstruction error in an unsupervised
auto-encoding setting (Hinton and Salakhutdinov, 2006),
or in a supervised setting, map pixels with the same la-
bels to close-by points in feature space and pixels with
different labels to distant points (Salakhutdinov and
Hinton, 2007; Hadsell et al., 2006; Taylor et al., 2011).

Given the availability of ground-truth data (i.e. the
part labels), we advocate its use in the pre-training
step as supervised or semi-supervised training has been
shown to produce a more discriminative embedding
(Salakhutdinov and Hinton, 2007). However, instead of
using classification loss as a training criteria, we aim to
benefit from the knowledge of the neighborhood layout
of the parts in the corpus. We introduce a new energy
function which exploits the spatial layout of different
parts:

E =
∑
i,j

δy(i),y(j)LS(i, j) +
∑
i,j

νy(i),y(j)LD(i, j) (1)

where y(i) and y(j) are the ground truth labels for pix-
els indexed by i and j, respectively; δa,b is the Kronecker
delta defined as δa,b=1 if a=b and 0 otherwise; νa,b is de-
fined as νa,b=1 if parts a and b are not neighbors in the
corpus, and 0 otherwise. LS and LD are measured be-
tween pairs of features indexed by i and j in the feature
space, which is embedded from raw data X through the
embedding function. Note that we simply ignore contri-
butions from pairs which have different labels but whose
respective parts are neighbors in the corpus. As the ex-
act boundaries between neighbors (given a human anno-
tator) are somewhat arbitrary and often noisy, we choose
to remain agnostic toward the relationship between fea-
tures across a single boundary. We have chosen this
scheme for simplicity, though we admit there are many
other ways to design an energy function based on pre-
serving spatial relationships. For example, if we could
quantify the distance between labels (e.g. mean distance
between body parts), such a “soft” neighbour criterion
could be incorporated into the energy function. This is
reserved for future work.
LS is the loss component for a pair of pixels having

the same label, which has the effect of pushing their
associated embeddings together. LD is a contrastive loss
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Figure 2: The proposed loss function based on differences in rank-
ing.

component for a pair having different labels which pulls
their embeddings apart. Similar to (Hadsell et al., 2006),
LS and LD are set to

LS(i, j) =
1

2
(d(i, j))2, (2)

LD(i, j) =
1

2
[max(0, α− d(i, j)]2, (3)

where α > 0 is a margin. It controls the contrastive
scope such that only dissimilar inputs which lie close-by
in the embedded space contribute to the energy.

The gradient of Equation (1) with respect to the pa-
rameters can be computed via the chain rule (backprop-
agation):

∂E

∂θf
=

∂E

∂Z(i)

∂Z(i)

∂θf
+

∂E

∂Z(j)

∂Z(j)

∂θf
(4)

where ∂E
∂Z(i) and ∂E

∂Z(j) can be obtained from (2) and (3).
∂Z(i)
∂θf

and ∂Z(j)
∂θf

depend on the particular architecture of

the embedding function f(·) which is described in Sec-
tion 3.3.

We finally want to point out that, although the en-
ergy function is defined on pairwise pixel terms, testing
is done pixelwise, so testing does not require solving a
combinatorial problem.

3.2. Supervised spatial LR learning

In Section 3.1, we introduced spatial constraints into un-
supervised pre-training of deep learning architectures,
which are ConvNets in our setting (see Section 3.3). In
this section we show that a similar principle can also be
applied to supervised learning of classifiers. In our work,
we choose a ConvNet with a single fully-connected clas-
sification layer (i.e. the top layer is equivalent to logis-
tic regression) which are trained end-to-end. The same

principle, introducing spatial relationships into pixelwise
classification, can also be applied to other classifiers,
although the method may differ if the classifier is not
learned to minimize classification error (or something
akin to it, such as cross-entropy). In particular, in pre-
liminary work we proposed a method to include spatial
constraints into learning random forests by adapting the
training algorithm based on maximizing gain in entropy
(Jiu et al., 2013).

Classification-based neural nets are typically trained
to minimize cross-entropy. When the normalized out-
puts of the net are viewed as probabilities, this is equiv-
alent to maximizing the log probability the net assigns
to the true class. In the multi-class setting, this involves
normalizing the outputs of the network via a softmax
function and comparing them to the groundtruth label.
However, minimizing cross-entropy does not take into
account the layout of the part labels.

We propose the following new loss function, which is
based on the ranking of class labels according to network
output. For each input vector, a forward pass gives a
network response for each class label, which can be used
to rank the class labels in decreasing order. A loss can
be defined based on the difference between this ranking
and a desired target ranking, which is defined by the
following properties:

• The highest ranked class label should be the target
groundtruth label. This constraint is related to the
entropy loss in traditional neural network learning;

• The next highest-ranked class labels should be
neighbors of the groundtruth label in the class
neighborhood definition of the corpus. We advo-
cate that better generalization to unseen data can
be achieved by forcing the net to learn these con-
straints.

An example for this is given in Figure 2, where the
groundtruth label for the pixel is 1. The actual out-
put ranks the groundtruth label at second place. The
target ranking ranks groundtruth label 1 at first place,
followed by labels 3 and 2 which, in this example, are
neighbors of label 1.

Learning to rank is a classical problem in machine
learning which has been addressed in the literature
(Burges et al., 2005; Freund et al., 2003; Dekel et al.,
2004). We adopt a loss function similar in spirit to
RankNet (Burges et al., 2005), defined on pairwise con-
straints. Given a pair of labels (u, v), we denote by
gu(Z(i)) and gv(Z(i)) the respective topmost (i.e. clas-
sification) layer outputs for location i and by ouv(i) =
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gu(Z(i)) − gv(Z(i)) their difference. The probability of
label u being ranked higher than v is mapped through a
logistic function:

Puv(i) =
eouv(i)

1 + eouv(i)
(5)

Given a target probability P̄uv(i), the loss function
Cuv(i) is the cross entropy loss (Burges et al., 2005):

Cuv(i) = −P̄uv(i) logPuv(i)−
(
1− P̄uv (i)

)
log (1− Puv (i))

(6)
The target probability P̄uv(i) is set to λ>0.5 if class u is
ranked higher in the desired ranking, and to 1−λ other-
wise.

Given the properties of the desired ranking described
above, the following two sets of pairwise constraints have
been derived:

1. A set of L − 1 constraints, where each constraint
specifies that the groundtruth label is to be ranked
higher than one of the other labels;

2. A set of constraints each one specifying that a la-
bel u, which is a neighbor of the groundtruth label,
should be ranked higher than another label v, which
is not a neighbor of the groundtruth label.

The loss function E for a single pixel is the sum over
the pairwise constraints of the pairwise loss Cuv:

E(i; l) =
∑
u 6=l

Clu(i) +
∑

(u,v):νu,l=0,νv,l=1

Cuv(i) (7)

where i is the index of the pixel, and we use the shortform
l = y(i) as its ground truth label.

This loss function based on rankings provides a princi-
pled way of combining classification loss and spatial lay-
out. Two types of constraints can be set through the λ
parameter controlling the target probability P̄uv. Vary-
ing this parameter, different priorities could be given to
different constraints.

It is important to note that this formulation allows one
to include unlabeled data into the learning procedure in
a semi-supervised setting. In this case, labeled images
will be presented to the network with the loss function
described above, whereas the loss function for unlabeled
data does not contain the pairwise constraints including
the groundtruth label - we consider neighbours of the
network’s strongest output instead of the ground truth
neighbours.

As in Section 3.1, we would like to avoid confusion cre-
ated by the term “pairwise”, which here involves pairs
of labels selected during training, which typically are of

low cardinality compared to pixels. Testing proceeds in-
dependently for each pixel, conforming to the objectives
of our work.

3.3. The deep learning architecture

While our mapping f(·) can be any differentiable archi-
tecture, we adopt a two-stage ConvNet (LeCun et al.,
1998). Each stage consists of a convolutional layer with
a bank of filters, an element-wise non-linear squashing
mapping (i.e. tanh function), followed by a spatial pool-
ing and subsampling operator. A bank of feature maps
are produced after convolving with the filters. The out-
put of the first stage is fed as input to the convolutional
layer at the second stage, where each feature map is con-
nected to several maps in the previous stage. Connectiv-
ity is chosen uniform randomly before learning begins.
The gradient of the energy function is computed with
respect to the network output, and backpropagation is
applied to update the parameters θf . The parameters
θf consist of the filters and element-wise additive and
multiplicative biases at the feature maps.

Many visual recognition problems require a large con-
text due to complex interactions of different parts. How-
ever, the contextual size of ConvNets is limited by the fil-
ter size and sampling rate. Simply selecting larger filters
does not address the fact that important cues may be
observed at different scales. To overcome this dilemma,
multiscale ConvNets (Farabet et al., 2012) are employed
in our architecture, as shown in Figure 3. We use the
notation fs(θsf ),∀s ∈ {1, . . . , N} to denote the output
produced by each scale ConvNet where s indexes the
scales and N is the total number of scales. By employ-
ing the weight sharing across scales, ConvNets can learn
scale-invariant features.

A multiscale Laplacian pyramid Xs,∀s ∈ {1, . . . , N}
is constructed for each image X in the pre-processing
stage, where X1 has the same size as the original image.
Local contrast normalization is applied to the Laplacian
images to ensure that the local neighborhood has zero
mean and standard deviation. A batch consisting of
pairs of patches2 is randomly extracted from each scale
image Xs. The patches are processed by the correspond-
ing ConvNet fs, where the learned parameters θsf are
shared across the scales.

2Since our loss function operates on pairs of features, i.e. par-
ticular locations i and j in the feature maps, we do not perform a
full convolution while training. Instead, we extract patches corre-
sponding to the receptive fields at locations i and j and map these
patches to their respective feature vectors.
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Figure 3: Multiscale ConvNets framework (Farabet et al., 2012). LCN means local contrast normalization. Each ConvNet contains
several layers of convolutions and pooling described in 3.3.

The training procedure of the above architecture con-
tains two steps. The first step is the spatial deep learning
described in section 3.1, where the labels are only used to
define spatial layout. We therefore call this stage weakly
supervised pre-training. At this stage, the ConvNet pa-
rameters are initialized such that the features are con-
sistent with the spatial arrangement of the labels. The
second step is supervised spatial learning in section 3.2.
A logistic regression layer parameterized with θg is con-
nected to the topmost feature maps of the ConvNet to
predict the labels. We also apply a fine-tuning scheme
in which the gradients from the LR are back-propagated
to update the the ConvNet parameters θf .

4. Experimental results

We experimented with our framework to validate spatial
learning with multiscale ConvNets in different situations,
with respect to the application of specific human body
part estimation from depth images.

Unless otherwise specified, we use a 2-stage ConvNet
in all of the experiments below. The first convolutional
layer consists of 8 filters of size 9 × 9, followed by an
element-wise tanh function and a 2× 2 non-overlapping
average pooling operator. The second convolutional
layer consists of 32 filters of size 9 × 9, each of which
combines 4 feature maps of the previous layer, with the
same activation and pooling operator. The output is 32
feature maps. The receptive field for a single ConvNet
on a single scale is 28×28. In a multiscale setting with a
pyramid of 3 scales, with each scale consisting of 2 convo-
lutional layers (Farabet et al., 2012), the receptive field
is of size 112×112, thus a large spatial context is used to
learn better features, comparable to best probe distance
of 129× 129 of the randomized forest in (Shotton et al.,
2011).

Local contrast normalization is applied to the inputs
of the ConvNet, and the pixels from the background or
the context are set to an arbitrary high value (in our
case, 4) to distinguish from the zero-distributed pixels
of the object. The margin α for pre-training was set to
1.25 (Hadsell et al., 2006), and λ was set constant to 1
for all constraints in all experiments, i.e. P̄uv = 1 if u
is ranked higher than v, otherwise 0. Weakly-supervised
feature learning and supervised learning each used 30
epochs through the entire dataset, where mini-batch gra-
dient descent is adopted. End-to-end fine-tuning, if ap-
plied, used another 30 epochs. Different learning hyper-
parameters (such as learning rates for different layers)
were chosen empirically, e.g. ε1 is set to 10−6 for the
first convolutional layer and ε2 to 10−5 for the second
convolutional layer. When performing classification, we
consider each pixel in isolation, applying its correspond-
ing 32-dimensional feature vector as input to an LR. The
parameters of the LR are shared at each pixel location.
In the following experiments, we report mean pixel-wise
accuracy.

The CDC4CV Poselets dataset (Holt et al., 2011)
has been designed for human upper body part segmen-
tation from depth images converted and rescaled to the
grayscale domain (0-255). It contains 345 training and
347 test depth images of upper body poses shot with a
Kinect module. All images have been pre-processed by
background subtraction and annotated. The body parts
are: head, neck, left shoulder, right shoulder, left up-
per arm, left forearm, right upper arm, right forearm,
left hip, and right hip. Additionally, the part below the
waist is given the label of type “other” (see the black
area in Figure 5, column 2). We define a spatial layout
of 28 neighborhood relations among the 11 parts calcu-
lated from a canonical pose where a subject stretches his
or her arms, for example, head–neck, neck–left shoulder,
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Table 1: Evaluation of different baselines on the CDC4CV dataset.

Methods Accuracy

Randomized forest (Shotton et al., 2011) 60.30%
Spatial Randomized forest (Jiu et al., 2013) 61.05%
Single-scale (vanilla) ConvNet (LeCun et al., 1998) 47.17%
Multi-scale ConvNet (Farabet et al., 2012) 62.54%

neck–right shoulder, left forearm–left upper arm, and so
on. 900 pairs of patches were randomly chosen at three
different scales for spatial pre-training.

For the application of part estimation from depth im-
ages, our baselines are the algorithms based on random-
ized decision forests described in (Shotton et al., 2011),
as well as single- and multi-scale ConvNets with super-
vised end-to-end training without any spatial context.
We also compare our framework with the recent spatial
learning algorithm in randomized decision forests (Jiu
et al., 2013). In our baseline experiments, a randomized
forest of three trees with a depth of 9 is learned. For each
node, the best offsets and threshold are chosen from 4000
offset candidates and 22 threshold candidates. More de-
tails can be found in (Jiu et al., 2013). From Table
1, it is clear that the large receptive field of the multi-
scale architecture is necessary to reliably estimate body
part labels, and also that the Deep Learning-based ar-
chitecture outperforms random forests on the CDC4CV
dataset.

We investigate the performance of different combina-
tions of our framework based on spatial pre-training of
the purely convolutional layers (which we call ConvNet)
and the classification layer (which we call LR). As a
non-spatial baseline, we also implemented a “pixel-wise”
version of DrLIM (Hadsell et al., 2006), a similar pre-
training strategy in which spatial layout is not taken
into consideration, i.e. δa,b=1 if a=b and 0 otherwise;
νa,b=1 if a 6= b and 0 otherwise in equation 1. The re-
sults are shown in Table 2. For each setting (fine-tuning
or no fine-tuning), spatial training outperforms non spa-
tial training, and in many cases, the gains are high.

Examples of segmentation results are shown in Figure
5. From visual inspection we can see that the segmenta-
tion results produced by spatial learning are better than
the ones by the non spatial methods. In particular, the
segmentation produced by spatial learning is more con-
sistent (less noisy), especially for the arms.

Spatial distribution of the error — The pro-
posed method injects neighborhood relationships into
the training algorithm. The question arises, whether
the benefit of the proposed method only applies to pix-

Table 2: Results of different combinations of classical and spatial
learning on the CDC4CV dataset. Fine-tuning means end-to-end
training of the LR (top two layers) and ConvNet (remaining layers)
with the same objective used to train the LR.

Convolutional layers LR Fine-tuning Accuracy

DrLIM classical no 35.10%
DrLIM spatial no 41.05%
spatial classical no 38.60%
spatial spatial no 41.65%

DrLIM classical yes 64.39%
DrLIM spatial yes 65.12%
spatial classical yes 65.18%
spatial spatial yes 66.92%

els at the boundaries, which would imply a rather triv-
ial improvement. To rule this out, an in-depth analysis
has been performed to verify that the proposed methods
generally improve classification error independent of the
pixel positions.

For each pixel in the test images the distance to the
nearest part boundary was calculated using a distance
transform, which allowed us to calculate histograms over
these distances, where each bin corresponds to a range
of distances. Histogram Hg shows the number of pixels
of the test images over distances, shown in Figure 4(a).
This histogram largely depends on the sizes of the dif-
ferent body parts, and we can see that the pixel count
decreases with distance. Distributions Hs and Hb are
over pixels which are better classified by the baseline or
by the proposed method, respectively:

• Distribution Hs, shown in Figure 4(b), is the distri-
bution of pixels which have been correctly classified
by the proposed method but wrongly classified by
the baseline method (DrLIM and classical LR with
fine-tuning);

• Distribution Hb, shown in Figure 4(c), is the distri-
bution of pixels which have been correctly classified
by the baseline method (DrLIM and classical LR
with fine-tuning) but wrongly classified by the pro-
posed method.

The normalized histogram Hd, shown in Figure 4(d), il-
lustrates the contribution of the proposed spatial learn-
ing method as a function of the pixels’ distances from
the part boundaries:

Hd(i) = (Hs(i)−Hb(i))/Hg(i). (8)

Our method gains over the very large majority of dis-
tances except for a few outliers. We see a strong bi-
modality, i.e. our method wins close-to and away from
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(a) (b)

(c) (d)

Figure 4: Histograms over different distances to part boundaries: (a) Hg — the histogram of all pixels; (b) Hs — the histogram of
pixels for which the proposed method outperforms the baseline; (c) Hb — the histogram of pixels for which the baseline outperforms
the proposed method; (d) Hd — is the normalized difference histogram.

the borders. Moreover, the mode corresponding to pix-
els near the center of parts shows an even higher propor-
tion of improvement than the mode closer to the border.
In particular, the classification rates are significantly im-
proved between distance 50 and 60, which is more or less
half of the receptive size. At the same time, this analy-
sis verifies that our system indeed does benefit from the
multi-scale framework.

5. Discussion

The experiments above demonstrate that our deep learn-
ing framework indeed benefits from the a priori ad-
ditional information contained in the spatial part lay-
out. Our framework can easily extend to semi-supervised
learning, taking advantage of additional unlabeled train-
ing data. On this unlabeled data, the loss function would
not include any terms based on classification loss (which
require the ground truth part label), but only terms
based on the spatial layout of the parts, as mentioned in
Section 3.2.

It is worth noting that the two proposed contributions
can be applied independently. In particular, the super-
vised spatial learning algorithm can be combined with
any supervised or unsupervised training algorithms
for ConvNets, for example auto-encoding or other
algorithms reviewed in Section 2.

The quantitative evaluation measures presented in the
different tables report pixelwise classification accuracy.
This proves that the proposed learning algorithm im-
proves pixelwise classification, although the injected ad-
ditional information does not specifically state this. An
additional advantage of our method is not captured by
this evaluation: if a pixel is wrongly classified, then spa-
tial learning will increase the probability that the wrong
part label is a neighbor of the correct part label. In
some applications this can be an advantage, for instance
if the segmentation is post-processed to estimate joint
positions, as in (Shotton et al., 2011).

Currently, we demonstrate one application of the pro-
posed method to human part estimation in depth im-
ages. The approach is, however, not specific to depth
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Table 3: Running times on the CDC4CV dataset of our proposed framework, compared with Randomized forest (RF). Training on 344
images includes pre-training, LR learning and fine-tuning , and testing time on one image is given.

Task Method Machine Architecture Time

Testing Ours Xeon E56620, 8 cores, 2.4GHz MATLAB+IPP 00.41 sec
Testing Ours Xeon E56620, 8 cores, 2.4GHz MATLAB+GPU 00.31 sec
Testing RF Xeon E56620, 8 cores, 2.4GHz C++ 00.73 sec

Training Ours Xeon E56620, 8 cores, 2.4GHz MATLAB+GPU 36.00 h
Training RF Xeon E56620, 8 cores, 2.4GHz C++ 15.8 h

images, and can be applied to other problems, as for
instance object segmentation from RGB images, or se-
mantic full scene labeling. In these cases, the context
may be dynamic and the spatial layout might be more
difficult to extract from the corpus, requiring learning
techniques. This is reserved for future work.

The main computational complexity in our framework
comes from the convolution operations, which can be
significantly accelerated by parallel computation, e.g. on
multi-core CPUs or GPUs. We implemented the system
in MATLAB with multi-threaded convolutions provided
by the GPU (CUDA) library (for training and testing),
and the testing time by the IPP framework is also given
as a comparison. We also give the running time of the
randomized forest method implemented in C++. Al-
though our training stage needs more computation time,
testing per image is more efficient, since our method
profits from a parallel implementation. Table 3 gives
running times for testing and for training.

6. Conclusion

In this paper, we proposed a way to significantly improve
classification performance in segmentation problems by
integrating prior information on the spatial layout of im-
age or object parts into a learning architecture. Com-
pared to other spatial relationship learning algorithms,
the energy function in our algorithm does not contain
pairwise pixel terms, which makes it extremely fast. In
particular, there is a zero increase in complexity com-
pared to a standard pixelwise classifier of the same type
in the test stage. We demonstrate applications of our
approach to human body part labeling from depth im-
ages. Our algorithm outperforms the well known method
based on randomized decision forests and other super-
vised feature mapping methods.
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