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Texture analysis and classification remain as one of the biggest challenges for the field of computer
vision and pattern recognition. On this matter, Gabor wavelets has proven to be a useful technique
to characterize distinctive texture patterns. However, most of the approaches used to extract de-
scriptors of the Gabor magnitude space usually fail in representing adequately the richness of detail
present into a unique feature vector. In this paper, we propose a new method to enhance the Gabor
wavelets process extracting a fractal signature of the magnitude spaces. Each signature is reduced
using a canonical analysis function and concatenated to form the final feature vector. Experiments
were conducted on several texture image databases to prove the power and effectiveness of the pro-
posed method. Results obtained shown that this method outperforms other early proposed method,
creating a more reliable technique for texture feature extraction.

I. INTRODUCTION

Texture analysis and classification have a huge vari-
ety of applications. Although it has been widely stud-
ied it remains open for research and in fact, is one
of the biggest challenges for the field of computer vi-
sion and pattern recognition. There are a lot of differ-
ent methods to deal with texture analysis, which can
be grouped into four classes: (i) structural methods -
where textures are described as a set of primitives; (ii)
statistical methods - textures are characterized by non-
deterministic measures of distribution, using statistical
approach; (iii)model-based - textures are described as
mathematical and physical modeling; and (iv) spectral
methods, based on the analysis in the frequency domain
methods, such as Fourier, cosine transform or wavelets.
In the last approach, lay one of the well known and very
succeed texture method: the Gabor filter, in which a fea-
ture extraction enhancement is proposed in this work.
The Gabor filter was proposed by Dennis Gabor in

1946 and extended by 2D and applied to image textures
by Daugman [1, 2] in the 80’s. Daugman’s work main
motivation was to model mathematically the receptive
fields (response of neuronal cells set) of the cortical cells
in the primate brain. Besides the biological motivation,
the Gabor Filter has a very good performance for tex-
ture processing and still remains one of the best methods
for texture analysis. Gabor texture technique consists on
the convolution of an image with several multi-scale and
multi-orientation filters. For each convolution, a trans-
formed space is created, and the feature extraction is
performed in each space. Usually, the feature vector is
composed concatenating the energy measure of each con-
voluted image [3]. This way, each convoluted image is

∗ agomez423@gmail.com
† florindo@ursa.ifsc.usp.br
‡ bruno@ifsc.usp.br

represented by a single statistical value that is far from
representing adequately the rich information present in
the Gabor space. This issue has motivated the research
in the field and the proposal of this work.

One of the simplest Gabor enhancement was proposed
by [4–6], which uses other basic statistical descriptors
that proves to work better than energy in some situa-
tions. Another approach proposed is the use of GLCM
[7] applied over the convoluted images to extract simple
features achieving good results. Tou et al[8, 9], proposed
a simple yet powerful method to calculate the covariance
matrix of all the convoluted images. More recently, the
success of the LBP operator [10] in several computer vi-
sion fields motivated the adaptation of this operator on
the Gabor process yielding the best results found on the
literature.

In addition fractal dimension has been successfully
used in texture feature extraction [11, 12]. The fractal
descriptors represent the spatial relations between pixel
intensities, even small changes between texture patterns
produce significant changes on the signature. In this pa-
per, we propose the use of volumetric fractal dimension
to extract the fractal descriptors of the Gabor convoluted
images with the use of canonical analysis to decorrelate
the signature descriptors and reduce dimensionality. The
introduced approach is validated using several image tex-
ture datasets, and the results analyzed and compared
against the best feature extraction methods for Gabor
space found in the literature.

The paper is split into 9 sections. Next section gives
a short overview of the Gabor wavelets method. Section
3 presents a brief description of the different methods
implemented to compare their performance against the
proposed technique. Section 4 explains the Volumetric
fractal dimension method in detail. Section 5 presents
the combinational approach of Gabor wavelets with vol-
umetric fractal dimension. Section 6,7 and 8 shows the
experiments conducted and the results obtained. Finally,
section 9 draws conclusions and future directions.

http://arxiv.org/abs/1412.7856v1
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II. GABOR WAVELETS

Since the discovery and description of the visual cor-
tex cells of mammalian our understanding of how the
human brain process texture has advanced enormously.
Daugman [1, 2] shown that simple cells in the visual cor-
tex can be modeled mathematically using Gabor func-
tions. These functions [13] approximate cortex cells us-
ing a fixed gaussian. Later, Daugman proposed a two-
dimensional Gabor wavelet [14] for its application on im-
age processing and it has been widely used in the field
for its biological and mathematical properties. The 2D
Gabor function is a local bandpass filter that achieves
optimal localization in both spatial and frequency do-
main and allows multi-resolution analysis by generating
multiple kernels from a single core function.
The Gabor wavelets are generated by dilating and ro-

tating a single kernel with a set of parameters. Based on
this concept, we use the Gabor filter function as the ker-
nel to generate a filter dictionary. The two-dimensional
Gabor transform is a complex sine wave with frequency
W modulated by a Gaussian function. Its form in space
g(x, y) and frequency domains G(u, v), is given by Eqs.1
and 2:

g (x, y) =

(

1

2πσxσy

)

exp

[

−1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

(1)

G (u, v) = exp

{

−1

2

[

(u−W )
2

σ2
u

+
v2

σ2
v

]}

(2)

A self-similar filter dictionary can be obtained by di-
lating and rotating g(x, y) using the generating function
proposed in [15].

gmn = a−mg(x′, y′) (3)

Where a > 1 and m,n are integer values that spec-
ify the number of scales and orientations respectively
m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1, where M
represents the total number scales and N the total num-
ber of orientations. The x′ and y′ parameters are defined
by:

x′ = a−m (xcos θ + ysin θ ) (4)

y′ = a−m (−xcos θ + ysin θ ) (5)

Where θ = nk
N
, the scaling factor a−m is needed to

ensure that the energy is independent from m. The pa-
rameters necessary to generate the dictionary could be se-
lected empirically. However, in [15], the authors present

a suitable method to compose a filter dictionary that
ensures a maximum spectrum coverage with the lowest
redundancy possible. Based on this approach, we use the
following equations to describe how to obtain the ideal
sigmas.

a = (
Uh

Ul

)

1

M−1

(6)

ϑu =
(a− 1)Uh

(a+ 1)
√
2ln 2

(7)

ϑv =
tan( π

2N )[Uh − 2ln(
ϑ2

u

Uh

)]
√

2ln2− (2ln2)2ϑ2
u

U2

h

(8)

Where W = Uh and Uh and Ul represent the minimum
and maximum central frequencies respectively.

III. GABOR DESCRIPTORS

The Gabor wavelet representation of an image is the
convolution of this image with the entire filter dictionary.
Formally, the convolution result of an image I(x, y) and
a Gabor wavelet dictionary ϕfu,m,n named as Gabor im-

ages on the rest of the paper can be defined as follows:

gim,n(x, y) = I(x, y) ∗ ϕfu,m,n(x, y) (9)

where ϕfu,m,n denotes the Gabor wavelet with central
frequency fu, scale m and orientation n. The number of
images generated depends on the number of scales and
orientations used. For example, four scales and six ori-
entations will generate 24 Gabor images. The feature
vector F is composed by extracting single or multiple
features from each generated image using image descrip-
tors. A general process to describe this is shown in Figure
1.
A classical and simple approach to obtain the feature

vector F is just calculating the energy of each Gabor
image by

F = [e(gi1,1), e(gi1,2), ..., e(gi1,n), e(gi2,1), e(gi2,2), ..., ..., e(gim,n)]
(10)

where e =
∫ ∫

f(x, y)2 [1]. Although it is largely used in
the literature, this approach does not achieve a efficiently
information of the Gabor images. It has motivated the
development of the methods to extract more efficiently
the Gabor images information. In the following subsec-
tions a brief overview of the most important methods
found on the literature is presented.
The non-orthogonal Gabor filters produce different ef-

fects depending on the texture characteristics. It does
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FIG. 1. General scheme used to extract features from the convoluted images.

not exist an ideal combination of parameters that ensures
the maximum performance. Whilst the work presented in
[15] help reducing the redundancy of the filters still some
parameters like scales orientations and central frequen-
cies are determined empirically. Thus, central frequen-
cies variations seem to have a low impact on the results.
They are fixed to 0.05 and 0.4 to reduce the number of
variables for the experiments. In order to determine Ga-
bor+method combination that obtains the best results
for each combination, we performed eight experiments
per method for each database. Each of those experi-
ments represents a variation in the number of scales and
orientations used in the Gabor wavelet process ranging
from 2 to 6 scales and 3 to 6 orientations combined in

an incremental framework: 2x6, 3x4, 3x5, 4x4, 4x6, 5x5,
6x3, 6x6 being scale x orientation.

For the purpose of comparison, the experiments are
replicated using several state of the art techniques found
in the related literature.

A. Descriptors based on first order statistics

Let f(x, y) be a grayscale image with dimensions x =
0, 1, ...,W − 1 and y = 0, 1, ..., H− 1 where W and H are
the image width and height respectively. The possible in-
tensity values that f(x, y) could take are i = 0, 1, ..., G−1
whereG is the maximum number of intensity value. Then
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the histogram is a function showing the number of pixels
for each possible grayscale intensity value according to:

h(i) =
W−1
∑

x=0

H−1
∑

y=0

δ(f(x, y), i) (11)

Where δ(i, j) its the binary function defined by:

δ(j, i) =

{

1, if j=i
0, else

(12)

Image histogram has the power to represent a large
set of values in a single measure that reflects a specific
property of the distribution. To compute descriptors,
we use a histogram representation based on a density
probability function given by:

p(i) =
h(i)

WH
, i = 0, 1, ..., G− 1 (13)

The density function p(i) is a one-dimensional vector
that holds important information that is later extracted
using distribution measures such as energy, mean, vari-
ance, etc. The most common approach to extract fea-
tures in the Gabor wavelets methods is energy based de-
scriptors. Some recent approaches use other types of de-
scriptors in order to obtain more useful information from
each image. Since each extractor generates a single value
from each image the final representation is a (M x N) -
dimensional feature vector.

The best first-order statistics found in the literature
are used on experimentation: Energy (Eq. 13), variance
(Eq. 14) and percentil75 (Eq. 15) are used accordingly
to their implementation in [34]. According to the figure
1 the extractors are applied directly over the magnitude
space.

E =

G−1
∑

i=0

[p(i)]2 (14)

V =

G−1
∑

i=0

(i− u)2p(i) (15)

P75 = pord(⌈0.75(G− 1)⌉) (16)

Where pord its the ascendant sorted vector of p and

u =
∑G−1

i=0 ip(i).

B. Descriptors based on GLCM features

Second-order statistics derived from the gray level co-
ocurrence matrix (GLCM) are a better representation of
how humans perceive texture patterns [5, 6]. It has been
proven to be the most successful approach to many kinds
of texture feature extraction problems. GLCM features
capture information regarding higher frequency compo-
nents in texture. The co-ocurrence matrix represents the
histogram of the number of occurrences of gray-level pair
values when a pixel neighborhood algorithm is applied.
Formally, the GLCM hdθ(i, j) represents the frequency

of appearance of 2 pixels with gray-level values a, b sep-
arated by a distance d and orientation θ for an image
f(x, y) defined by:

f(x1, y1) = i and f(x2, y2) = j (17)

where

(x2, y2) = (x1, y1) + (dcosθ, dsinθ) (18)

For each d and θ is created a squared matrix with a
dimension the same size as the number of grayscale values
present in the image, due to computational cost only a
few values of d and θ are used.
The research presented by [5] shows the finest combi-

nation of Gabor filters and gray level co-ocurrence ma-
trix features. According to [5] these three basic statistic
descriptors represent the best second order statistics ex-
tracted from the GLCM matrix obtained after processing
the Gabor images:

Ent = −
G−1
∑

i=0

G−1
∑

j=0

p(i, j) log2[p(i, j)] (19)

Con =

G−1
∑

i=0

G−1
∑

j=0

(i− j)2p(i, j) (20)

Cor =
G−1
∑

i=0

G−1
∑

j=0

ijpdθ(i, j)− µxµy

σxσy

(21)

C. Descriptors based on covariance matrix features

Covariance matrix is a statistical method that repre-
sents the covariance between values. Covariance matrix
applied to images reflects important features of heteroge-
neous images while achieving a considerable dimension-
ality reduction. A covariance matrix can be represented
as:
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CR =
1

n− 1

n
∑

k=1

(zk − u)(zk − u)T (22)

where z represents the feature point and u the mean
of n feature points. For fast computation, integral image
technique is used [16]. The P and Q tensor used for the
computation are defined by:

P (x′, y′, i) =
∑

x<x′,y<y′

F (x, y, i)i = 1...d (23)

Q(x′, y′, i, j) =
∑

x<x′,y<y′

F (x, y, i)F (x, y, i)i, j = 1...d

(24)

where F , represents the feature image and d the num-
ber of dimensions of the covariance matrix. Hence, 24
images generate a 24x24 matrix. Finally, the covariance
matrix is generated using P and Q.

CR(x′,y′;x′′,y′′) =
1

N − 1
[Qx′′,y′′ +Qx′,y′ −Qx′′,y′

− 1

N
(Px′′,y′′ + Px′,y′ − Px′,y′′ − Px′′,y′)(Px′′,y′′ + Px′,y′ − Px′,y′′ − Px′′,y′)T ]

(25)

where (x′, y′) is the upper left coordinate and (x′′, y′′)
is the lower right coordinate of the image.

The covariance matrix implementation follows the di-
rectives given in [9]. The final covariance matrix obtained
has dimensions KxK where K = mxn. Since the covari-
ance matrix is a symmetric matrix, only the non repeated
values from the matrix are used as features. Hence, a
24x24 covariance matrix generates a feature vector of size
300.

D. Descriptors based on local binary pattern

features

Some of the latest work in Gabor signatures involves
descriptors based on local binary patterns. The origi-
nal LBP operator [10] labels the pixels of an image by
thresholding the 3x3 neighborhood of each pixel fp(p =
0, 1, 2, ..., 7) with the center value fc and considering the
result as a binary number according to:

S (fp − fc) =

{

1, fp = fc
0, fp < fc

(26)

Then, by assigning a binomial factor 2p for each S(fp−
fc) the LBP pattern for each pixel is achieved as:

LBP =

7
∑

p=0

S (fp − fc) 2
p (27)

In [17] The LBP operator is applied to each pixel on
the Gabor images to generate a LGBP map (Local Gabor
Binary Map). Glgbp(x, y, u, v) the concatenation of the
histograms of each Gabor image is used as the feature
vector. In [18] a volume approach is taken by considering
all the Gabor images as a 3D volume and performing a
LBP calculation in the 3D space.
The local binary pattern is applied to the Gabor im-

ages according to [17]. A 4-neighbourhood is applied to
reduce the size of the histogram. since a 4-neighbourhood
allow a maximum of 16 possible values on the LBP map
R. The final feature vector is composed of the concate-
nation of the histogram of each Gabor image:

H = [h1,1, h1,2, ..., h2,1, h2,2, ..., hm,n] (28)

where m,n is the number of scales and orientations
used for the Gabor process and h is:

h1,1,i =
∑

x,y∈R

(IGglbp(x, y, u, v) = i) (29)

IV. THE PROPOSED METHOD

A. Volumetric fractal dimension

The fractal concept was first used by Mandelbrot in
his book [19]. This concept states that natural objects
cannot be described using Euclidean geometry but us-
ing persistent self-repeating patterns. In recent years
this concept has been used on the field of image analysis
[11, 12, 20, 21]. To adapt the fractal concept to images
is necessary to use a measure that captures fractal prop-
erties of non fractal objects inside discrete environments.
For this purpose, the fractal dimension of an image is
used to describe how self-repetitive the objects contained
within the image are. Under this concept, several types
of images could be analyzed. An approach used to ana-
lyze grayscale images called volumetric fractal dimension
proposed in [12, 20, 22] has proven to be a very effec-
tive fractal descriptor. On [23] the authors successfully
demonstrated the power of VFD to describe the Gabor
images. On this approximation, we take a different ap-
proach to reduce and de-correlate the fractal signatures
in order to improve the power of description and reduce
dimensionality.
Let gim,n(x, y) be a Gabor image taken from Eq. 9

the 3-dimensional representation necessary to compute
the VFD is given by S(x, y, z)∃R3 where (x, y) are the
spatial coordinates of the image and z is the gray level
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intensity. This surface S is dilated by a sphere of radius
r and the influence volume of the dilated surface V (r)
is calculated for each value of r. This could be better
explained by equation:

V (r) = {p′ǫR3|∃pǫS : |p− p′| ≤ r} (30)

where p′ = (x′, y′, z′) is a point in R3 whose distance
from p = (x, y, z) is smaller or equal to r. As r grows
the spheres start to intercept each other producing vari-
ations on the computed volume. This property makes
VFD very sensitive to even small changes on the texture
pattern. Each expansion of r generates a single-volume
measure. Therefore, the values that r takes must reflect
each possible state of the expansion without redundancy.
To reduce the computational costs of the volume com-
putation, we applied an exact 3-dimensional Euclidean
distance transform algorithm (EDT) [24] over the sur-
face. The EDT performs a calculus of the distance of
all the voxels on R3 to its closest p′∃R3 voxel using the
Euclidean distance. The most suitable way to obtain the
set of radius to expand the surface is by using all the pos-
sible Euclidean distances up to a maximum radius. This
is defined by:

E = 1,
√
2,
√
3, ..., rmax (31)

The fractal dimension can be estimated as

D = 3− lim
r−>0

log(V (r))

log(r)
(32)

The fractal signature (or fractal descriptors) will be
composed by the logarithm of each volume according to:

F = [logV (1), logV (
√
2), logV (

√
3), ..., logV (rmax)]

(33)

The parameters used in the feature extraction are
based on previous research presented by [12, 22] where
the expansion radius for the Volumetric Fractal dimen-
sion is set to 16. The number of canonical variables used
is based on the percentage of representation of the i-th
most important canonical variables. Volumetric fractal
dimension signature tends to be 99.90% described with
only 10 canonical variables. Figure 2 shows the process.

B. Canonical discriminant analysis

The Canonical discriminant analysis (CDA) is dimen-
sion reduction technique closely related to principal com-
ponent analysis. CDA purpose is to find linear combina-
tions of quantitative variables that provide maximal sep-
aration between classes [25]. This linear combinations

posses the power of producing a reduced number of in-
dependent features also called canonical variables.
The total dispersion among the feature vectors is de-

fined as:

S =

N
∑

i=1

(ϕi −
−→
M)(ϕi −

−→
M)′ (34)

where
−→
M is the global mean feature vector and −→ϕi con-

tains the row features of all vectors for class i, defined
by:

−→ϕi = FM (xσ) (35)

−→
M =

∑N

x=1 FM (x)

N
(36)

M is the total number of features. The matrix Si in-
dicating the dispersion of objects within each class, is
defined as:

Si =
∑

i∈Ci

(−→ϕi −−→ui)(
−→ϕi −−→ui)

′ (37)

where −→ui is the mean feature vector for objects in class
i defined by:

−→ui =

∑N

x=1

−→
Fi(xk)

Nk

(38)

The intraclass variability Sintra indicates the combined
dispersion in each class is defined by:

Sintra =

K
∑

i=1

Si (39)

The interclass variability Sinter indicates the disper-
sion of the classes in terms of their centroids is defined
by:

Sinter =

K
∑

i=1

Ni(
−→ui −

−→
M)(−→ui −

−→
M)′ (40)

where K is the number of classes and N the number of
samples on class i, Finally we have the total variability
represented by:

S = Sintra + Sinter (41)

Finally, to obtain the principal components we use the
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(a) (b) (c) (d) (e)

FIG. 2. (a) is an image taken from Brodatz database, (b) image with expansion r = 2, (c) image with expansion r = 5 (d)
image with expansion r = 7 (e) image with expansion r = 9

approximation taken in [26]:

C = Sinter ∗ S−1
intra (42)

The i-th canonical discriminant function is given by:

Zi = ai1X1 + ai2X2+, , ,+aipXp (43)

where p is the number of features and aij are the sorted
eigenvectors of C where a1 is the most significant eigen-
vector. This definition leads to Zi non correlated fea-
tures, where i is the number of features used to reduce
de dimensionality of the dataset with i < p.

C. Proposed Signature

Let gim,n(x.y) be the convoluted image from equa-
tion 9. Let e be the set of Euclidean distances e =
[1,

√
2,
√
3, ..., rmax] for a radius rmax. The volumet-

ric fractal dimension signatures of each Gabor image
gim,n(x, y) is defined by:

ωm,n(z) = {V FD(gim,n(x, y), r)|∀r ∈ e} (44)

where r is a radius from vector e and ωm,n(z) is a
vector that contains the fractal signatures for all the Ga-
bor m,n images. Then a canonical analysis function is
applied to de-correlate the signature descriptors and N
principal components are selected. The computation of
the canonical analysis of the signatures is defined by:

φm,n(z) = {λ(ωm,n, N)} (45)

Where {λ(ωm,n, N)} is the N principal components of
ωm,n with orientation m and scale n. Finally the im-
age feature vector F consists on the concatenation of the
principal components previously computed defined by:

F = [φ1,1(1), φ1,1(2), ..., φ1,1(z), φ1,2(1), φ1,2(2), ..., φ1,1(z), ..., φm,n(z)]
(46)

V. EVALUATION STRATEGY

Image Databases: For experimentation purposes,
we used five different image databases. All the related
methods and the proposed method are tested with each
database. The image databases are selected based on
the recurrence which each database is used in connected
literature to validate feature extraction methods. The
selection contains databases with a different difficulty
level in classification and reported results. The selected
databases were:

• Brodatz: Obtained from [27] it contains 111 tex-
tures in grayscale each with 640 x 640 pixels. To
generate a database with the appropriate number
of samples per class, we took 10 non-overlapping
random windows of 200 x 200 pixels from each tex-
ture, hence, the used database contains 1110 images
with 111 classes and 10 images per class.

• KTH-TIPS2: Obtained from [28] the ”2b” version
was selected and it contains 11 grascale textures
each with 108 samples of 200 x 200 pixels.

• Outex texture classification test suite 5: Obtained
from [29] the selected OutexTC00005 contains 24
grayscale textures each with 368 samples of 32 x 32
pixels.

• Outex texture classification test suite 5: Obtained
from [29] the selected OutexTC00014 contains 68
grayscale textures each with 368 samples of 128 x
128 pixels.

• Outex texture classification test suite 5: Obtained
from [29] the selected OutexTC00016 contains 319
grayscale textures each with 368 samples of 128 x
128 pixels.

Classification: With the extracted features are pos-
sible to perform a class separation based on the use of
a statistical classifier. We have chosen the use of naive
Bayes classifier [30] which is a simple probabilistic clas-
sifier based on the Bayes theorem. This classifier uses an
independent feature model where the presence or absence
of a particular feature of a class is unrelated to the pres-
ence of absence of any other feature. In simple terms, it
assumes the conditional independence among attributes.
Despite its over-simplified assumptions, this classifier has
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worked very well with the real world datasets even when
the attribute independence hypothesis is violated [31],
[32].
Formally, the probability of an observation E =

(x1, x2, ..., xn) being class c is:

p(c|E) =
p(E|c)p(c)

p(E)
(47)

where E is the defined as the class C = + if:

fb(E) =
p(C = +|E)

p(C = −|E)
≥ 1 (48)

Where fb(E) is called a Bayesian classifier. based on
the attribute independency hypothesis we can write

p(E|c) = p(x1, x2, ..., |xn|c) =
n
∏

i=1

p(xi|c) (49)

The resulting naive Bayes classifier can be defined as:

fnb(E) =
p(C = +)

p(C = −)

n
∏

i=1

p(xi|C = +)

p(xi|C = −)
(50)

Even though the Naive Bayes classifier still does a good
job with non-independent features is not appropriate to
use highly correlated features. To solve this problem, we
use the canonical discriminant analysis function over de
dataset to remove correlations. The application of this
method maximizes the separation between classes and
reduces de dimensionality of the dataset.

VI. EXPERIMENTAL RESULTS

The results obtained for each image database is pre-
sented in this section. Each table shows the rate of cor-
rect classifications. All the techniques implemented for
the purpose of comparison are run against all the image
databases.
VI shows the results obtained for the full Brodatz

database. The best result obtained by one of the com-
pared methods (LBP) is 92.75%. The proposed method
obtains 95.59%. Moreover, the results maintain a lower
variability when more scales and orientations are used.
In VI The difference is much more significant. Our
method obtains 91.58% and the Gabor+LBP method
obtains 86.17%. VI shows the results for the Outex 5
classification test suit. The proposed method obtained
83.87% and the Gabor+Percentil75 obtains 82.14%. The

finest overall reported result for Outex 5 is 86%. VI
shows the results obtained for the Outex 14 classification
suit. The proposed method obtains 64.46% and the Ga-
bor+Covariance method obtains 61.23% where the best
overall result reported for Outex 14 is 69%. Finally, VI
shows the results obtained for the Outex 16 classifica-
tion suit. The proposed method obtains 77.02% and the
Gabor+Covariance method obtains 69.30%.

VII. CONCLUSIONS

We have presented a novel technique that improves
the Gabor wavelets to extract features from texture im-
ages. The effectiveness of the method is demonstrated
by various experiments. The proposed method obtained
the best results on all the image databases used. Tex-
ture feature extraction is a difficult task and it has been
widely addressed but most of the approaches found in
the literature only focus on a short range of texture con-
ditions. The variability of the results of the compared
methods shows the weakness of these methods when the
image datasets used present a great intra-class variability
a wide range of texture types and variations in the cap-
ture conditions. Different image datasets were selected
with the purpose of presenting consistent results. How-
ever, this is not very common since most methods only
perform well under tight image conditions. As shown
in the results, most of the related methods only work
well with one image dataset. Moreover, the variability
of results on each compared method for a single dataset
shows their sensibility to Gabor wavelets parameters. In
this matter, the proposed method performs consistently
in all experiments showing a clear independence of both
methods and a successful conjunction to obtain rich tex-
ture features.
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TABLE I. Results for Brodatz image database.

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

Energy 62.59 79.22 80.58 84.71 86.48 86.00 83.13 87.54

Variance 69.65 85.25 86.39 85.56 87.40 86.30 82.84 87.16

Percentil75 64.71 82.86 83.53 85.59 87.45 87.68 84.68 87.77

LBP 92.52 92.96 92.75 92.14 90.21 89.05 90.66 81.68

Covariance 70.38 85.55 85.39 89.41 89.86 89.01 86.52 88.14

GLCM 79.90 88.90 88.54 88.37 84.55 86.00 84.91 79.51

Enhanced Fractal 93.51 94.05 93.88 94.05 95.59 94.68 93.87 94.14

TABLE II. Results for KTH-TIPS2b image database.

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

Energy 55.84 72.64 72.50 75.11 75.69 73.21 70.67 73.24

Variance 58.25 74.05 74.09 73.01 73.32 71.73 69.22 72.59

Percentil75 55.45 74.51 74.97 76.92 77.43 76.66 74.38 77.38

LBP 86.17 84.92 84.86 84.15 82.47 78.80 78.80 71.14

Covariance 51.73 83.01 81.76 76.61 75.79 74.47 72.23 74.70

GLCM 64.13 75.70 70.98 71.63 68.15 65.26 66.66 58.31

Enhanced Fractal 90.49 89.90 90.40 90.32 91.58 90.07 89.39 88.38

TABLE III. Results for Outext test suite 5 database.

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

Energy 50.77 68.74 69.32 72.31 73.94 75.73 72.94 77.08

Variance 56.72 65.16 66.86 68.72 72.46 74.75 68.71 76.29

Percentil75 62.19 74.05 74.83 80.67 82.06 82.14 78.64 80.51

LBP 76.13 79.23 77.15 78.43 77.67 77.32 76.99 76.79

Covariance 48.28 64.26 65.77 68.99 71.02 72.49 69.85 72.75

GLCM 18.17 26.85 26.68 26.80 23.80 24.35 25.85 21.92

Enhanced Fractal 77.19 81.48 80.11 83.21 83.46 82.94 83.87 83.16

TABLE IV. Results for Outext test suite 14 database.

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

Energy 27.94 44.82 44.73 48.39 49.73 50.06 48.38 52.20

Variance 32.15 43.17 42.29 48.30 50.01 48.80 46.66 51.96

Percentil75 32.02 41.84 41.00 50.59 52.08 51.14 49.84 53.47

LBP 53.65 57.01 56.35 56.57 54.56 54.04 54.98 53.33

Covariance 37.34 51.62 52.71 57.90 58.89 59.02 56.52 61.23

GLCM 22.03 27.03 23.37 23.15 21.54 18.21 19.04 18.08

Enhanced Fractal 63.28 64.46 63.85 62.72 63.95 62.01 62.52 60.66
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TABLE V. Results for Outext test suite 16 database.

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

Energy 36.32 61.53 60.20 66.20 66.60 66.29 64.63 66.38

Variance 35.60 53.45 53.24 58.69 61.05 60.30 57.54 62.55

Percentil75 37.45 56.21 55.45 62.91 62.77 63.03 60.00 63.09

LBP 65.92 68.21 66.43 65.58 62.10 59.59 63.81 55.69

Covariance 38.83 63.03 63.71 69.30 68.56 66.88 65.26 63.81

GLCM 19.73 30.22 27.05 26.72 21.49 20.77 23.02 17.07

Enhanced Fractal 69.58 74.12 73.90 77.02 74.82 75.66 73.88 70.20


