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Abstract

Studies related to crowds of pedestrians, both those of theoretical nature and
application oriented ones, have generally focused on either the analysis or
the synthesis of the phenomena related to the interplay between individual
pedestrians, each characterised by goals, preferences and potentially relevant
relationships with others, and the environment in which they are situated.
The cases in which these activities have been systematically integrated for
a mutual benefit are still very few compared to the corpus of crowd related
literature. This paper presents a case study of an integrated approach to
the definition of an innovative model for pedestrian and crowd simulation
(on the side of synthesis) that was actually motivated and supported by the
analyses of empirical data acquired from both experimental settings and
observations in real world scenarios. In particular, we will introduce a model
for the adaptive behaviour of pedestrians that are also members of groups,
that strive to maintain their cohesion even in difficult (e.g. high density)
situations. The paper will show how the synthesis phase also provided inputs
to the analysis of empirical data, in a virtuous circle.
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1. Introduction

The modelling and simulation of pedestrians and crowds is a consolidated
and successful application of research results in the more general area of com-
puter simulation of complex systems. It is an intrinsically interdisciplinary
effort, with relevant contributions from disciplines ranging from physics and
applied mathematics to computer science, often influenced by (and sometimes
in collaboration with) anthropological, psychological, sociological studies and
the humanities in general. The level of maturity of these approaches was
sufficient to lead to the design and development of commercial software pack-
ages, offering useful and advanced functionalities to the end user (e.g. CAD
integration, CAD-like functionalities, advanced visualisation and analysis
tools) in addition to a simulation engine1. Nonetheless, as testified by a
recent survey of the field by Schadschneider et al. (2009) and by a report
commissioned by the Cabinet Office by Challenger et al. (2009), there is still
much room for innovations in models improving their performances both in
terms of effectiveness in modelling pedestrians and crowd phenomena, in
terms of expressiveness of the models (i.e. simplifying the modelling activity
or introducing the possibility of representing phenomena that were still not
considered by existing approaches), and in terms of efficiency of the simula-
tion tools. In addition to the above directions, we want to emphasise the fact
that one of the sometimes overlooked aspects of a proper simulation project
is related to the calibration and validation of the results of tools related
to the synthesis of the pedestrians and crowd behaviour in the considered
scenario. These phases are essentially related to the availability of proper
empirical data about or, at least, relevant to, the considered scenario ranging
from the pedestrian demand (i.e. an origin–destination matrix), preferences
among different alternative movement choices (e.g. percentage of persons
employing stairs, escalators and elevators in a multiple–level scenario), but
also the average waiting times at service points (i.e. queues), the average
time required to cover certain paths, the spatial distribution of pedestrians in

1see http://www.evacmod.net/?q=node/5 for a large although not necessarily complete
list of pedestrian simulation models and tools. The list comprises more than 60 models,
of commercial and academic nature, general purpose or specifically designed for certain
situations and scenarios, maintained or discontinued.
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specific environmental conditions that is required to evaluate the so–called
“level of service” associated to portions of the environment as defined by Fruin
(1971). These data are results of activities of analysis, some of which can
be fruitfully automated given, on one hand, the wide diffusion of cameras
employed for video surveillance of public areas and, on the other, considering
the level of maturity of video processing and analysis techniques.

An integrated approach to pedestrians and crowd studies encompasses both
the application of analysis and synthesis techniques that, in a virtuous circle,
can mutually benefit one from the other, to effectively (i) identify, (ii) face
and (iii) provide innovative solutions to challenges towards the improvement
of the understanding of crowding phenomena. This kind of interdisciplinary
study, in addition to computer science, often employs or directly involves
research results in the area of social sciences in general, can be found in
the literature. For instance, Patil et al. (2011) show how computational
fields guiding simulated pedestrians movement in a simulated environment
can be automatically derived by video footages of actual people moving in
the same space. Moore et al. (2011), instead, employ an hydrodynamic
model, that (to a certain extent) can represent the flow of pedestrians in
mass movement situations, to improve the characterisation of pedestrian
flows by means of automatic video analysis. From the perspective of offering
a useful service to crowd managers Georgoudas et al. (2011) describe an
anticipative system integrating computer vision techniques and pedestrian
simulation able to suggest crowd management solutions (e.g. guidance signals)
to avoid congestion situations in evacuation processes. Finally, in Raghavendra
et al. (2011) the authors propose the employment of the social force model
by Helbing and Molnár (1995), probably the most successful example of crowd
synthesis model, to support the detection of abnormal crowd behaviour in
video sequences.

An example of identification of a still not considered phenomenology is
related to a work by Moussäıd et al. (2010) in which the authors have defined
an extension to the social force model by that considers the presence of groups
in the simulated population: the motivations and some modelling choices (i.e.
the limited size of considered groups and their spatial arrangement) are based
on actual observations and analyses. A related effort, carried out instead by
a research group trying to improve crowd analysis techniques, is described
in Leal-Taixé et al. (2011): in this case, the social force model acts as a sort
of predictor block in an automated video analysis pipeline, improving the
tracking in case of groups within the observed flow. Finally, Schultz et al.
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(2012b) also focus on groups, as central element of an observation and analysis
that also considers psychometric factors.

It is important to emphasise that anthropological considerations about
human behaviour in crowded environments, such as the analysis of spatial
social interaction among people, are growingly considered as crucial both in
the computerised analysis of crowds as pointed out by Junior et al. (2010)
and in the synthesis of believable pedestrian and crowd behaviour, such as
in Was (2010) and in Manzoni et al. (2011). In particular, proxemics has a
prominent role both in the modelling and analysis of pedestrians and crowd
behaviour. The term was first introduced by Hall (1966) with respect to the
study of a type of non–verbal behaviour related to the dynamic regulation of
interpersonal distance between people as they interact.

Within this context the aim of this paper is to provide a comprehensive
framework comprising both the synthesis and analysis of pedestrians and
crowd behaviour: in this schema we suggest both ways in which the results
of the analysis can provide fruitful inputs to modellers and, on the other
hand, how results of the modelling and simulation activities can contribute
to the (automated) interpretation of raw empirical data. The framework
will be described in the following section, while an example of unfolding of
these conceptual and experimental pathways will be described through the
introduction of an adaptive model for group cohesion (Section 3) that was
motivated and that will effectively be calibrated and validated by means of
analyses on observed crowd behaviour (Section 4). Conclusions and future
works will end the paper.

2. An Integrated Framework for Crowd Analysis and Synthesis

A comprehensive framework trying to put together different aspects and
aims of pedestrians and crowd dynamics research has been defined in Junior
et al. (2010). The central element of this schema is the mutually influencing
(and possibly motivating) relationship between the above mentioned efforts
aimed at synthesising crowd behaviour and other approaches that are instead
aimed at analysing field data about pedestrians and crowds in order to char-
acterise these phenomena in different ways. It must be noted, in fact, that
some approaches have the goal of producing aggregate level quantities (e.g.
people counting, density estimation), while others are aimed at producing
finer-grained results (i.e. tracking people in scenes) and some are even aimed
at identifying some specific behaviour in the scene (e.g. main directions, ve-
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locities, unusual events). The different approaches adopt different techniques,
some performing a pixel–level analysis, others considering larger patches of
the image, i.e. texture–level analysis; other techniques require instead the
detection of proper objects in the scene, a real object–level analysis.

From the perspective of the requirements for the synthesis of quantitatively
realistic pedestrian and crowd behaviour, it must be stressed that both
aggregate level quantities and granular data are of general interest: a very
important way to characterise a simulated scenario is represented by the so
called fundamental diagram by Schadschneider et al. (2009), that represents
the relationship in a given section of an environment between the flow of
pedestrians and their density. Qualitatively, a good model should be able to
reproduce an empirically observed phenomenon characterised by the growth of
the flow until a certain density value (also said critical density) is reached; then
the flow should decrease. However, every specific situation is characterised by
a different shape of this curve, the position of critical density point and the
maximum flow level; therefore even relatively “basic” counting and density
estimation techniques can provide useful information in case of observations in
real world scenarios. Density estimation approaches can also help in evaluating
qualitatively the patterns of space utilisation generated by simulation models
against real data. Tracking techniques instead can be adopted to support the
estimation of traveling times (and length of the followed path) by pedestrians.
Crowd behaviour understanding techniques can help in determining main
directions and the related velocities.

To complete the initial schema, suggesting that analysis and synthesis
should mutually benefit one from the other, we propose here the extension
of a different kind of diagram, that can be found in Gilbert and Troitzsch
(2005) or more recently in Bandini et al. (2009), used to discuss the form
of inference that can be carried out by using a model as a method of study.
Starting from portion of the reality that we will call target system the process
of synthesis leads to the definition of a model and its implementation in the
form of a simulator. The latter can then be employed (i.e. executed with
specific inputs and parameters) to carry out a simulation campaign leading
to a set of results. The processes of analysis involve, on one hand, raw data
that can be acquired through direct observations and controlled experiments.
On the other hand, also simulation results require a process of interpretation
in order to be comparable with observed empirical data. When this cycle
produces simulation results that, once interpreted and analysed, actually
match the empirical data acquired on the field, the defined model can be
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Figure 1: A schema putting together activities of modelling and execution of simulation
campaigns (synthesis) and activities related to the interpretation of simulation results,
analysis of empirical data observed in reality and their comparison for sake of validation
(analysis).

employed for sake of explanation and prediction.
Of course it is not immediate to define a model that generates simulation

results matching empirical data, especially since models of complex systems
are generally characterised by a number of parameters even when the modeller
tries to keep the model as simple and elegant as possible. It is this need of
actually calibrating model parameters for achieving a model validation, as
described by Klügl (2008), that actually introduces the first type of synergetic
collaboration between analysis and synthesis: the analysis of raw data about
the simulated phenomenon leads to the possibility of identifying values or
at least intervals for model parameters. This is not actually the only case
of influence of the analysis on the definition of models: in fact, it is the
observation of the system that leads to the identification of phenomenologies
that are not currently represented and managed by a model and that can
represent the motivations and goals for model innovation.

The potential outcomes of the modelling and simulation phases that can
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have an influence on the analysis activities are related to two categories
of contributions: on one hand, the need to create a mechanism for the
generation of an observed phenomenon leads to its formalisation, that could
be instrumental also in the creation of additional mechanisms for its automated
analysis. On the other hand, even long before reaching the necessary level of
maturity of the simulator, the modeller and developer of a simulation system
actually needs to define and develop metrics, indicators and techniques to
evaluate the outcomes of the modelling phases. These by-products of the
synthesis activity can also represent a starting point for the actual development
of automated analysis approaches.

The following sections actually represent an unfolding of this kind of
conceptual and experimental process. In particular, Section 3 introduces a
model for pedestrian and group behaviour representing the evolution of a
first approach that was started to face issues raised by an unstructured and
non-systematic observation of crowd patterns and movements in a real world
scenario2 described by Vizzari et al. (2012). In this line of research, a model
encompassing groups as a fundamental element influencing the overall system
dynamics was designed and implemented and a metric for the evaluation of
group cohesion (and, therefore, also its dispersion) was defined. This metric
led to the understanding that the first version of the model was unable to
preserve the cohesion of groups and therefore it was instrumental in the
realisation of a new model described in Vizzari et al. (2013 - in press) that
endows pedestrians that are also members of specific types of group with
an adaptive mechanism to preserve their cohesion even in difficult situations
(e.g. presence of obstacles or high density environments). This research effort
also led to the identification of new observations and analyses to back-up
simulation results with empirical data; the dispersion metric was also the
starting point for the formal definition of measurements to be executed in
the analysis of the acquired raw data. These activities will be described in
Section 4.

2In particular, the crowd management procedures adopted in the Arafat I station in
Saudi Arabia, that adopt the notion of group as a way to organize the flow of pilgrims
towards the station.
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3. An Adaptive Model for Group Cohesion

This section introduces a model representing pedestrian behaviour in an
environment, considering the impact of the presence of simple and structured
groups. The model is characterised by a discrete representation of the envi-
ronment and time evolution, and it is based on the floor-field mechanism of
existing CA approaches. However, the pedestrian behaviour is so articulated,
comprising an adaptive mechanism for the preservation of group cohesion,
to the point that the model is more properly classified as agent-based. The
different elements of the model will now be introduced, then some results of
its application to sample simulation scenarios will be given to show the model
capabilities and the requirements in terms of empirical data to complete
the calibration of the group cohesion adaptive mechanism. A more detailed
formal introduction of the model and additional simulation results can be
found in Vizzari et al. (2013 - in press).

3.1. Representation of the Environment

The physical environment is represented in terms of a discrete grid of square
cells: Env = c0, c1, c2, c3, ... where ∀ci : ci ∈ Cell. The size of every cell is
40cm×40cm according to standard measure used in the literature and derived
from empirical observation and experimental procedure shown in Weidmann
(1993) and Fruin (1971). Every cell has a row and a column index, which
indicates its position in the grid: Row(ci), Col(ci) : Cell→ N. Consequently,
a cell is also identified by its row and column on the grid, with the following
notation: Envj,k = c : (c ∈ Env) ∧ (Row(c) = j) ∧ (Col(c) = k). Every
cell is linked to other cells, that are considered its neighbours according to the
Moore neighbourhood. Cells are annotated and virtual grids are superimposed
on the base environmental representation to endow the environment with the
capability to host pedestrian agents and support their perception and action.

3.1.1. Definition of Spatial Markers

Markers are sets of cells that play particular roles in the simulation. Three
kinds of marker are defined in the model: (i) start areas, places (sets of
cells) were pedestrians are generated; they are characterised by information
for pedestrian generation both related to the type of pedestrians and to the
frequency of generation. In particular, a start area can generate different kinds
of pedestrians according to two approaches: (a) frequency-based generation,
in which pedestrians are generated during all the simulation according to a
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frequency distribution; (b) en-bloc generation, in which a set of pedestrians is
generated at once in the start area when the simulation starts; (ii) destination
areas, final places where pedestrians might want to go; (iii) obstacles, non-
walkable cells defining obstacles and non-accessible areas.

3.1.2. Definition of Floor Fields

Adopting the approach of the floor field model by Nishinari et al. (2004),
the environment of the basic model is composed also of a set of superimposed
virtual grids, structurally identical to the environment grid, that contains
different floor fields that influence pedestrian behaviour.

The goal of these grids is to support long range interactions by representing
the state of the environment (namely, the presence of pedestrians and their
capability to be perceived from nearby cells). In this way, a local perception
for pedestrians actually simply consists in gathering the necessary information
in the relevant cells of the floor field grids.

Floor fields are either static (created at the beginning and not changing
during the simulation) or dynamic (changing during the simulation). Three
floor fields are considered in the model:

• the path field assigned to each destination area: this field indicates
for every cell the distance from the destination, and it acts thus as
a gradient, a sort of potential field that drives pedestrians towards it
(static floor field);

• the obstacles field, that indicates for every cell the fact that an obstacle
or a wall is within a limited distance, being maximum in cells adjacent
to an obstacle and decreasing with the distance (static floor field);

• the density field that indicates for each cell the pedestrian density in
the surroundings at the current time-step, analogous to the concept of
cumulative mean density (CMD) indicating the density experienced by
pedestrians in a portion of the environment, first introduced by ? and
elaborated for discrete environments by ? (dynamic floor field).

3.2. Simulation Time and Update Strategy

Simulation time is modelled in a discrete way by dividing time into steps
of equal duration: we assume that a pedestrian moves (at most, since it is
possible to decide to stand still) 1 cell per time step. The average velocity of
a pedestrian, which can be estimated in real observations or experiments as
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performed by Fruin (1971) in about 1.2 ms−1, will thus determine the duration
of the each time step: considering that the size of the cell is 40 cm× 40 cm,
the duration of each time step is 0.33s.

When running a CA-based pedestrian model, three update strategies are
possible ?:

• parallel update, in which cells are updated all together;

• sequential update, in which cells are updated one after the other, always
in the same order;

• shuffled sequential update, in which cells are updated one after the other,
but with a different order every time.

The second and third update strategies lead to the definition of asyn-
chronous CA models (see Bandini et al. (2012) for a more thorough discussion
on types of asynchronicity in CA models). In crowd simulation CA mod-
els, parallel update is generally preferred, as mentioned by Schadschneider
et al. (2009), even if this strategy can lead to conflicts that must be solved.
Nonetheless, we currently adopted a shuffled sequential update scheme for a
first evaluation of the group cohesion mechanism without adding additional
mechanisms and parameters to be calibrated for the management of potential
conflicts between agents’ movements.

3.3. Groups

We focus on two types of group: simple and structured. Simple or informal
groups are generally made up of friends or family members and they are
characterised by a high cohesion level, moving all together due to shared
goals and to a continuous mechanism of adaptation of the chosen paths to
try to preserve the possibility to communicate, as discussed by Costa (2010).
Structured groups, instead, are more complex entities, usually larger than
simple groups (more than 4 individuals) and they can be considered as being
composed of sub-groups that can be, in turn, either simple or structured.
Structured groups are often artificially defined with the goal of organising
and managing a mass movement (or some kind of other operation) of a set of
pedestrians.

Groups can be formally described as:

Groupj = 〈Id, [Group1, . . . , Groupm], [Ped1, . . . , P edn]〉
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Structured groups include at least one subgroup, while simple groups only
comprise individual pedestrians. We will refer to the group an agent a directly
belongs to as Ga, that is also the smallest group he belongs to; the largest
group an agent a belongs to will instead be referred to as Ḡa. It must be
noted that Ḡa = Ga only when the agent a is member of a simple group
that is not included in any structured group. These sets are relevant for the
computation of influences among members of groups of different type (simple
or structured).

3.4. Pedestrians

In this model, a pedestrian is defined as an utility-based agent with state.
Functions are defined for utility calculation and action choice, and rules are
defined for state-change. Pedestrians are characterised as:

Pedestrian : 〈Id,GroupId, State, Actions,Destination〉

where: (i) Id ∈ N is the agent identification number and GroupId ∈ N is
the identification number of the group to which the pedestrian directly belongs
to (for pedestrians that are not member of any group this value is null); (ii)
State is defined as: State = 〈Position, PrevDirection〉 where Position indi-
cates the current cell in which the agent is located, and PrevDirection is the
direction followed in the last movement; Actions is the set of possible actions
that the agent can perform, essentially movements in one of the eight neigh-
bouring cells (indicated as cardinal points), plus the action of remaining in the
same cell (indicated by an ‘X’): Actions = N,S,W,E,NE, SE,NW,SW,X;
Destination is the goal of the agent in terms of destination area. This
term identifies the current destination of the pedestrian: in particular, ev-
ery destination is associated to a particular spatial marker. Consequently,
Destination is used to identify which path field is relevant for the agent:
currentPathF ield = PathField(Destination) where PathField is the pre-
cise path field associated to Destination and currentPathF ield is the path
field relevant for the agent.

All these elements take part in the mechanism that manages the move-
ment of pedestrians: agents associate a desirability value, a utility to every
movement in the cell neighbourhood, according to a set of factors that concur
in the overall decision.
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3.4.1. Mechanism of Action Evaluation

In Algorithm 1 the agent life-cycle during all the simulation time is
proposed: every time step, every pedestrian perceives the values of path field,
obstacle field and density field for all the cells that are in its neighbourhood.
On the basis of these values and according to different factors, the agent
evaluates the different cells around him, associating an utility value to every
cell and selects the action for moving into a specific cell.

Algorithm 1 Agent life-cycle

for all timestep ∈ SimulationT ime do
for all p ∈ Pedestrian do

Utility[]
for all c ∈ neighbours(Position) do

pf← V al(PathF, c)
of← V al(ObsF, c)
df ← V al(DensF, c)
Utility[c]← Evaluation(pf, of, df)

end for
a = Choice(Utility[])
Move(a)

end for
end for

As previously suggested, the action selection strategy starts gathering the
value of floor fields in cells included in the neighbourhood of agent’s current
position. The obtained values will be used in the evaluation of the movement
towards the related cell.

After acquiring the perceived information from the environment, the agent
elaborates a desirability value for each of the admissible actions (movements),
according to several factors, that will be described later on. Given the list of
possible actions and associated utilities, an action is chosen with a probability
proportional to its utility. In particular, the probability for an agent a of
choosing an action associated to the movement towards a cell c is given by the
exponential of the utility, normalised on all the possible actions the pedestrian
can take in the current turn:

pa(c) = N · eUa(c)
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where N is the normalisation factor and c is the currently considered
destination cell. The utility function Ua(c) of a destination cell c which
corresponds to an action/direction for agent a, that takes the form of a
weighted sum of components associated to the behavioural specification of an
agent:

Ua(c) =
κgG(c) + κobOb(c) + κsS(c) + κdD(c) + κovOv(c) + κcCa(c) + κiIa(c)

d

where d is the distance of the new cell from the current position, that is
1 for cells in the Von Neumann neighbourhood (vertically and horizontally
neighbour cells) and

√
2 for diagonal cells: the factor is introduced to penalise

the diagonal movements.
The different components of the utility value for a given movement consider

the following factors:

• the desire to move towards a goal, a destination in the environment,
represented by the G(c) function;

• the tendency to stay at a distance from the obstacles (e.g. walls,
columns), that are perceived as repulsive, represented by the Ob(c)
function;

• the desire to stay at a distance from other individuals, especially those
that are not members of the same simple group, an effect of proxemic
separation, represented by the S(c) function;

• a direction inertia factor, increasing the desirability of performing
straight forms of movement, represented by the D(c) function;

• the penalisation of those movements that cause an overlapping event,
the temporary sharing of the same cell by two distinct pedestrians,
represented by the Ov(c) function;

• two contributions related to the tendency to preserve group cohesion,
respectively devoted to simple and structured groups, respectively rep-
resented by the Ca(c) and the Ia(c) functions.

Note that κg, κob, κs, κd, κov, κc, κi ∈ [0, 100]: the use of these parameters,
in addition to allowing the calibration and the fine tuning of the model,
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also supports the possibility of describing and managing different types of
pedestrian, or even different states of the same pedestrian in different moments
of a single simulated scenario.

3.4.2. Adaptation Mechanism for Group Cohesion Preservation

While the above elements are sufficient to generate a pedestrian model
that considers the presence of groups, even structured ones, the introduced
mechanisms are not sufficient to preserve the cohesion of simple groups, as
discussed in a previous work adopting a very similar approach (see Bandini
et al. (2011)). This is mainly due to the fact that in certain situations
pedestrians adapt their behaviour in a more significant way than what is
supported by simple and relatively small modifications of the perceived
utility of a certain movement. In certain situations pedestrians perform an
adaptation that appears in a much more decisive way a decision: they can
suddenly seem to temporarily loose interest in what was previously considered
a destination to reach and they instead focus on moving closer to (or at least
do not move farther from) members of their group, generally whenever they
perceive that the distance from them has become excessive. In the following,
we will discuss a metric of group dispersion that we adopted to quantify this
perceived distance and then we will show how it can be used to adapt the
weights of the different components of the movement utility computation to
preserve group cohesion.
Group Dispersion Metrics – Intuitively, the dispersion of a group can be
seen as the degree of spatial distribution of their members. In the area of
pedestrian modelling and simulation, the estimation of different metrics for
group dispersion has been discussed in Bandini et al. (2011) in which different
approaches are compared to evaluate the dispersion of groups through their
movement in the environment. In particular, two different approaches are
compared here: (i) dispersion as occupied area and (ii) dispersion as distance
from the centroid of the group. This topic was also considered in the context
of computer vision algorithms such as in Schultz et al. (2012b), in which
however essentially only line abreast patterns were analysed. Therefore we
will focus on the former approach.

Formally, the above introduced formulas of group dispersion for each
approach are defined as follows:

Disp(Group) =
Area(Group)

Size(Group)
(Area method)
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Disp(Group) =

∑Size(Group)
i=1 distance(centroid, ai)

Size(Group)
(Centroid method)

with Area(Group) as the area occupied by the group, Size(Group) as the
number of its members, centroid as its centroid.

The second metric appears much more straightforward when a continuous
representation of the environment is possible or at least not in contrast with
the adopted modelling approach: in the case of a discrete and relatively
coarse discretisation its results are not particularly different from the first
metric, but they are sometimes counterintuitive especially when describing
particular group shapes (e.g. river-like lanes that are often present in high
density situations).

The first metric defines the dispersion of the group as the portion of space
occupied by the group with respect to the size of the group: the first step of
the procedure of computation for this metric builds a convex polygon with
the minimum number of edges that contain all the vertices (representing the
position of a pedestrian); the second step computes the area of this polygon.
The dispersion value is calculated as the relationship between the polygon
area and the size of the group.
Utility Parameters Adaptation – The adopted approach is characterised
by a trade-off process between the goal attraction value and the intra/inter
cohesion value in the utility computation: in the situation in which the spatial
dispersion value is low, the cohesion behaviour has to influence pedestrian’s
overall behaviour less than the goal attraction. On the contrary, if the level of
dispersion of a group is high, the cohesion component for the members must
become more important than the goal attraction. An adaptation of the two
parameters in the utility computation is necessary, by means of a Balance(k)
function that can be used to formalise these requirements:

Balance(k) =


1
3
· k + (2

3
· k ·DispBalance) if k = kc

1
3
· k + (2

3
· k · (1−DispBalance)) if k = kg ∨ k = ki

k otherwise

where ki, kg and kc are the weighted parameters Ua(c) and

DispBalance = tanh

(
Disp(Group)

δ

)
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Figure 2: Graphical representation of Balance(k), for k = 1 and δ = 2.5

is another function that works on the value of group dispersion as the
relationship between the area and the size of the group, applying on it the
hyperbolic tangent. The value of δ is a constant that essentially represents
a threshold above which the adaptation mechanism starts to become more
influential; after a face validation phase, we set this value to 2.5, allowing the
output of DispBalance function in the range [0, 1] according to all elements
in Ua(c). The hyperbolic tangent approaches value 1 when Disp(Group)
approaches 6 (values ≥ 6 indicate a high level of dispersion for small-medium
size groups (1-4 members)).

A graphical representation of the trade-off mechanism is shown in Fig. 2:
red and green boxes represent the progress of parameter kc and parameter
kg (ki is treated analogously), respectively. Note that the increasing of the
dispersion value produces an increment of kc value and a reduction of kg
parameter.

It must be emphasised the fact that this adaptive balancing mechanism
and the current values for its parameters were heuristically established and
they actually require a validation (and plausibly a subsequent calibration) by
comparing results achieved with this configuration and relevant empirical data
about group dispersion gathered from actual observations and experiments in
controlled situations.

3.5. Simulation Results in Benchmark Scenarios

This section describes the results of a simulation campaign carried out
to evaluate the performance of the above described model that had mainly
two goals: (i) validate the model, in situations for which the adaptation
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Figure 3: Screenshots of the simulated corridor (A) with groups of different size in low
density situations

mechanism was not activated (i.e. no simple groups were present in the
simulated population), (ii) evaluate the effects of the introduction of simple
groups, performing a qualitative face validation of the introduced adaptation
mechanism considering available video footages of the behaviour of groups in
real and experimental situations.

The chosen situations are relatively simple ones and they were chosen
due to the availability of relevant and significant data from the literature. In
particular, we describe here a linear scenario: a corridor in which we test the
capability of the model to correctly reproduce a situation in which two groups
of pedestrians enter from one of the ends and move towards the other. This
situation is characterised by a counterflow causing local situations of high
density and conflicts on the shared space3. We essentially evaluate and validate
this scenario by means of a fundamental diagram as defined by Schadschneider
et al. (2009): it shows how the average velocity of pedestrians in a section
(e.g. one of the ends of a corridor) varies according to the density of the
observed environment. Since the flow of pedestrians is directly proportional to
their velocity, this diagram is sometimes presented in an equivalent form that
shows the variation of flow according to the density. In general, we expect
to have a decrease in the velocity when density grows, due to the growing
frequency of “collision avoidance” movements by the pedestrians; the flow,
instead, initially grows, since it is also directly proportional to the density,
until a certain threshold value is reached (also called critical density), then it

3The term conflict used here is not associated to the issues arising from a parallel update
in a CA approach: actual conflicts are prevented by the shuffled sequential update strategy.
However, the choices of pedestrians are limited by the actions of the others, so this conflict
is actually a conceptual one.
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Figure 4: Comparison among fundamental diagrams on aggregate data with respect to
groups of different size in corridor A

decreases. Despite being of great relevance, different experiments gathered
different values of empirical data: while there is a general consensus on the
shape of the function, the range of the possible values has even significant
differences from different versions.

We investigated this scenario with a significant number of simulations,
varying the level of density by adjusting the number of pedestrians present
in the environment, so as to analyse different crowding situations. For every
scenario, in terms of environmental configuration and level of density, a
minimum of 3 and a maximum of 8 simulations were executed, according
to the variability of the achieved results (more simulations were run when
the variability was high, generally around levels of density close to the
critical thresholds). Every simulation considered at least 1800 simulation
turns, corresponding to 10 minutes of simulated time. The rationale was
to observe a good number of complete paths of pedestrians throughout the
environment, that was configured to resemble a torus (e.g. pedestrians
completing a movement through it re-entered the scenario from their starting
point), therefore simulations of situations characterised by a higher density
were also set to last longer.

As suggested above, we adopted two different experiment settings: in
the first one, the individual pedestrians belonging to a given flow (i.e. all
the pedestrians entering the corridor) are represented as members of a large
structured group, but no simple groups are present. This first part of the
experimentation was also necessary to perform a proper calibration of the
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Figure 5: Comparison among corridor widths: fundamental diagrams in case of groups in
corridors A, B and C

model, for the parameters not involved in simple group modelling. In the
second experimental setting, we included a variable number of simple groups
(based on the total number of pedestrians in the environment and according
to available data on the frequency of groups of different size in a crowd as
mentioned in Moussäıd et al. (2010) and Federici et al. (2012))4 first of all to
calibrate and qualitatively validate the adequacy of the adaptation mechanism
and then to explore its implications on the overall crowd dynamics.

We actually simulated the linear counterflow situation in three different
corridors, of growing width: their size is respectively 2.4 m × 20 m (A), 3.6
m × 13.2 m (B) and 4.8 m × 10 m (C). Note that the variation in terms of
width and height were applied according to the choice of maintaining the total
area at a level about 48 m2 in every scenario. A screenshot of the simulation
scenario in low density situations including groups of different size is shown in
Figure 3. The choice of evaluating the influence of groups in different linear
scenarios was also inspired by Zhang et al. (2011), in which a comparison in
terms of pedestrians flow from experimental data among three corridors of
width 1.8 m, 2.4 m and 3.0 m is presented. In this case, authors show that,
in conformance with Hankin and Wright (1958), above a certain minimum of

4Groups of size 2 include about 28% of the total number of pedestrians, groups of size
3 about 24% and groups of size 6 about 12%.
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about 1.22 m, the maximum flow is directly proportional to the width of the
corridors.

The model was calibrated to achieve, in situations not including simple
groups, results in tune with empirical data available from the literature. We
will now focus on some partly counterintuitive results in presence of simple
groups. To do so, data related to the different types of simulated groups
were aggregated, and a comparison among the related fundamental diagrams
was performed for the movement of groups in corridor A. As summary,
Fig. 4 represents on the same chart all group contributions: the depicted
points represent the average flow achieved for that kind of group in the total
simulated time, and generally more points are available (representing different
simulation runs) for the same configuration. The overall flow of individuals is
generally higher than that of groups in almost all situations, and in general
with the growth of the size of a simple group we observe a decrease of its
overall flow. Moreover, differences tend to decrease and almost disappear
after the critical density (about 1.5 pedestrians per square metre) is reached.

We also analysed the effect of the width of the corridor on the flow of
groups (and in general on the overall pedestrian flow): Figure 5 shows the
different fundamental diagrams associated to all simple groups (irrespectively
of their size) in corridors A, B and C. It is apparent that the critical density
moves to higher levels with the growth of the corridor width, in tune with
the already mentioned results discussed in Hankin and Wright (1958).

Finally, we analysed how the level of group dispersion, computed by means
of the same function employed to manage the adaptive mechanism for group
cohesion, varies with a changing density in the environment. The motivations
of this analysis are twofold: first of all, we wanted to understand if the
adaptive mechanism for group cohesion is effective, then we wanted to gather
empirical data to understand if it produces plausible results, in line with
observed data that, at the moment of the simulation campaign, were still not
available. Figure 6 shown the variation of the level of dispersion for groups
of size 6 in corridors A, B and C: we can conclude that the mechanism for
preserving the cohesion of simple groups is actually effective, since the growth
of density does not cause a significant growth of the dispersion. On the other
hand, at that moment we could not conclude that the model produces realistic
results.
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Figure 6: Comparison among the level of dispersions for group of six members in corridor
A, B and C

4. An Analysis of Field Data About Pedestrian Crowd Dynamics

This Section comprises several empirical studies aimed at investigating
pedestrian crowd dynamics in the natural context by using on-field observation.
In particular the survey was aimed at studying the impact of grouping and
proxemics behaviour on the whole crowd pedestrian dynamics. Data analyses
were focused on: (i) level of density and service, (ii) presence of groups within
the pedestrian flows, (iii) group proxemic spatial arrangement, (iv) trajectories
and walking speed of both singles and group members. Furthermore the
spatial dispersion of group members while walking was measured in order
to propose an innovative empirical contribution for a detailed description of
group proxemics dynamics while walking.

The survey was performed the last 24th of November 2012 from about 2:50
pm to 4:10 pm. It consisted in the observation of the bidirectional pedestrian
flows within the Vittorio Emanuele II gallery, a popular commercial-touristic
walkway situated in the Milan city centre (Italy). The gallery was chosen
as a crowded urban scenario, given the large amount of people that pass
through it during the weekend for shopping, entertainment and visiting
touristic-historical attractions in the centre of Milan.

The team performing the observation was composed of four people. Several
preliminary inspections were performed to check the topographical features of
the walkway. The balcony of the gallery, that surrounds the inside volume of

21



Figure 7: From the left: an overview of the Vittorio Emanuele II gallery, the streaming
of passerby within the walkway and a snapshot of the recorded video images with the
superimposed grid for data analysis

the architecture from about ten meters in height, was chosen as location thanks
to possibility to (i) position the equipment for video footages from a quasi-
zenithal point of view and (ii) to avoid as much as possible to influence the
behaviour of observed subjects, thanks to a railing of the balcony partly hiding
the observation equipment. The equipment consisted of two professional full
HD video cameras with tripods. The existing legislation about privacy was
consulted and complied in order to exceed ethical issues about the privacy of
the people recorded within the pedestrian flows.

Two independent coders performed a manual data analyses, in order to
reduce errors by crosschecking their results. A squared portion of the walkway
was considered for data analysis: 12.8 meters wide and 12.8 meters long
(163.84 squared meters). In order to perform data analyses, the inner space
of the selected area was discretised in cells by superimposing a grid5 on the
video (see Fig. 7); the grid was composed of 1024 squares 0.4 meters wide
and 0.4 meters long.

5The grid was design by using Photoshop CS5 (according to the perspective of the video
images). An alphanumeric code (from 1 to 32 on both left and right sides, and from A to
Ff on both top and bottom sides) was added on the sides of the grid. Finally, the grid with
a transparent background was superimposed to a black-white version of the video images
by means of iMovie. To perform counting activities, the video was reproduced by using
VLC player thanks to its possibility to: playback the images in slow motion and/or frame
by frame and to use an extension time format that included hundredths of a seconds.
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4.1. Level of Density and Service

The bidirectional pedestrian flows (from North to South and vice versa)
were manually counted minute by minute: 7773 people passed through the
selected portion of the Vittorio Emanuale II Gallery from 2:50 pm to 4:08
pm. The average level of density within the selected area (defined as the
quantitative relationship between a physical area and the number of people
who occupy it) was detected considering 78 snapshots of video footages,
randomly selected with a time interval of one minute. The observed average
level of density was low (0.22 people/squared meter). Despite it was not
possible to analyse continuous situations of high density, several situation
of irregular and local distribution of high density were detected within the
observed scenario.

According to the Highway Capacity Manual by Milazzo II et al. (1999),
the level of density in motion situation was more properly estimated taking
into account the bidirectional walkway level of service criteria: counting the
number of people walking through a certain unit of space (meter) in a certain
unit of time (minute). The average level of flow rate within the observed
walkway scenario belongs to a B level (7.78 ped/min/m) that is associated
with an irregular flow in low-medium density condition.

4.2. Flow Composition

The second stage of data analysis was focused on the detection of groups
within the pedestrian flows, the number of group members and the group
proxemics spatial arrangement while walking. The identification of groups in
the streaming of passerby was assessed on the basis of verbal and nonverbal
communication among members: visual contact, body orientation, gesticula-
tion and spatial cohesion among members. To more thoroughly evaluate all
these indicators the coder was actually encouraged to rewind the video and
take the necessary time to tell situations of simple local (in time an space)
similar movements, due to the contextual situation, by different pedestrians
from actual group situations. The whole video was sampled considering one
minute every five: a subset of 15 minutes was extracted and 1645 pedestrians
were counted (21.16% of the total bidirectional flows). Concerning the flow
composition, 15.81% of the pedestrians arrived alone, while the 84.19% arrived
in groups: 43.65% of groups were couples, 17.14% triples and 23.40% larger
groups (composed of four or five members). Large structured groups, such
as touristic committees, that were present in the observed situation, were
analysed considering sub-groups.
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4.3. Group Proxemics Spatial Arrengement

Results about group proxemics spatial arrangement while walking showed
that:

• 94.43% of couples was characterised by line-abreast pattern while 5.57%
by river-like pattern;

• 31.91% of triples was characterised by line-abreast pattern, 9.57% by
river-like pattern and 58.51% by V-like pattern;

• 29.61% of four-person groups is characterised by line-abreast pattern,
3.19% by river-like pattern, 10.39% by V-like pattern, 10.39% triads
followed by a single person, 6.23% single individual followed by a triad,
7.79% rhombus-like pattern (one person heading the group, followed by
a dyad and a single person), 32.47% of the groups split into two dyads.

4.4. Trajectories and Walking Speed

The walking speed of both singles and group members was measured
considering the path and the time to reach the ending point of their movement
in the monitored area (corresponding to the centre of the cell of the last row
of the grid) from the starting point (corresponding to the centre cell of the
first row of the grid). Only the time distribution related to the B level of
service was considered (as mentioned, the 59% of the whole video footages), in
order to focus on pedestrian dynamics in situation of irregular flow. A sample
of 122 people was randomly extracted: 30 singles, 15 couples, 10 triples and 8
groups of four members. The estimated age of pedestrians was approximately
between 15 and 70; groups with accompanied children were not taken into
account for data analyses. About gender, the sample was composed of 63
males (56% of the total) and 59 females (44% of the total). Differences in
age and gender were not considered in this study.

The alphanumeric grid was used to track the trajectories of both single
and group members within the walkway and to measure the length of their
path6 (considering the features of the cells: 0.4 m wide, 0.4 m long) (see
Fig. 8).

6To measure the walking path and speed we considered each pedestrian as a point
without mass in a two-dimensional plane. By using the alphanumeric grid, we considered
the cell occupied by the feet of each pedestrian as its own actual position. The starting and
final steps were measured from the half of the cell, consequently 0.2 m is the corresponding
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Figure 8: The trajectories of the sampled pedestrian within the bidirectional flows: singles
(a), couple (b), triple (c) and groups of four members (d)

length of the each related path; any diagonal step cell by cell was measured as the diagonal
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A first analysis was devoted to the identification of the length of the
average walking path of singles (M=13.96 m, ±1.11), couples (M=13.39 m,
± 0.38), triples (M=13.34 m, ± 0.27) and groups of four members (M=13.16
m, ± 0.46). Then, the two tailed t-test analyses were used to identify
differences in path among pedestrian. Results showed a significant difference
in path length between: singles and couples (p value<0.05), singles and
triples (p value<0.05), singles and groups of four members (p value<0.05).
No significant differences were detected between path length of couples and
triples (p value>0.05), triples and groups of four members (p value>0.05),
couples and groups of four members (p value>0.05). The results showed that
the path of singles is 4,48% longer than the average path of group members
(including couples, triples and groups of four members).

The walking speed of both singles and group members was detected
considering the path of each pedestrian within the flows and the time to
reach the ending point from their starting point. A first analysis was devoted
to the identification of the average walking speed of singles (M=1.22 m/s,
± 1.16), couples (M=0.92 m/s, ± 0.18), triples (M=0.73 m/s, ± 0.10) and
groups of four members (M=0.65 m/s, ± 0.04). Then, the two tailed t-test
analyses were used to identify differences in walking speed among pedestrian.
Results showed a significant difference in walking speed between: singles
and couples (p value<0.01), singles and triples (p value<0.01), singles and
groups of four members (p value<0.01), couples and triples (p value<0.01),
triples and groups of four members (p value< 0.05). In conclusion, the results
showed that the average walking speed of group members (including couples,
triples and groups of four members) is 37.21% lower than the walking speed
of singles.

The correlated results about pedestrian path and speed showed that in
situation of irregular flow singles tend to cross the space with more frequent
changes of direction in order to maintain their velocity, avoiding perceived
obstacles like slower pedestrians or groups. On the contrary, groups tend to
have a more stable overall behaviour, adjusting their spatial arrangement
and speed to face the contextual conditions of irregular flow: this is probably
due to (i) the difficulty in coordinating an overall change of direction and
(ii) the tendency to preserve the possibility of maintaining cohesion and

between the two cells (0.56 m); any straight step was measured as the segment between
the centre of two cells (0.4 m).
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communication among members.

4.5. Group Proxemics Dispersion

In order to improve the understanding of pedestrian proxemics behaviour
the last part of the study is focused on the dynamic spatial dispersion of group
members while walking. The dispersion among group members was measured
as the summation of the distances between each pedestrian and the centroid
(the geometrical centre of the group) all normalised by the cardinality of
the group. The centroid was obtained as the arithmetic mean of all spatial
positions of the group members, considering the alphanumeric grid. In order
to find the spatial positions, the trajectories of the group members belonging
to the previous described sample (15 couples, 10 triples and 8 groups of four
members) were further analysed. In particular, the positions of the group
members were detected analysing the recorded video images every 40 frames
(the time interval between two frames corresponds to about 1.79 seconds,
according to the quality and definition of the video images) starting from
the co-presence of the all members on the alphanumeric grid. This kind of
sampling permitted to consider 10 snapshots for each groups.

A first analysis was devoted to the identification of the average proxemics
dispersion of couples (M=0.35 m, ± 0.14), triples (M=0.53 m, ± 0.17) and
groups of four members (M=0.67 m, ± 0.12). Then, the two tailed t-test
analyses were used to identify differences in proxemics dispersion among
couples, triples and groups of four members. Results showed a significant
difference in spatial dispersion between: couples and triples (p value<0.05),
couples and groups of four members (p value<0.01). No significant differences
between triples and groups of four members (p value> 0.05). In conclusion,
the results showed that the average spatial dispersion of triples and groups of
four members while walking is 40.97% higher than the dispersion of couples.

In order to be able to provide useful indications for the calibration of the
adaptive simple group cohesion mechanism we also evaluated the average
dispersion of the observed groups in terms of area covered by the group: due
to the discretisation of the pedestrian localisation mechanism, we were able
to essentially count the occupied cells by a sort of convex hull computed
considering the positions of pedestrians as vertexes, analogously as for the
dispersion metric defined and employed in the simulation model. The results
of this operation estimated the dispersion of couples (Ma=0.6 m2), triples
(Ma=0.8 m2) and groups of four (Ma=1.3 m2). These values are currently
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being employed to calibrate and validate the simple group cohesion mechanism
in the conditions of relatively low density and irregular flow.

Starting from the achieved results about group proxemics dispersion, we
finally focused on a quantitative and detailed description of group spatial
layout while walking. The normalised positions of each pedestrian with
respect to the centroid and the movement direction were detected by means
of a sample of 10 snapshots for each groups (15 couples, 10 triple and 8
groups of four members) and then further analysed in order to identify the
most frequent group proxemics spatial configurations, taking into account the
degree of alignment of each pedestrian (see Figure 9). Result showed that
couple members tend to walk side by side, aligned to the each other with a
distance of 0.4 m (36% of the sample) or 0.8 m (24% of the sample), forming a
line perpendicular to the walking direction (line abreast pattern); triples tend
to walk with a line abreast layout (13% of the sample), with the members
spaced of 0.60 m. Regarding groups of four members it was not possible to
detect a typical spatial pattern: the reciprocal positions of group members
appeared much more dispersed than in the case of smaller groups, probably
to due the continuous arrangements in spatial positioning while walking.
The results are in line with the previously described spatial arrangements
related to the total observed pedestrian flows (see Section 4.2), representing
an innovative contribution for the understanding of group proxemics dynamics
in motion situation, once again in situations characterised by a relatively low
density and irregular flow.

Empirical data about high density situations would be necessary to actu-
ally tune the mechanism in moderate and high density situations, but in this
kind of scenario this observation and analysis framework would very likely
be inappropriate and ineffective. A more sophisticated and at least partly
automated (employing computer vision techniques and maybe machine learn-
ing approaches to support the detection of groups) controlled experiments
(given the high density situation, some help to the tracking and detection
approaches would probably be necessary in terms, for instance, of markers to
highlight the heads of group members) is probably needed to actually face
the challenges of acquiring empirical evidences about the behaviour of groups
in high density situations. The participation of psychologists in the definition
of such an experimental observation setting would also help in managing any
kind of tiring and learning effect due to the experimental procedure.
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5. Conclusion and Future Developments

The paper discussed an integrated approach to the analysis and synthesis
of pedestrian and crowd behaviour, in which the two aspects are actually
set in an integrated framework and they mutually benefit in different ways.
A general schema describing the conceptual pathways connecting modelling
and analysis steps was described. A case study in which modelling and
simulation approaches, specifically focused on adaptive group behaviour
enabling the cohesion of simple groups, produced a research question and some
usable techniques to crowd analysis approaches was also introduced. On the
other hand, a subsequent observation and analysis about the phenomenology
represented in the model was also described. Currently the empirical evidences
resulting from this analysis activity are being used to validate and calibrate
the model for group cohesion. In particular the simulation model correctly
reproduces some of the observed phenomena, in particular, lower walking
speeds for groups and tendency to preserve cohesion (although this aspect is
undergoing a further calibration). Additional elements that are now being
evaluated are related to the capability of the model to generate spatial patterns
resulting from the analysis.

Moreover, the analysis of the gathered video footage also highlighted
additional phenomenologies that are now being more thoroughly analysed:
in particular, patterns of “leader–follower” behaviour within groups were
detected and the introduced simulation model presents all the necessary
elements and mechanisms to represent this kind of pattern. Future works are
also aimed at supporting innovative automated analysis techniques based on
computer vision and machine learning approaches.
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(a)

(b)

(c)

Figure 9: A diagram showing most frequent positions, normalised with respect to the
centroid and the movement direction, assumed by members of couples (a), triples (b) and
groups of four members (c).
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