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I 

In multi-label classification the goal is to assign an instance to a set of different classes. This task is normally addressed either by defining a compound 

class variable with all the possible combinations of labels (label power-set methods) or by building independent classifiers for each class (binary relevance 

methods). The first approach suffers from high computationally complexity, while the second approach ignores possible dependencies a m o n g classes. 

Chain classifiers have been recently proposed to address these problems, where each classifier in the chain learns and predicts the label of one class given 

the attributes and all the predictions of the previous classifiers in the chain. In this paper w e introduce a method for chaining Bayesian classifiers that 

combines the strengths of classifier chains and Bayesian networks for multi-label classification. A Bayesian network is induced from data to: (i) represent 

the probabilistic dependency relationships between classes, (ii) constrain the number of class variables used in the chain classifier by considering 

conditional independence conditions, and (iii) reduce the number of possible chain orders. The effects in the Bayesian chain classifier performance of 

considering different chain orders, training strategies, number of class variables added in the base classifiers, and different base classifiers, are 

experimentally assessed. In particular, it is shown that a random chain order considering the constraints imposed by a Bayesian network with a simple 

tree-based structure can have very competitive results in terms of predictive performance and time complexity against related state-of-the-art 

approaches. 

1. Introduction 

In contrast with traditional (one-dimensional) classifiers, multi-

label classifiers assign each instance to a set of d classes. Multi-

label classification has received increasing attention in recent years 

as several important problems need to predict a set of multiple la

bels (Zhang et al., 2013; Vens et al., 2008; Zhang and Zhou, 2007), 

such as text classification (assigning a document to several topics), 

HIV drug selection (determining the optimal set of drugs), and 

scene classification, among others. 

T w o main types of approaches have been proposed for multi-

label classification: binary relevance and label power-set. In the bin

ary relevance approach (Zhang and Zhou, 2007), the multi-label 

classification problem is transformed into d binary classification 

problems, one for each class variable, C1;. .. ; Cd. A classifier is inde

pendently learned for each class and the results are combined to 

determine the predicted class vector. The main advantages of this 

approach are its low computational complexity and that existing 

classification techniques can be directly applied. However, it is un

able to capture the interactions between classes and, in general, 

the most likely class of each classifier will not match the most 

likely set of classes due to possible interactions among them. 

In the label power-set approach (Tsoumakas and Katakis, 2007), 

the multi-label classification problem is transformed into a single-

class scenario by defining a new compound class variable whose 

possible values are all the possible combinations of values of the 

original classes. In this case, the interactions between classes are 

implicitly considered and can be an effective approach for domains 

with a few class variables. Its main drawback, however, is its com

putational complexity, as the size of the compound class variable 

increases exponentially with the number of classes. 

To overcome the limitations of previous methods, two main 

strategies have been proposed within the field of probabilistic 



graphical models: (i) to incorporate class interactions in binary 

relevance methods, in what are known as chain classifiers 

(Dembczynski et al., 2010; Read et al., 2009), and (ii) to explicitly 

represent the dependence structure between the classes, avoiding 

the combinatorial explosion of the label power-set approach, via 

multi-dimensional Bayesian network classifiers (Bielza et al., 2011; 

van der Gaag and de Waal, 2006; Zaragoza et al., 2011a). 

Chain classifiers (Dembczynski et al., 2010, 2012; Read et al., 

2009, 2011) consist of d base classifiers which are linked in a chain, 

such that each classifier incorporates the classes predicted by the 

previous classifiers as additional attributes. In this way the class 

interactions are incorporated while maintaining an efficiency close 

to the binary relevance method. The order of the classes considered 

in the chain can affect the final results and usually an ensemble of 

random orders is used, which is computationally expensive. An

other potential drawback of this technique is that the number of 

attributes increases with the number of classes, and it can become 

problematic for certain domains. 

A multi-dimensional Bayesian network classifier (Bielza et al., 

2011; de Waal and van der Gaag, 2007; van der Gaag and de Waal, 

2006; Zaragoza et al., 2011a) is a Bayesian network (BN) of re

stricted topology designed to solve multi-dimensional (and also 

multi-label) classification problems. It consists of three subgraphs, 

one for the class variables, one for the feature variables, and a 

bridge structure that interconnects the class and feature subgraphs 

allowing only arcs from classes to features. Although several alter

natives have been proposed to learn these substructures (Bielza 

et al., 2011; Rodríguez and Lozano, 2008), it suffers from the high 

computational cost of determining the optimal network structure, 

and computing the most probable explanation for any instance 

with unknown values for the classes. 

Bayesian Chain Classifiers (BCC) (Zaragoza et al., 2011b) combine 

the previous strategies, taking advantage of their strengths and at 

the same time avoiding their main limitations. The method for 

learning these classifiers consists of two main phases: (i) obtain a 

dependency structure for the class variables, and (ii) based on 

the dependency structure, build a chain classifier. In the first phase, 

a B N that represents the probabilistic dependency relations be

tween the class variables is learned from data. This class structure 

serves as a guide for the second phase, as it constrains the possible 

variable orderings in the chain and reduces the number of classes 

considered in the chain classifier, by considering the independence 

conditions of the Bayesian network. Finally, as for chain classifiers, 

the predicted class vector is obtained by concatenating the outputs 

of all the classifiers in the chain. 

In Zaragoza et al. (2011b) it was shown that a simple BCC with a 

tree structure in the first phase, and a random class order consis

tent with the tree, using naïve Bayes as base classifier in the chain, 

was able to outperform several state-of-the-art multi-dimensional 

Bayesian network classifiers on several testbed problems with a 

lower time complexity. This paper extends the approach in 

Zaragoza et al. (2011b) presenting a deeper analysis to get insights 

into the BCC behavior. W e perform an extensive empirical evaluation 

on alternative strategies for building BCCs varying several aspects: 

1. Different training schemes. 

2. Several heuristics to define the order of the chain. 

3. Different number of classes incorporated in each classifier in 

the chain. 

4. Alternative base classifiers. 

5. Single chain vs. ensembles. 

W e also compare experimentally BCCs with binary relevance and 

standard chain classifiers (Read et al., 2009; Read et al., 2011). 

All the experiments are carried out over 9 benchmark multi-label 

data sets using four different performance metrics. 

The main contribution of this paper is the proposal and analysis 
of several extensions to the basic BCC classifier introduced in 
Zaragoza et al. (2011b). This work opens a new research avenue 
for multi-label classification research as considering dependencies 
among classes is clearly beneficial. 

The paper is organized as follows. Section 2 describes the multi-
label classification problem. Section 3 reviews related work. 
Bayesian chain classifiers are introduced in Section 4. In Section 5, 
w e analyze alternative configurations for Bayesian chain classifiers. 
Section 6 describes the experiments and discusses the results. Sec
tion 7 summarizes the main ideas of the paper and provides future 
research directions. 

2. Multi-label classifiers 

The multi-dimensional classification problem corresponds to 
searching for a function h that assigns to each instance represented 
by a vector of m features, x = (x1,..., xm), a vector of d class values 
c = (c1,... ,cd) of the d dimensional class variable (C1,..., C d): 

h : n X 1 x - - - x % m -» O C 1 x - - - x A C d 

(x1,... ,xm) I-» (c1,- - - ,cd) 

W e assume that Ci and Xj for all i = 1,..., d and all j = 1,..., m 
are discrete, and that OCi and 0 X j respectively, represent their sam
ple spaces. 

Under a 0-1 loss function, the h function should assign to each 
instance x the most likely combination of classes, that is: 

arg maxP(C 1 = c1,..., C d = cd|x) 1) 

This assignment amounts to solving a total abduction inference 
problem and corresponds to the search for the most probable 
explanation (MPE), a problem that has been proved to be an NP-
hard problem for Bayesian networks (Shimony, 1994). 

In this work, w e consider the multi-label classification problem, 
which can be seen as a particular case of a multi-dimensional clas
sification, where all class variables are binary, that is |OCi| = 2 for 
i = 1,..., d. 

3. Related work 

In this section w e briefly review the main approaches that have 
been proposed for multi-label classification. The review is orga
nized into three subsections, discussing research in multi-label 
classification, multi-dimensional Bayesian network classifiers, 
and chain classifiers, respectively. 

3.1. Multi-label classification 

As mentioned before, there are two basic approaches for multi-la
bel classification: binary relevance and label power-set (Tsoumakas 
and Katakis, 2007). Binary relevance approaches transform the mul
ti-label classification problem into d independent binary classifica
tion problems, one for each class variable, C1,..., Cd. A classifier is 
independently learned for each class and the results are concate
nated to determine the predicted class vector; the dependencies be
tween classes are not considered. The label power-set approach 
transforms the multi-label classification problem into a single-class 
scenario by defining a new compound class variable whose possible 
values are all the possible combinations of values of the original clas
ses. In this case the interactions between classes are implicitly con
sidered and can be an effective approach for domains with a few class 
variables; however for many classes this approach is impractical. 

An overview of multi-label classification is presented in 
Tsoumakas and Katakis (2007), where two main methods are 



distinguished: (a) problem-transformation methods, and (b) algo
rithm-adaptation methods. Methods in (a) transform the multi-
label classification problem into either one or more single-label 
classification problems. Methods in (b) extend specific learning 
algorithms to handle multi-label data directly. 

3.2. Mufti-dimensiona! Bqyesi'cn network cfassi/zers 

A multi-dimensional Bayesian network classifier (MBC) over a 
set V = {Z1,... ,Z„}, n P 1, of discrete random variables is a Bayes
ian network B = (g, 0 ) , where g is an acyclic directed graph with 
vertexes Z, and 0 is a set of parameters hz,pa(z) = P(z|pa(z)), where 
pa(z)is a value for the set Pa(Z) of parents variables of Z in g. B de-
fines a joint probability distribution Pg over V given by: 

Pg(z1,... ,Zn) = Y Pg(Zj|pa(Zj)) (2) 

The set V of vertexes is partitioned into two sets % = 
{C1,...,Q},dP1, of class variables and %, = {X1,...,Xm}, 
m P 1, of feature variables (d + m = n). The set X of arcs is also 
partitioned into three sets, X c A ^ X & Y , such that .4c c % x % is 
composed of the arcs between the class variables, ̂ c V^ x V^ 
is composed of the arcs between the feature variables and finally, 
X&Y C % % y? is composed of the arcs from the class variables to 
the feature variables. The corresponding induced subgraphs are 
9c = (%,-&),(/.? = (V^Ar) and %* = (V, A ^ ) , called respectively 
cfcss, feature and bn'dge subgraphs (see Fig. 1). 

Different graphical structures for the class and feature sub
graphs may lead to different families of MBCs. van der Gaag and 
de Waal (2006) learn frees for both subgraphs. In de Waal and 
van der Gaag (2007) they analyze the conditions for the optimal 
recovery of pofy-tree structures in both subgraphs. 

Rodríguez and Lozano (2008) extend poly-trees to k-DB struc
tures for class and features subgraphs. 

Bielza et al. (2011) describe a general model in which any 
Bayesian network structure is allowed in the three subgraphs. 
Learning from data algorithms cover many possibilities: wrapper, 
filter and hybrid scores with different search strategies. Direct 
algorithms for learning these simpler MBCs, both from a wrapper 
point of view (Borchani et al., 2010) and from a filter Markov blan
ket-based perspective (Borchani et al., 2012) have been recently 
proposed. In Zaragoza et al. (2011a), the authors introduce a 
two-step method for learning multi-dimensional Bayesian net
work classifiers based on mutual information or dependency be
tween the classes and the features variables. 

3.3. Chain cfassifiers 

Read et al. (2009) introduce chain classifiers as an alternative 
method for multi-label classification that incorporates class depen
dencies, while keeping the computational efficiency of the binary 
relevance approach. A chain classifier consists of d base binary 

Fig. 1. A multi-dimensional Bayesian network classifier structure, showing the 

three subgraphs: classes, features and bridge. 

classifiers which are linked in a chain, such that each classifier 
incorporates the classes predicted by the previous classifiers as 
additional attributes. Thus, the feature vector for each binary clas
sifier is extended with the class values (labels) of all previous clas
sifiers in the chain. Each classifier in the chain is trained to learn 
the association of label C, given the features augmented with all 
previous class labels in the chain, C1,C2,...,c,_1. At classification 
time, the process starts at C1, and propagates the predicted classes 
along the chain such that for c, it computes 
arg maxqP(c,|x, c1, C2,..., c,_1). As in the binary relevance approach, 
the class vector is determined by concatenating the outputs of all 
the binary classifiers in the chain. 

In Read et al. (2009), the authors use several chain classifiers by 
changing the order for the labels, building an ensemble of chain clas
sifiers. Thus, m chain classifiers are trained, by varying the training 
data and the order of the classes in the chain (both are set randomly). 
The final label vector is obtained using a voting scheme: each label c, 
receives a number of votes from the m chain classifiers, and a thresh
old on this number is used to determine the final predicted 
multi-label set. They used support vector machines as base binary 
classifier, and evaluate experimentally their method with 12 mul
ti-label data sets, comparing it with binary relevance and other 
ensemble algorithms. The classifier chains outperformed binary rel
evance in terms of accuracy for most data sets, with some increase in 
training time. However the results were not always the best in terms 
of accuracy of their ensemble against other ensemble methods, with 
some advantage in training and classifications times, as expected. 

Recently, Read et al. (2011) have presented several extensions 
of their previous work. In particular, they propose some improve
ments to make the ensemble learning process more efficient, such 
as taking random subsets of attributes and instances. The 
experimental results show a significant reduction on running time 
with almost the same accuracy. They also present additional 
experiments and compare chain classifiers and ensembles of chain 
classifiers with alternative techniques. 

Dembczynski et al. (2010) introduce probabilistic chain cfassi/zers 
(PCCs), by basically putting chain classifiers under a probabilistic 
framework. Using the chain rule of probability theory, the proba
bility of the vector of d class values c = (c1,...,Q) given the feature 
vector x can be written as: 

P(c|x) =P(c1|x)Y P(Cj|C1,...,Cj_1,x). (3) 

A PCC estimates the joint probability of the classes, providing better 
estimates than the chain classifiers, but with a much higher 
computational complexity. In fact, the experiments reported by 
Dembczynski et al. (2010) are limited to 10 class variables. 

They analyze different scoring functions, and argue that for 
certain loss functions considering class dependencies can be 
important, and not for others, as confirmed by their experiments 
with artificial data. For independent classes, the results in terms 
of certain loss functions are almost the same for binary relevance, 
chain and probabilistic chain classifiers; while for dependent clas
ses, binary relevance has competitive performance for certain loss 
functions, and it is clearly outperformed for certain loss functions 
by the other methods (that consider label dependencies). Their 
experiments with artificial and benchmark data sets show that 
PCC and its corresponding ensemble, EPCC, have a better perfor
mance than the chain classifier and the ensemble of chain classifi
ers, for some loss scoring functions. 

In Zhang and Zhang (2010), P(c|x) is decomposed according to a 
Bayesian network: P(c|x)=Q|L1f(c,lpa(c,),x). Finding pa(c,) is 
complex under the setting of (many) continuous features, whose 
effect on the labels may be nonlinear. Thus, this is simplified as 
follows. First, d classifiers are built for all labels independently, 



from a nonlinear regression model of x over ci, whose output is 
thresholded to yield the predicted labels. Second, from the corre
sponding errors for each label, a Bayesian network structure is 
learnt. The links found here are incorporated as pa(ci) in the sought 
Bayesian network. Finally, a PCC is implemented according to an 
order implied by the network. 

As shown in Dembczynski et al. (2010), a method that considers 
class dependencies under a probabilistic framework can have a sig
nificant impact on the performance of multi-label classifiers. How
ever, both MBCs and PCCs have a high computational complexity, 
which limits their applicability to high dimensional problems. In 
the following section w e describe an alternative probabilistic 
method which also incorporates class dependencies while being 
very efficient at the same time. Unlike Zhang and Zhang (2010), 
w e directly work on the original class variables (and not over the 
regression errors), where w e find a simple tree structure. The 
feature variables are assumed to be discrete. W e allow to have 
ensembles of classifiers. 

4. Bayesian chain classifiers 

In this section w e consider the multi-dimensional classification 
problem under a Bayesian network framework; and in particular 
w e analyze the assumptions implied by a Bayesian chain classifier 
approximation. 

If w e apply the chain rule of probability theory, w e can rewrite 
Eq. (1) as: 

arg m a x P(c1|c2,... , cd,x)P(c2¡c3,... ,cd,x) - - P(cd|x) (4) 

If w e assume w e can represent the joint probability distribution 
of the class variables given the features as a Bayesian network, 
then w e can simplify Eq. (1) by considering the independencies im
plied by the Bayesian network; so that only the parents of each 
class variable are included in the chain, and all other previous clas
ses according to the chain order are eliminated. So w e can write Eq. 
(4) as: 

argmax Y P(ci|pa(Ci),x) (5) 

where Pa(Ci) are the parents of class i in the Bayesian network. 
Next w e make a further simplification by assuming that the 

most probable joint combination of classes can be approximated 
by just concatenating the individual most probable classes from 
the base classifier. That is, w e solve the following set of equations 
as an approximation of Eq. (1): 

arg m a x P(c1|pa(C1),x) 

arg m a x P(c2¡pa(C2),x) 

arg m a x P(cd|pa(Cd),x) 

This last approximation corresponds to a Bayesian chain classi
fier. Thus, a BCC makes two basic assumptions: 

1. The class dependency structure given the features can be repre
sented by a Bayesian network. 

2. The most probable joint combination of class assignment (total 
abduction) is approximated by the concatenation of the most 
probable individual classes. 

The first assumption is reasonable if w e have enough data to obtain 
a good approximation of the class dependency structure, and 
assuming that this is obtained conditioned on the features. With 
respect to the second assumption, it is well known that the total 

abduction or most probable explanation is not always equivalent 
to the maximization of the individual classes. However, this 
assumption, also considered by chain classifiers and PCCs, is less 
strong than that assumed by the binary relevance approach. 

In this setting, a chain classifier can be constructed by inducing 
first the class that does not depend on any other class and then 
proceed with its children. W e can: 

* Create an (partial) order of classes in the chain based on the 
dependencies between classes given the features. Assuming 
that these dependencies can be represented as a BN, the chain 
structure complies with the structure of the BN, such that w e 
can then start building base classifiers for the classes without 
parents, and continue with their children classes, and so on. 
W e can further simplify the problem by considering the mar
ginal dependencies between classes as a first approximation 
(without conditioning on the features) to obtain an order for 
the chain classifier, and then induce base classifiers considering 
such an order. 

* Consider conditional independencies between classes to create 
simpler base classifiers. In this case, construct d classifiers con
sidering only the parent classes of each class. For a large num
ber of classes this can be a huge reduction as normally w e can 
expect to have a limited number of parents per class. 

The general idea for building a BCC is illustrated in Fig. 2. 
W e first introduce the simplest option to build a BCC, and then 

present several possible extensions. 

4.1. Tree naïve Bayesian chain classifier 

The simplest Bayesian chain classifier considers only one parent 
per class in a chain. This can be solved by obtaining the skeleton of 
a tree-structured BN for the classes using Chow and Liu’s algorithm 
(1968), that is, a maximum weight spanning tree (MWST). This algo
rithm builds the structure that maximizes the likelihood of the 
data over all possible trees. The weights are computed as the mu
tual information between pairs of variables. 

Chow and Liu’s algorithm does not give us the directions of the 
links, however, w e can build a directed tree by taking any class 
(node) as root of a tree and assigning directions to the arcs starting 
from this root node to build a directed tree The chaining order of 
the base classifiers is given by traversing the tree following an 
ancestral ordering. 

For d classes w e can build d trees. Then w e can choose an ances
tral ordering from each tree and build a chain classifier. Finally, w e 

Fig. 2. An example of a BCC: (a) a BN that represents the class dependency 

structure; (b) set of naive Bayes classifiers, one for each class. Each base classifier 

defined for Ci includes the set of attributes, X1;. . . ; Xn, plus its parents in the BN as 

additional attributes. 



can combine the chain classifiers in an ensemble (if d is very large 
w e can limit the number of chains by selecting a random subset of 
trees). 

Once the dependencies between classes have been taken into 
account to generate a chain classifier, w e only need to define the 
base classifier. Our baseline approach is to use a naïve Bayes clas
sifier, see Fig. 3. W e call this approach a tree naïve Bayesian chain 
classifier (TNBCC). Each naïve Bayes classifier for Ci has as attributes 
all the features and also Pa(Ci) according to the BN structure. 
Therefore for each base classifier w e solve argmaxciP(ci|pa(Ci),x), 
which shapes the chain classifier (as in Eq. (5)). 

W e can summarize the algorithm to build the TNBCC as follows. 
Given a multi-label classification problem with d classes: 

1. Build an undirected tree to approximate the dependency struc
ture among class variables. 

2. Create an order for the chain classifier by randomly selecting 
one class as the root of the tree and assigning the rest of the 
links in order. 

3. For each class variable (node) in the chain, build a naïve Bayes 
classifier for class Ci which has as attributes its parent Pa(Ci) 
and all the features x, taking advantage of the conditional inde
pendence properties. 

4. To classify a new instance concatenate the outputs of the chain. 

This is a very fast and easy way to build chain classifiers, which 
represents the simplest alternative for a BCC. Other, more complex 
alternatives, are explored in the following section. 

5. Alternative Bayesian chain classifiers 

The basic, tree naïve Bayesian chain classifier can be extended 
in different ways. W e consider five dimensions: 

1. The training scheme. 
2. The order in which the classes are considered in the chain. 
3. The number of classes in each base classifier (chain complexity). 
4. The base classifier. 
5. Whether to use one chain or an ensemble of chains. 

In the following sections w e analyze each one in detail. 

5.1. Training scheme 

There are at least two options for training chain classifiers: 

* The first approach considers the predicted output of the previ
ous classifiers as training input for the next classifier in the 
chain. The rationale is to build a new classifier considering what 
will be the ‘‘actual’’ output of the first classifiers during the 

Fig. 3. An example of a Tree Naïve Bayesian Chain Classifier where each node (C6, 

for instance) in the chain yields a naïve Bayesian classifier which has as attributes 

its parent class (C3) and all the features (X1;. . . ; Xn). 

testing phase. The disadvantage of this approach is that a poor 
classifier will tend to produce erratic predictions and conse
quently affect the subsequent classifiers. 

* The second approach constructs classifiers in the chain consid
ering the actual class values given in the original training set. 
The rationale is that using the ‘‘real’’ value (as opposed to the 
predicted value by the previous classifiers) will tend to produce 
more accurate classifiers. 

Section 6.4 describes the performance results for both approaches. 

5.2. Order of classes in the chain 

For a tree naïve BCC, where w e have a tree-based structure for 
the classes, there are different ways of deciding which node to be 
selected as the root of the tree, from which the chain order can 
be directly obtained. Here w e propose several alternatives: 

* Random choice. A class node is randomly selected as the root of 
the tree. For example, in Fig. 3, C3 is selected to produce the tree 
to the left. 

* Select the node with the largest number of incident edges. In 
Fig. 3 it could be C3 or C6, both of which have three associated 
links. 

* Construct a base classifier for each class independently and 
select the class with the best classification accuracy as the root 
of the tree. 

* Construct a base classifier for each class independently, sort the 
classes according to their classification accuracy and use that 
order for the chain regardless of the Bayesian network. 

In Section 6.4 w e describe the results of tests with different options 
for the chain order. 

5.3. Complexity of the chain 

The main idea of constructing a (class) Bayesian network 
representing the dependencies among classes is to restrict the 
number of classes to consider in the base classifiers to only those 
related to each class and to help to choose a suitable chain order. 
The number of classes considered for each classifier depends on 
the structure of the class Bayesian network. 

* The simplest approach is to consider a single parent in a tree-
based structure (restricting the class Bayesian network 
structure to a tree), which is the approach taken by the tree 
naïve BCC. 

* By still working with a tree structure, an alternative approach is 
to consider all the class ancestors in the tree as input for the 
next classifier, providing additional information from indirectly 
related classes. 

* Other approach is to decide on a traversing order of the class 
Bayesian network or choosing a random order of classes as 
suggested in Read et al. (2009), and using all the previous 
classes in the classifier chain. 

* Alternatively more complex class structures could be built, such 
as polytrees or multi-connected networks. In both cases, each 
base classifier could have several parents which would be 
incorporated as additional attributes in the base classifiers. An 
example is shown in Fig. 2. 

For multi-label classification problems where there can be a large 
number of classes, it is important to see if considering a small 
subset of related classes can produce competitive results against 
a more expensive strategy that uses all the previous classes in 
the chain. W e test these alternatives in Section 6.3.3. 



5.4. Base classifier 

There are m a n y different choices for constructing each classifier 

of the chain. So far, the s a m e classifier has been used for all the 

classifiers of the chain, but nothing prevents us from using differ

ent classifiers along the chain. A m o n g the possible choices, T N B C C 

uses a naïve Bayes classifier, which has the advantage of being sim

ple and easy to implement. In this paper w e also use support vector 

machines to assess the effect o n the predictive performance of a 

generally stronger, although computationally m o r e expensive, 

classifier. A comparison of these base classifiers is described in 

Section 6.3.4. 

5.5. One chain vs. an ensemble of chains 

Table1 
Multi-label data sets used in the experiments and associated statistics. N is the size of 
the data set, d is the number of binary classes or labels, m is the number of features. + 

No. Data set 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Delicious 

N 

593 

978 

28596 

7395 

d 

14 
45 
53 

22 

101 

m 

72+ 
294+ 

103+ 

1449 

500 

120+ 

500 

Domain 

Music 

Vision 

Biology 

Text 

Text 

Text 

Text 

Media 

Text 

Lastly, there is the choice of whether to use a single chain or an 

ensemble of chain classifiers. Ensembles have proved to be an 

effective mechanism to improve the performance metrics of simple 

classifiers at the expense of using m o r e computational resources. 

D u e to the nature of several multi-label problems (large n u m b e r 

of data, attributes and classes), it is relevant to determine whether 

finding a good chain order could produce equivalent performance 

results to an ensemble of ra n d o m chain orders, with significant 

savings in computational resources. This is analyzed in Section 6.4. 

6. Empirical evaluation 

In this section w e empirically evaluate different choices for 

building BCCs and compare t h e m against other state-of-the-art 

multi-label classifiers. 

6.1. Data sets 

Different Bayesian chain classifiers were tested on 9 benchmark 

multi-label data sets1; each of them with different dimensions rang

ing from 6 to 983 labels, and from about 600 examples to m o r e than 

43; 000. All class variables of the data sets are binary, however, in 

s o m e of the data sets the feature variables are numeric. In these 

cases w e used a static, global, supervised and top-down discretiza

tion algorithm (Cheng-Jung et al., 2008). The details of the data sets 

are summarized in Table 1. 

6.2. Evaluation metrics 

Several metrics have been recently proposed to evaluate the 

performance of multi-label classifiers. They basically range from 

considering the performance of the multi-label classifier over each 

class independently of the rest, to considering the performance of 

all the classes at the same time. For the purpose of comparison w e 

used four different multi-label evaluation measures (Bielza et al., 

2011; Read et al., 2009): 

1. Mean accuracy over the d class variables (accuracy per label): 

G-Acc 

M-Acc Accj 
j=1 

%,cij) (6) 

where ¿(c i j,cij) = 1 if c i j = cij and 0 otherwise, and Ci denotes the 
Cj class value outputted by the model for instance and cij is its 
true value. 

2. Global accuracy over the d-dimensional class variable (accuracy 
per example, also called subset zero-one loss): 

1 The data sets can be found at http://mulan.sourceforge.net/datasets.html, <http:// 

mlkd.csd.auth.gr/multilabel.html> and <http://www.cs.waikato.ac.nz/ml/weka/ 

index.html>. 

N 
^ ( c i,ci) 7) 

where ¿(c¡,ci) = 1 if c¡ = ci and 0 otherwise. Therefore, w e call 
for a total coincidence on all the components of the vector of 
predicted classes c¡ and the vector of real classes ci. 

3. Multi-label accuracy, also called Jaccard measure, as defined in 
Tsoumakas and Katakis (2007): 

M L - Acc 
IciAcl 1 

(8) 

where in the numerator w e count the n u m b e r of coincidences of 

the t w o vectors (real and predicted), and in the denominator w e 

count the n u m b e r of labels covered by s o m e of both vectors. 

4. F-measure is the harmonic m e a n between precision and recall: 

F - measure 
1 d^ 2pjrj 

(9) 

where pj and rj are the precision and recall for Cj. Here, the 

F-measure is calculated per label and then averaged. 

6.3. Experiments and results 

In Zaragoza et al. (2011b) it w a s s h o w n that the simplest BCC, a 

TNBCC, w a s able to outperform nine state-of-the-art multi

dimensional Bayesian network classifiers (including: tree–tree, 

polytree–polytree, pure-wrapper, pure-filter and hybrid, a m o n g 

others) o n several testbed problems with a significantly lower time 

complexity. In this paper, w e perform several experiments to eval

uate different variants of BCCs, and compared t h e m against other 

multi-label classifiers, such as binary relevance and chain 

classifiers: 

1. T N B C C against the binary relevance method (Section 6.3.1). 

2. Different chain orders (Section 6.3.2) and chain complexities 

(Section 6.3.3). 

3. O n e vs. all previous classes in the tree incorporated in each base 

classifier (Section 6.3.3). 

4. Different base classifiers (Section 6.3.4). 

5. Different heuristics for selecting the root node (Section 6.4). 

6. Different training techniques for chain classifiers (Section 6.4). 

7. A single chain versus an ensemble of chains (Section 6.4). 

W e used 10-fold cross-validation for the five smaller data sets and 

3-fold cross-validation for the larger data sets. W e repeated this 

process 1 0 times for the smaller data sets and 5 times for the larger 

ones and reported the average results. W e performed statistical 

significance tests using a t-test for the five smaller data sets. For 

the larger data sets, however, w e used Wilcoxon rank s u m test, 

since w e performed only a small n u m b e r of runs. In both cases 

1 

http://mulan.sourceforge.net/datasets.html
http://mlkd.csd.auth.gr/multilabel.html
http://mlkd.csd.auth.gr/multilabel.html
http://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.cs.waikato.ac.nz/ml/weka/index.html


w e used ¼ 0:05. If the differences in the results are statistically 

a 
significant an ’’ ’’ symbol is shown in the tables. In Tables 2–6 

the best results for each database and for each evaluation metric 

are shown in bold. 

W e used the naïve Bayes and S V M implementations of W e k a 

(Hall et al., 2009). 

6.3.1. TNBCC against binary relevance 

W e start by comparing the TNBCC approach with a baseline 

algorithm that constructs independent classifiers for each class – 

binary relevance method (BRM). The results are presented in 

Table 2 for the four evaluation metrics. 

From the table, it can be seen that in average, the TNBCC 

approach obtained better results than the baseline algorithm. 

Moreover, for most of the data sets the results are statistically 

significant. However, for the Medical and TMC2007 data sets the 

independent approach obtained better results than TNBCC for 

some metrics. W e believe that in these data sets the classes are 

fairly independent between each other. To corroborate this 

hypothesis, w e constructed a (Pearson) correlation matrix between 

classes for all the data sets. From this analysis, w e found that for 

the data sets Scene, Medical and TMC2007 there is almost no cor

relation between classes. 

6.3.2. TNBCC against a random tree and a random chain 

The next experiment compares the performance of a TNBCC 

against a random tree that is built without considering the depen

dencies between classes, and also a random chain of classifiers as 

in Read et al. (2009). Table 3 shows that for the four different 

measures. 

The results with the TNBCC strategy are, as expected, better 

than the ones using a random tree. W h e n compared to a random 

chain as in Read et al. (2009) w e can see that TNBCC achieves 

better performance results in most measures and data sets: (a) in 

M-Acc, TNBCC significatively outperforms a random chain in two 

data sets and is significatively beaten by a random chain in two 

other data sets (i.e. two wins and two losses); (b) in G-Acc, there 

are three wins vs. one loss; (c) in ML-Acc, w e obtain three wins 

and two losses, and (d) in F-measure, four wins and no losses are 

found. O n average, TNBCC is superior to a random tree and a ran

d o m chain for three of the four measures. 

Table 2 

Tree naïve Bayesian chain classifiers (TNBCC) against binary relevance (BRM). 

Data set 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Delicious 

Average 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Delicious 

Average 

M-Acc 

0.8478 

0.9497* 

0.8707* 

0.9756 

0.7984 

0.8911* 

0.9285* 

0.6927* 

0.8912* 

0.8718 

0.6677 

0.8310 

0.6620 

0.2083 

0.2004* 

0.0373 

0.1433 

0.3349* 

0.1957 

0.4836* 

0.1874 

0.0825 

0.3973 

G-Acc 

0.3922 

0.7312* 

0.2688 

0.0010 

0.0675* 

0.0004 

0.2030 

F-measure 

0.7661 

0.8700* 

0 5718 

0.1516 

0.4798* 

0.1885* 

0.0955* 

0.0880 

0.3648 

BRM 

0.2464* 

0.0007 

01384* 

0.0603 

0.0865* 

0.1470 

The results show that using information about the dependen

cies of the classes, even by considering a single parent, clearly 

benefits the performance of the classifier. 

6.3.3. Number of parents for each base classifier 

The next experiment compares TNBCC against a more elabo

rated strategy. Given that TNBCC only uses the parent node as a 

n e w attribute for the chain, in this experiment w e incorporate all 

previous classes in the path towards the root of the tree as addi

tional attributes. The idea is to incorporate more contextual infor

mation to each classifier, considering not only the directly relevant 

class but also all the indirectly related classes. W e call this scheme 

a path-BCC. Table 4 presents the results of comparing the TNBCC 

approach and the path-BCC version. 

The results show that using all the precedent classes as attri

butes contributes to statistically significant better results (two 

wins in M-Acc, one win in G-Acc, four wins in ML-Acc and five wins 

in F-measure), although in some data sets the best significant 

results are obtained when using a single parent (one win in 

M-Acc, G-Acc and F-measure, and two wins in G-Acc). The path-

BCC is still computationally more efficient than considering all 

the previous classes as in a random chain classifier. 

6.3.4. Different base classifiers 

So far, w e have used in all the experiments naïve Bayes as base 

classifier. In this experiment w e want to evaluate the relevance of 

the base classifier, so w e compare the results obtained by tree 

naïve BCC with a tree BCC that uses kernel support vector m a 

chines (TSVMBCC). W e also present a comparison with a chain 

classifiers, including a chain with N B as base classifier (NB-CC) 

and a chain with SVMs (SVM-CC) as in Read et al. (2009). The re

sults are presented in Tables 5 and 6. 

From these results w e can notice that using a more elaborate 

classifier yields better performance on average; however, as it hap

pens with other classification problems, a simpler classifier some

times obtains the best results. This applies to both, the tree BCCs 

and the chain classifiers. It should be noticed that TSVMBCC and 

SVM-CC tend to produce better results on the larger data sets. 

An important result is that TSVMBCC is in most cases superior 

for all measures and data sets to the SVM-CC approach, which is 

basically the same as the chain classifier in Read et al. (2009) 

and Read et al. (2011). 

6.4. Other tests 

W e performed other experiments, but due to space limitations, 

w e only describe here our main results. In particular, during the 

training phase of a chain classifier, the learning method can use 

the predicted values of the previous classes in the chain or the ori

ginal values as previously discussed in Section 5.1. In our experi

ments, in most cases training with the original data produces 

better results, although for the F-measure the results are very 

similar. 

In all the previous experiments, once a tree-based structure was 

built with Chow and Liu’s algorithm, the root node was randomly 

selected. W e tested different strategies for selecting the root node 

and found that using an ordered derived from the dependencies of 

the classes is relevant; however, once the tree-structure is 

obtained, there is no significant difference between which node 

to select as root. 

W e also compared the results of tree naïve BCC and an ensem

ble of ten TNBCCs, denominated ETNBCC, with different roots in 

the tree selected randomly and found that ETNBCCs performs 

better than the single TNBCC specially in the larger data sets. The 

difference, however, is not very large considering that it is, in this 

case, ten times slower. 

http://MediaMill


Table3 

Experimental comparison between TNBCC, a random tree (Random Tree), and a random chain (Random Chain). ‘‘*’’ means significant difference between TNBCC and Random Tree 

and ‘‘f’’ means significant difference between TNBCC and Random Chain. (Results are not reported for Delicious because the Random Chain did not finish after one week) 

Data set 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Average 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Average 

M-Acc 

0.848 

0.871 *t 

0976 

0.891 *t 

0.929* 

0692 

Ml-Acc 

0.668 

0.831 

0.662*f 

0316f 

0.483f 

0.200*f 

0.030 

0.425 

Random Tree 

0845 

0949 

0862 

0974 

0796 

0890 

0927 

0699 

0868 

0665 

0828 

0647 

0314 

0205 

0.485 

0.010 

0419 

Random Chain Random Tree 

0843 

0.953 

0.812f 

0.938 

0.714f 

0.872 

0.218f 

0.095f 

G^K 

0.392f 

0.269 

0.230f 

0.001 

0.136f 

0.067 

0.000 

0.228 

F-meoiure 

0.766 

0.572*f 

0.072f 

0.152 

0.480*f 

0.189*f 

0092 

0388 

0725 

0263 

0228 

0.001 

0.144 

0067 

0227 

0762 

0868 

0550 

0070 

0.150 

0474 

0.181 

0.086 

Random Chain 

0376 

0.746f 

0242 

0.182 

0.001 

0.122 

0.065 

0.000 

0217 

0399 0393 

0756 

0.871 

0521 

0.053 

0.147 

0.161 

0.089 

0382 

Table 4 

Experimental comparison of TNBCC and path-BCC. 

Data set 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Delicious 

Average 

Average 

M-Acc 

0950 

0.976 

0.798 

0.891* 

0928 

Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

MediaMill 

Delicious 

0.483 

0.200 

0.030 

0.143 

0.851 

0.951 

0.885* 

0.974 

0.931 

0.848* 

0906 

0.892 

0.679 

0.845* 

0.697* 

0371* 

0208 

0470 

0.093, 

0.138 

0.410 

G^K 

0.001 

0.136* 

0.068* 

0.000 

0.000 

F-meosure 

0.480* 

0.189 

0.088 

Path-BCC 

0399 

0.738 

0.273 

0271* 

0.001 

0.000 

0.000 

0.209 

0.775 

0.875 

0.652* 

0.088* 

0.162* 

0.474 

0212* 

0.226* 

0.084 

0394 

6.5. Discussion 

F r o m the experiments w e can d r a w the following conclusions: 

Tables 

Mean accuracy and global accuracy of TNBCC, TSVMBCC (BCC with support vector 

machine as base classifier), NB-CC and SVM-CC (chain classifier as in Read et al. 

(2009) with naive Bayes and support vector machine as base classifiers). ‘‘*’’ means 

significant difference between TNBCC and SVM-CC, ‘‘f’’ means significant difference 

between TSVMBCC and SVM-CC, ‘‘§’’ means significant difference between TNBCC and 

NB-CC and ‘‘$’’ means significant difference between TSVMBCC and NB-CC. (Results 

are not reported for Mediamill and Delicious because the SVMs did not finish 

after one week.) 

Data set 

Average 

M-Az 
Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 
Bibtex 
Mediamill 
Delicious 

Average 

G-Acc 
Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 
Bibtex 
Mediamill 
Delicious 

0.848* 
0.950 
0.871 *§ 

0.976 

0.798 

0.891§ 

0.928 

0.692 

0.891 

0.895 

0.392*§ 

0.731 

0.269* 

0.230§ 

0.001 

0.136 

0.000 

0.000 

0.856f 

0.991 

0.942$ 

0.944$ 

0.985 

-
-
0.927 

0.681$ 

0.124$ 

0.313$ 

0.151$ 

-
-
0.355 

0.872 

0.953$ 

0.856 

0.975 

0.812§ 

0.883 

0.938 

0.714§ 

0.826 

0.944 

0.940 

0.943 

0.985 

-

0.376 

0.746§$ 

0.242$ 

0.182 

0.001 

0.122 

0.000 

0.724f 

0.651* 

0.108* 

0.311* 

0.150* 

-

Finding dependencies a m o n g classes guides the chaining 

process a n d achieves better evaluation performance, even with 

a simple tree-based structure. 

T h e basic T N B C C is competitive with state of the art chain 

classifiers and at the s a m e time very efficient. 

O n c e the dependency structure a m o n g classes is defined, 

choosing a particular root n o d e is apparently not relevant. 

Incorporating information of indirectly relevant classes does 

m a k e a difference. Although it requires m o r e computational 

resources it is still less expensive than a chain classifier that 

considers all the previous classes in the chain. 

It is not always necessary to build a complete chain classifier as 

for s o m e d o m a i n s the classes are independent b e t w e e n each 

other. 

Stronger base classifiers produce stronger BCCs. 

A tree B C C with S V M s as base classifiers has in average superior 

performance than the standard chain classifier that includes all 

previous classes in the chain as in Read et al. (2009). 

Ensembles of tree naïve B C C s (ETNBCCs) appear to perform 

better than single T N B C C s . 



TableG 

Multilabel accuracy and F-measure of TNBCC, TSVMBCC (BCC with support vector 

machine as base classifier), NB-CC and SVM-CC (chain classifier as in Read et al. 

(2009) with naive Bayes and support vector machine as base classifiers). ‘‘*’’ means 

significant difference between TNBCC and SVM-CC, ‘‘t’’ means significant difference 

between TSVMBCC and SVM-CC, ‘§’’ means significant difference between TNBCC and 

NB-CC and ‘‘$’’ means significant difference between TSVMBCC and NB-CC. (Results 

are not reported for Mediamill and Delicious because the SVMs did not finish 

after one week.) 

Data set 

Ml-Acc 
Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

Mediamill 

Delicious 

Average 

F-measure 
Emotions 

Scene 

Yeast 

Medical 

Enron 

TMC2007 

Bibtex 

Mediamill 

Delicious 

Average 

0.668* 

0.831* 

0.662*§ 

0.316§ 

0.200§ 

0.766* 

0.870 

0.572*§ 

0.072§ 

0.480§ 

0.189§ 

TSVMBCC 

0.630 

0.721 

0.616 

0.7711$ 

0.424$ 

0.605$ 

0.339$ 

-
-
0.586 

0.542t 

0.406$ 

0.246$ 

0.612$ 

0.354t$ 

-
-
0.528 

0.824$ 

0.218§ 

0.095 

-

0.871$ 

0.053 

0.089 

-

SVM-CC 

-
-

0.706 

0.470 

0.377* 

0.201 

0.576* 

0.300 

-
-

7. Conclusions and future work 

In this paper w e have introduced Bayesian chain classifiers for 

multi-label classification problems. W e experimented with the 

simplest model for a BCC, considering a tree structure for the class 

dependencies and a simple naïve Bayes classifier as base classifier. 

The proposed approach is simple and easy to implement, and yet is 

highly competitive against multidimensional Bayesian network 

classifiers (as shown in Zaragoza et al. (2011b)) and also against 

chain classifiers. In this paper, w e extend our previous work with 

a more thorough analysis of BCCs and considering several alterna

tive strategies for building them. 

It is shown that inducing an undirected tree and randomly 

picking a class as root of this tree is enough to produce competitive 

results, both in terms of accuracy and time complexity, against 

other state-of-the-art algorithms. W e proposed and analyzed 

experimentally several alternatives to the basic BCC, showing that 

some extensions do make a difference in performance with a small 

increment in complexity; while other do not have a significant 

impact. 

BCC opens a new research avenue for multi-label classification 

research as considering dependencies among classes is clearly 

beneficial, as shown in this paper. 

As future work w e will explore alternative models considering 

more complex dependency structures, identifying independent 

classes to simplify the chaining process, and more alternatives 

on h o w to incorporate other related classes to improve the 

performance results. 

Acknowledgments 

The authors wish to acknowledge FONCICYT for the support 

provided through Project No. 95185 (DyNaMo). 

Also, this research has been partially supported by the Spanish 

Ministry of Economy and Competitiveness, projects TIN2010-

20900-C04-04, Consolider Ingenio 2010-CSD2007-00018 and Cajal 

Blue Brain. 

References 

Bielza, C., Li, G., Larrañaga, P., 2011. Multi-dimensional classification with Bayesian 

networks. International Journal of Approximate Reasoning 52, 705–727. 

Borchani, H., Bielza, C., Larrañaga, P., 2010. Learning CB-decomposable multi

dimensional Bayesian network classifiers. In: Proceedings of the Fifth European 

Workshop on Probabilistic Graphical Models (PGM’10), pp. 25–32. 

Borchani, H., Bielza, C., Martínez-Martín, P., Larrañaga, P., 2012. Markov blanket-

based approach for learning multi-dimensional Bayesian network classifiers: an 

application to predict the European quality of life-5dimensions (EQ-5D) from 

the 39-item Parkinson’s disease questionnaire (PDQ-39). Journal of Biomedical 

Informatics 45, 1175–1184. 

Cheng-Jung, T., Chien-I, L., Wei-Pang, Y., 2008. A discretization algorithm based on 

class-attribute contingency coefficient. Information Sciences 178 (3), 714– 

731. 

Dembczynski, K., Cheng, W., Hüllermeier, E., 2010. Bayes optimal multilabel 

classification via probabilistic classifier chains. In: Proceedings of the 27th 

International Conference on Machine Learning (ICML-10). Omnipress, pp. 279– 

286. 

Dembczynski, K., Waegeman, W., Hüllermeier, E., 2012. An analysis of chaining in 

multi-label classification. In: European Conference on Artificial Intelligence, pp. 

294–299. 

de Waal, P.R., van der Gaag, L.C., 2007. Inference and learning in multi-dimensional 

Bayesian network classifiers. In: European Conference on Symbolic and 

Quantitative Approaches to Reasoning under Uncertainty, Lecture Notes in 

Artificial Intelligence, vol. 4724, pp. 501–511. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I., 2009. The 

W E K A data mining software: an update. A C M SIGKDD Explorations Newsletter 

11 (1), 10–18. 

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2009. Classifier chains for multi-label 

classification. In: Proceedings of the European Conference on Machine Learning 

and Knowledge Discovery in Databases (ECML/PKDD). Lecture Notes in 

Computer Science, vol. 5782. Springer, pp. 254–269. 

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2011. Classifier chains for multi-label 

classification. Machine Learning 85, 333–359. 

Rodríguez, J.D., Lozano, J.A., 2008. Multi-objective learning of multi-dimensional 

Bayesian classifiers. In: Proceedings of the Eighth International Conference on 

Hybrid Intelligent Systems, pp. 501–506. 

Shimony, S.E., 1994. Finding MAPs for belief networks is NP-hard. Artificial 

Intelligence 68 (2), 399–410. 

Tsoumakas, G., Katakis, I., 2007. Multi-label classification: an overview. 

International Journal of Data Warehousing and Mining 3 (3), 1–13. 

van der Gaag, L.C., de Waal, P.R., 2006. Multi-dimensional Bayesian network 

classifiers. In: Third European Conference on Probabilistic Graphical Models, pp. 

107–114. 

Vens, C., Struyf, J., Schietgat, L., Dz~eroski, S., Blockeel, H., 2008. Decision trees for 

hierarchical multi-label classification. Machine Learning 73 (2), 185–214. 

Zaragoza, J.C., Sucar, L.E., Morales, E.F., 2011a. A two-step method to learn 

multidimensional Bayesian network classifiers based on mutual information 

measures. In: Proceedings of the 24th International Florida Artificial 

Intelligence Research Society Conference (FLAIRS). AAAI Press, pp. 644–649. 

Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P., 2011. Bayesian chain 

classifiers for multidimensional classification. In: International Joint Conference 

on Artificial Intelligence, pp. 2192–2197. 

Zhang, M.-L., Zhang, K., 2010. Multi-label learning by exploiting label dependency. 

In: Proceedings of the 16th A C M SIGKDD International Conference on 

Knowledge Discovery and Data Mining. ACM, pp. 999–1008. 

Zhang, M.L., Zhou, Z.H., 2007. ML-KNN: a lazy learning approach to multi-label 

learning. Pattern Recognition 40 (7), 2038–2048. 

Zhang, M.-L., Zhou, Z.-H., 2013, in press. A review on multi-label learning 

algorithms. IEEE Transactions on Knowledge and Data Engineering 99. http:// 

doi.ieeecomputersociety.org/10.1109/TKDE.2013.39. 

http://Mediamill
http://Mediamill
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0045
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0045
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0070
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0070
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0075
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0075
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0080
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0080
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0085
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0085
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0100
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0100
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.39
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.39

