
Fractal descriptors based on the probability dimension: a texture analysis and
classification approach

João Batista Florindo∗ and Odemir Martinez Bruno†

Scientific Computing Group, São Carlos Institute of Physics, University of São Paulo (USP),
cx 369 13560-970 São Carlos, São Paulo, Brazil - www.scg.ifsc.usp.br

(Dated: October 19, 2018)

In this work, we propose a novel technique for obtaining descriptors of gray-level texture images.
The descriptors are provided by applying a multiscale transform to the fractal dimension of the image
estimated through the probability (Voss) method. The effectiveness of the descriptors is verified in
a classification task using benchmark over texture datasets. The results obtained demonstrate the
efficiency of the proposed method as a tool for the description and discrimination of texture images.

I. INTRODUCTION

Fractals have played an important role in many areas
with applications related to computer vision and pattern
recognition [1–6], owing to their flexibility in representing
structures usually found in nature. In such objects, we
observe different levels of detail at different scales, which
are described in a straightforward manner by fractals,
rather than through classical Euclidean geometry.

Most fractal-based techniques are based on the concept
of fractal dimension. Altough this concept was originally
defined only for mathematical fractal objects, it contains
some properties that make it a very interesting descriptor
for any object in the real world. Indeed, fractal dimen-
sion measures how the complexity (level of detail) of an
object varies with scale, an effective and flexible means
of quantifying how much space an object ocupies, as well
as important physical and visual properties of the object,
such as luminance and roughness.

Fractal techniques include the use of Multifractals [7–
9], Multiscale Fractal Dimension [10, 11] and Fractal De-
scriptors [12–15]. Here we are focus on the last approach,
which has demonstrated the best results in texture classi-
fication [16]. The main idea of fractal descriptors theory
is to provide descriptors of an object represented in a
digital image from the relation among fractal dimensions
taken at different observation scales, thus these values
provide a valuable information on the complexity of the
object, in the sense that they capture the degree of detail
at each scale. In this way, fractal descriptors are capa-
ble of quantifying important physical characteristics of
the structure, as the fractal dimension, but presenting
a richer information than can be provided by a single
number (fractal dimension).

Although fractal descriptors have demonstrated to be
a promising technique, we observe that they are defined
mostly on well-known methods to estimate the fractal di-
mension. Here, we propose fractal descriptors based on
a less known definition of fractal dimension: the prob-
ability dimension. This is a statistical approach, which
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measures the distribution of pixel intensities along the
image. In this way, such descriptors can express how the
statistical arrangement of pixels in the image changes
with the scale and how much such correlation approx-
imates a fractal behavior. In this sense, our descriptor
also measure the self-similarity and complexity of the im-
age but upon a statistical viewpoint. This is a rich and
not explored perspective, which is studied in depth in
this work.

We use the whole power-law curve of the dimension
and apply a time-scale transform to emphasize the multi-
scale aspect of the features. Finally, we test the proposed
method over two well-known datasets, that is, Brodatz
and Outex, comparing the results with another fractal
descriptor approach showed in [13] and other conven-
tional texture analysis methods. The results demonstrat
that probability descriptors achieve a more precise clas-
sification than other classical techniques.

II. FRACTAL THEORY

In recent years, fractal geometry concepts have been
applied to the solution of a wide range of problems [1–
6], mainly because conventional Euclidean geometry has
severe limitations in providing accurate measures of real-
world objects.

A. Fractal Dimension

The first definition of fractal dimension provided in
[17], is the Hausdorff dimension. In this definition, a
fractal object is a set of points immersed in a topological
space. Thus one can use results from Measure Theory to
define a measure over this object. This is the Hausdorff
measure expressed by

Hs
δ (X) = inf

∞∑
i=1

|Ui|s: Ui is a δ-cover of X, (1)

where |X| denotes the diameter of X, that is, the maxi-
mum possible distance among any elements of X:

|X| = sup{|x− y| : x, y ∈ X}. (2)

ar
X

iv
:1

41
2.

78
51

v1
  [

cs
.C

V
] 

 2
5 

D
ec

 2
01

4

mailto:florindo@ursa.ifsc.usp.br
mailto:bruno@ifsc.usp.br


2

Here, a countable collection of sets Ui, with |Ui| ≤ δ, is
a δ-cover of X if X ⊂ ∪∞i=1Ui.

Notice that H also depends on a parameter δ, which
expresses the scale at which the measure is taken. We
can eliminate such dependence by applying a limit over δ,
defining in this way the s-dimensional Hausdorff measure:

Hs(X) = lim
δ→0

Hs
δ (X). (3)

The plot of Hs(X) as a function of s shows a similar
behavior in any fractal object analyzed. The value of H
is ∞ for any s < D and it is 0 for any s > D, where D
always is a non-negative real value. D is the Hausdorff
fractal dimension of X. More formally,

D(X) = {s}| inf {s : Hs(X) = 0} = sup {Hs(X) =∞} .
(4)

In most practical situations, the Hausdorff dimension is
difficult or even impossible to calculate. Thus assuming
that any fractal object is intrinsically self-similar, the
literature shows a simplified version, also known as the
similarity dimension or capacity dimension:

D = − log(N)

log(r)
, (5)

where N is the number of rules with linear length r used
to cover the object.

In practice, the above expression may be generalized
by considering N to be any kind of self-similarity mea-
sure and r to be any scale parameter. This generaliza-
tion has given rise many methods for estimating fractal
dimension, with widespread applications to the analysis
of objects that are not real fractals (mathematically de-
fined) but that present some degree of self-similarity in
specific intervals. An example of such a method is the
probability dimension, used in this work and described
in the following section.

B. Probability Dimension

The probability dimension, also known as the informa-
tion dimension, is derived from the information function.
This function is defined for any situation in which we
have an object occupying a physical space. We can di-
vide this space into a grid of squares with side-length δ
and compute the probability pm of m points of the object
pertaining to some square of the grid. The probability
function is given by

NP (δ) =

N∑
m=1

1

m
pm(δ), (6)

where N is the maximum possible number of points of
the object inside a unique square. Here we use a general-
ization of teh above expression defined in the multifractal
theory [18]:

NP (δ) =

N∑
m=1

mαpm(δ), (7)

where α is any real number.
The dimension itself is given as

D = − lim
δ→0

lnNP
ln δ

. (8)

When this dimension is estimated over a gray-level dig-
ital image I : [M,N ]→ <, a common approach is to map
it onto a three-dimensional surface S as

S = {i, j, I(i, j)|(i, j) ∈ [1 : M ]× [1 : N ]}. (9)

In this case, we construct a three-dimensional grid of
3D cubes also with side-length δ. The probability pm is
therefore given by the number of grid cubes containing m
points on the surface divided by the maximum number
of points inside a grid cube.

III. FRACTAL DESCRIPTORS

Fractal descriptors are values extracted from the
log− log relationship common to most methods of es-
timating fractal dimension. Actually, any fractal dimen-
sion method derived from the concept of the Hausdorff
dimension obeys a power-law relation, which may be ex-
pressed as

D = − log(M)

log(ε)
, (10)

where M is a measure depending on the fractal dimension
method and ε is the scale at which this measure is taken.

Therefore Fractal descriptors are provided from the
function u:

u : log(ε)→ log(M). (11)

We call the independent variable t to simplify the nota-
tion. Thus t = log ε and our fractal descriptor function is
denoted u(t). For the probability dimension used in this
work, we have

u(t) = − log(NV (δ))

log(δ)
. (12)

The values of u(t) may be directly used as decriptors
of the analyzed image or may be post-processed by some
kind of operation aimed at emphasizing some specifical
aspects of that function. Here, we apply a multiscale
transform to u(t) and obtain a bi-dimensional function
U(b, a), in which the variable b is related to t and a is
related to the scale at which the function is observed.
A common means of obtaining U is through a wavelet
transform:

U(b, a) =
1

a

∫
<
ψ(
t− b
a

)u(t)dt, (13)

where ψ is a wavelet basis function and a is the scale
parameter[19]. Figure 2 shows an example where two
textures with the same dimension, but visually distinct,
provide different descriptors.
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Figure 1. Two estimates of the probability dimension. Above, the 2D version used for shape analysis. Below, the 3D version
used for gray-level images. In the 3D case, the original image is represented by a surface.
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Figure 2. Two textures with the same dimension (FD), but with different descriptors.

IV. PROPOSED METHOD

This work proposes to obtain fractal descriptors from
textures by using the probability fractal dimension, com-

puting them from the curve u(t) : log(NP (δ)) in Eq. 8.
Empirically, we obtained 0.2 as the best value of α in the
Equation 7. Therefore we apply a multiscale transform
to u.
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The multiscale process employs a wavelet transform of
u(t), as described in the previous section:

U(b, a) =
1

a

∫
<
ψ(
t− b
a

)u(t)dt. (14)

As the multiscale transform maps a one-dimensional
signal onto a bi-dimensional function, it is a process that
generates intrinsic redundancies. There are different ap-
proaches to elliminating such redundancies and keeping
only the relevant information [11]. Here, we adopt a sim-
ple method, fine-tuning smoothing, in which U(b, a) is
projected onto a specific value a0 of the Gaussian pa-
rameter. We tested values of a ranging between 0.1 and
5 and used the values that provided the best performance
in the training experiments.

Finally, we selected a specific region from U(b, a0) to
compose the descriptors. Empirically, we observed that
the initial points in this curve provided better perfor-
mance in our application. Then, we established a thresh-
old t after which all points in the convolution curve are
disregarded and the values in the curve U(i, a0), 1 ≤ i ≤ t
are taken as the proposed descriptors.
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Figure 3. Discrimination of texture image by the proposed
descriptors. We have six images from two classes and the re-
spective descriptors. Notice that the classes are substantially
separated by the curves.

V. EXPERIMENTS

In order to verify the efficiency of the proposed tech-
nique, we applied our probability descriptors to the clas-
sification of two benchmark datasets and compared our
results to the performance of other well-known and state-
of-the-art methods for texture analysis.

The first classification task used the Brodatz dataset,
a classic set of natural gray-level textures photographed
and assembled in an architecture book [20]. This dataset

is composed by 111 classes with 10 textures in each class.
Each image has a pixel dimension of 200×200.

The second data set was Outex, a set of color tex-
tures extracted from natural scenes [21]. Here, we used
the first 20 classes, each one having 20 images with a
128×128 pixel dimension, and converted them to gray-
level images.

We compared our probability descriptors to six
other techniques, namely, Local Binary Patterns (LBP)
[22], Gabor-wavelets [23], Gray-Level Difference Method
(GLDM) [24], a multifractal approach described in [18]
and Bouligand-Minkowski fractal descriptors [13, 16].

Therefore we applied a Principal Component Analysis
(PCA) [25] over the data to elliminate or at least atten-
uate the correlation among the features. Finally we clas-
sified each descriptor by a K-fold process, with K = 5,
using the Support Vector Machine (SVM) method [26]
and compared the results.

VI. RESULTS

Table I shows the correctness rate in the classifica-
tion of the Brodatz dataset using the compared descrip-
tors. The proposed method obtained the best result,
outperforming the powerful Bouligand-Minkowski fractal
descriptors and taking substantial advantage over other
state-of-the art techniques such as Gabor and LBP. For
this result we used a = 0.1 and a threshold t = 8. A
particularly important aspect of our method with this
data set is the reduced number of descriptors needed to
provide a precise classification. This point is especially
important in large databases, for which computational
performance is more relevant. Furthermore, the small
number of features avoids the curse of dimensionality,
which impairs the reliability of the global result.

Table I shows the results for the Outex textures. In
this case, we obtained the best result by using a = 0.1
and t = 7. Again, the proposed approach provided the
greatest success rate, despite the challenge of applying a
gray-scale-based method to color analysis. In fact, Ou-
tex textures exhibit nuances which are better expressed
in the color information, such as the changes in the light-
ing perspective and the images from different classes pre-
senting similarities in the intensity distribution, though
distiguished by color. Based on this result, our method
demonstrates that although it does not use any color in-
formation, it is powerful also for color image analysis.

Figure 4 shows how the success rate varies according
to the number of descriptors used in both datasets. The
graphs show a well-known property of Karhunen-Loève
transform. The most expressive information is concen-
trated in the initial descriptors, so that the success curves
show a quick growing and then tend to stabilize at a con-
stant rate. The larger size and the native gray-scale for-
mat of Bradatz data leads to a clearer advantage of prob-
ability descriptors in that database. In Outex, the first
descriptors, corresponding to the PCA components with
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Table I. Correctness rate for Brodatz and Outex datasets.

Results for the Brodatz dataset

Method Correctness Rate (%) Number of descriptors

LBP 82.5 ± 0.2 10

Gabor 86.8 ± 0.1 8

GLDM 79.6 ± 0.2 8

Multifractal 54.9 ± 0.5 9

Bouligand-Minkowski 90.8 ± 0.1 10

Proposed method 93.0 ± 0.1 8

Results for the Outex dataset

Method Correctness Rate (%) Number of descriptors

LBP 98.2 ± 0.0 7

Gabor 98.5 ± 0.0 8

GLDM 90.5 ± 0.1 9

Multifractal 82.0 ± 0.2 10

Bouligand-Minkowski 97.2 ± 0.0 10

Proposed method 99.2 ± 0.0 7

higher variance, do not have as much significance for the
classification purpose. However, the sum of all of them
provide the best result. This is a specific property of
fractal descriptors, as can be observed in the Bouligand-
Minkowski descriptors for the Brodatz data as well. Frac-
tal descriptors are tightly correlated among themselves,
thus we do not have a large significance carried only in a
few descriptors.

Finally, Figures 5 and 6 show the confusion matrices of
the methods with the best performances. In this kind of
representation, a good descriptor must produce a matrix
with a diagonal as lighter and continuous as possible and
the minimum of dark points outside the diagonal.

As can be seen, in Brodatz data, the probability de-
scriptors clearly presented these characteristics, with al-
most no “gap” in the diagonal and with a few dark points
outside. Both gaps and gray points indicate the confusion
of the classifier, that is, elements classified incorrectly in
some way. This confusion is caused mostly by the high
similarity inter-class and low similarity intra-class. A
precise descriptor, like the proposed, avoids such confu-
sion by providing measures capable of faithfully repre-
senting the most complex structures.

In the case of Vistex, the diagonal gaps are not so clear,
given the small number of classes. Thus the advantage
of the proposed method can be seen in the reduced num-
ber of gray squares outside the diagonal. Such squares
correspond to the confused classes. We observe that, par-
ticularly, the last classes have some discrimination diffi-
culties. The elements of those classes are often assigned
to other classes as depicted in the matrices. However,
even in these cases, the proposed descriptors showed the
expected robustness, assigning the elements correctly.

An overall analysis of the results demonstrates that
the proposed method outperformed the compared ones
in both datasets, using a small number of descriptors.
Such results were expected from fractal theory given its
wide applicability to the analysis of natural textures. Ac-
tually, fractal geometry presents a remarkable flexibility
in the modeling of objects that cannot be well repre-
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Figure 4. Success rate against the number of descriptors in
each dataset. a) Brodatz. b) Outex.
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Figure 5. Confusion matrices in Brodatz dataset. In such
figures, we have the predicted classes in the rows and the
expected ones in the columns. The number of images expect-
ed/predicted in each class is given by the gray-level at each
point (lighter points correspond to large number of images).
a) Gabor. b) Co-occurrence. c) LBP. d) Proposed method.

sented by Euclidean rules. The fractal dimension is a
powerful metric for the complex patterns and spatial ar-
rangements usually found in nature. Fractal descriptors
provide a way of capturing multiscale variations and nu-
ances that could not be measured by conventional meth-
ods. More specifically, the probability descriptors pro-
posed here combine a statistical approach with fractal
analysis, comprising a framework that supports a precise
and reliable discrimination technique, as confirmed in the
above results.

VII. CONCLUSION

We have proposed a novel method for extracting de-
scriptors by applying a multiscale transform over the
power-law relation of the fractal dimension estimated by
the probability method.

We tested the efficiency of the proposed technique in
the classification of two well-known benchmark texture
datasets and compared its performance to that of other
classical texture analysis methods. The results demon-
strated that probability fractal descriptors are a powerful
tool for modeling such textures. The proposed method
achieved a high success rate in the classification of the
benchmark data sets, using fewer than 10 descriptors in
this task. These results demonstrate that the proposed
method is capable of combining precision, low computa-
tional cost and robustness.
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Figure 6. Confusion matrices in Vistex dataset. a) Gabor. b)
Co-occurrence. c) LBP. d) Proposed method.

As a consequence, our method offers a reliable ap-
proach to solve a large class of problems involving the
analysis of texture images.
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