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Abstract

Time series clustering is an important data mining topic and a challenging

task due to the sequences’ potentially very complex structures. In the present

study we experimentally investigate the combination of support vector clus-

tering with a triangular alignment kernel by evaluating it on an artificial

time series benchmark dataset. The experiments lead to meaningful seg-

mentations of the data, thereby providing an example that clustering time

series with specific kernels is possible without pre-processing of the data. We

compare our approach and the results and learn that the clustering quality

is competitive when compared to other approaches.
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1. Introduction

Support Vector Clustering (SVC), a kernel-based learning algorithm in-

spired by Support Vector Machines (SVMs) (Vapnik, 1995), was introduced

by Ben-Hur et al. (2001). SVC offers some unique characteristics compared

to other clustering algorithms such as its capabilities in dealing with outliers

and arbitrarily-shaped cluster contours. Since its introduction, several re-

searchers have contributed variations and improvements of the original SVC

approach (Yang et al., 2002; Lee and Lee, 2006; Lee and Daniels, 2006; Khan-

loo et al., 2009; Ping et al., 2010, 2013). An important aspect of SVC is that

it does not rely on knowledge of the data patterns’ underlying probability

distribution. Thus clustering can be approached without making assump-

tions on the number of clusters or their shape. SVC has the ability to work

with structured data and has been shown to work well with high dimensional

data (Lee and Daniels, 2012). SVC is a kernel method and can be used with

any appropriate similarity measure that yields tight cluster contours and ful-

fils the requirements for being a Mercer kernel (Ben-Hur et al., 2001). The

Gaussian kernel is the most commonly used kernel in research concerning

SVC and it has been shown to be successful on static data. Studies on the

use of any other kernel function with SVC are very rare.

When attempting to cluster time series, one of the main challenges that

presents itself is that clustering approaches used for static data cannot be

used on time series without extensive pre-processing of the data. Standard

similarity measures such as the Laplace kernel or the Gaussian kernel cannot

compare sequences of different lengths. Furthermore, they are influenced by

scale so that similarity in lower range can be weighed down by mild dissimi-
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larity in higher range as Perng et al. (2000) note. This can be mitigated by

the normalisation of individual time series. But other problems such as the

sensitivity of the standard similarity measures to offsets and phase shifts still

remain. Additionally, simple similarity measures often lack the possibility to

deal with noise within a sequence, which, for example, is a common feature

of financial time series (Tay and Cao, 2001).

There are two ways through which SVC can be employed for time series

clustering. One involves thorough pre-processing of the data before employ-

ing a standard kernel function with SVC. The second approach is using more

advanced similarity measures such as dynamic time warping (DTW) (Sakoe

and Chiba, 1978) which address distinctive traits of time series. The exper-

imental focus of our research lies in clustering time series with SVC and a

time series kernel.

2. Support Vector Clustering

Ben-Hur et al. (2001) introduced SVC, a non-parametric clustering method.

It is closely related to one-class classification and density estimation using

SVMs as proposed in Schölkopf et al. (2000, 2001) and Tax and Duin (1999)

where a set of contours enclose data points with similar underlying distribu-

tions. Ben-Hur et al. (2001) interpret these contours as cluster boundaries

and points that lie within the same contour as belonging to the same cluster.

SVC is carried out in two stages. During the first stage, the Cluster

Description, the minimal enclosing hypersphere of the data in feature space

is computed by finding the support vectors which define the cluster bound-

aries. The approach is described in detail in (Ben-Hur et al., 2001) and uses
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a similar constraint optimisation approach as that of SVMs. The primal op-

timisation objective of finding the minimal enclosing sphere can be expressed

as follows:

minRR
2 + C

∑
j

ξj (1)

s.t. ‖Φ (xj)− a‖2 ≤ R2 + ξj, ξj ≥ 0, ∀j ∈ {1, .., N} (2)

where Φ is a nonlinear transformation from input space into some high di-

mensional feature space, a is the centre of the enclosing sphere of radius R,

and C > 0 being a penalty term for introducing slack variables ξj that deal

with outliers in the dataset.

During a second stage, the Cluster Labelling, the patterns are assigned

to clusters. These two stages are generally carried out iteratively with the

purpose of finding the best tuning for the hyper-parameters of SVC.

Ben-Hur et al. (2001) use a geometric approach called Complete Graph

(CG) labelling to assign the data points to clusters based on the idea that

given two points that belong to different clusters, any path that connects

them must exit from the minimal enclosing sphere in feature space. Such

a path must therefore contain a point y for which R (y) ≥ R. The cluster

labelling is hence determined by the connected components of the graph

induced by:

Aij =

1, if, for all y on the line segment connecting xi and xj, R (y) ≤ R

0, otherwise

(3)

In CG labelling the adjacency matrixA is computed first. In a second step the

connected components of this undirected graph are calculated by sampling
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points on the paths to determine whether they exit the sphere in feature

space.

Most studies on SVC have focused on improving the labelling stage per-

formance (see e.g. Yang et al. (2002), Lee and Daniels (2006), Ping et al.

(2010), Lee and Lee (2005), Ping et al. (2012)). Most recently Ping et al.

(2013) proposed to use convex decomposition and cone cluster labelling dur-

ing the labelling stage in an approach which also made adaptions to the

cluster description stage.

The SVC algorithm with standard Gaussian kernel has two adjustable

parameters which influence the number of outliers and SV. The first param-

eter q is the width parameter of the Gaussian Kernel. Increasing q leads to

a greater number of SVs which leads to tighter cluster contours and contour

splitting.

The second parameter 0 < C ≤ 1 is the soft-margin constant. For C = 1

no outliers are invoked. If C is decreased towards 0 the number of outliers

invoked increases.

Ben-Hur et al. (2001) recommend to systematically increase q and C along

a direction that guarantees a minimal number of SVs.

3. Global Alignment Kernels

3.1. Global Alignment Kernels

Cuturi et al. (2007) introduced a new family of kernels for time series

based on Global Alignments (GA), related to the well-known Dynamic Time

Warping (DTW) similarity measure by Sakoe and Chiba (1978). DTW sim-

ilarities are not positive semi-definite and Cuturi et al. (2007) list some ap-
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proaches to address this deficiency such as considering the square of the Gram

matrices. The GA kernel proposed by Cuturi et al. (2007) however is positive

definite and was therefore chosen for our experiments.

Let x and y be two finite sequences of length |x| = n and |y| = m. A DTW

alignment is defined by a pair of ordered lists, each containing p elements.

Each of the two lists contains unitarily increasing positive integers which

encode the alignment. A DTW alignment may repeat elements of sequences

in order to match the sequences onto each other. However, it cannot repeat

elements of both sequences at the same time and it cannot skip elements.

Loosely speaking, in an alignment the two sequences can be stretched at

certain points to match them onto each other. To encode the alignment of

two sequences we exploit the fact that time series are ordered and that for

an element xi of sequence x we can use its index i as its position within the

sequence. A DTW alignment π of length |π| = p between two sequences x

and y can then be described as a pair of increasing p-tuples π = (π1, π2) ∈ N2p

such that

1 = π1 (1) ≤ ... ≤ π1 (p) = n, (4)

1 = π2 (1) ≤ ... ≤ π2 (p) = m, (5)

with unitary increments, i.e., for all 1 ≤ i ≤ p− 1 and for all 1 ≤ j ≤ p− 1,

π1 (i+ 1) ≤ π1 (i) + 1 and π2 (j + 1) ≤ π2 (j) + 1 (6)

and (π1 (i+ 1)− π1 (i)) + (π2 (i+ 1)− π2 (i)) ≥ 1, (7)

where (7) means that no simultaneous repetitions are permitted.
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To define the cost of an alignment a score function S(π) is used:

S(π) =

p∑
i=1

ϕ
(
xπ1(i), yπ2(i)

)
(8)

where ϕ is an arbitrary conditionally positive-definite (c.p.d.) kernel such as

e.g. ϕ (x, y) = −||x−y||2 (Camastra and Vinciarelli, 2008). Exact DTW dis-

tances compute the cost S(π) of all possible alignments and choose the align-

ment with minimal cost as a measure of similarity between two sequences.

In contrast Cuturi et al. (2007) consider all score values {S(π), π ∈ A(x, y)}

spanned by all possible alignments to define a kernel:

kGA(x, y) =
∑

π∈A(x,y)

eS(π) =
∑

π∈A(x,y)

|π|∏
i=1

k
(
xπ1(i), yπ2(i)

)
(9)

where k = eϕ.

Cuturi et al. argue that this notion of similarity provides a richer and

more robust measure between two sequences since it quantifies the quality

of both the optimal alignment and all the alignments which are close to it.

The time complexity of the kernel kGA is similar to the exact DTW score

complexity which lies in O(dnm) for two d-dimensional sequences of lengths

n and m (Cuturi, 2011).

3.2. Triangular Global Alignment Kernels

Cuturi (2011) extended the family of Global Alignment (GA) kernels to

Triangular Global Alignment (TGA) kernels. This new kernel family is both

positive definite and also faster to compute than adapted DTW similarities

and the basic GA kernels. It adds further constraints on computed align-

ments in order to reduce runtime. This is done by introducing the triangle
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parameter T to the GA kernels. We will now briefly summarize the construc-

tion of the TGA kernels and refer the reader to Cuturi (2011) for details.

Cuturi (2011) define and implement the TGA kernel as a special version of

the kGA kernel by combining the triangular kernel ω with the Gaussian kernel

κσ to replace k = eϕ in equation 9:

k (i, x; j, y) =
ω (i, j)κσ (xi, yj)

2− ω (i, j)κσ (xi, yj)
, (10)

where ω is defined as ω(i, j) = max
[(

1− |i−j|
T

)
, 0
]
, T > 0. The triangu-

lar kernel acts as a position kernel modulating the similarity of two points

(xi, yj) by using their locations i and j in the series while κσ quantifies the

similarity of xi and yj. The parameter T can now be used to control a band

of alignments that will be considered, i.e. alignments at the end of the spec-

trum can be discarded. The implementation returns the original GA kernel

with a slight variation of the standard Gaussian kernel if the parameter T

is approximating 0. T = 1 results in an element-wise comparison without

alignments that can only compare sequences of the same length. For T > 1,

only alignments for which −T < π1(i) − π2(i) < T for all indices will be

considered (Cuturi, 2011). As T increases further the TGA kernel converges

towards the GA kernel.1

1Marco Cuturi provides more details on selecting parameters T and σ and

an implementation of the Triangular Global Alignment (TGA) Kernel at URL:

http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/GA.html [Accessed 7 Feb 2014]
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4. Motivation and Setup

We have learned that a number of promising alternatives to the original

SVC labelling stage have been proposed to improve the speed of the cluster

labelling without sacrificing the quality of the partitioning. In comparison to

faster clustering algorithms such as heuristic adaptations to kernel k-means

clustering (Filippone et al., 2008), the SVC algorithm stands out in its ability

to find a partitioning without bias regarding the shape or number of clusters.

The positive definite time series alignment kernel introduced by Cuturi (2011)

enables us to exploit these advantages of the SVC algorithm to cluster time

series. Literature on experiments using non-standard kernels with SVC as

well as literature on clustering time series with SVC is very limited. We thus

aim to cluster time series with SVC and the TGA alignment kernel to explore

whether this combination produces meaningful results.

4.1. The Dataset

The experiments of the present study were conducted with the Synthetic

Control Chart Time Series Data Set (CHART) obtained from the UCI Ma-

chine Learning repository (Frank and Asuncion, 2010). It is a synthetically

generated chart dataset containing 600 sequence vectors, each consisting of

a sequence of 60 real valued elements. This dataset has been used in other

clustering related research studies, making it possible to compare our results

to some degree (Weng and Zhu, 2003; Chis et al., 2009; Wang and Mega-

looikonomou, 2008; Liu et al., 2006). Each of the 600 time series belongs to

one of six classes (see Figure 1). Weng and Zhu (2003) have already shown

that the Euclidean distance cannot capture the similarity among the related
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Figure 1: Representative examples for each class of the CHART Dataset: 1) Normal,

2) Increasing trend, 3) Upward shift, 4) Cyclic, 5) Decreasing trend, 6) Downward shift.

The sequences were generated artificially by six equations as described by Alcock and

Manolopoulos (1999).
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time series. This is due to the fact that the Euclidean distance only captures

pointwise differences and specific time series traits such as shifts or cyclic

differences cannot be detected. Liu et al. (2006) note that in particular the

following pairs of classes of the CHART dataset have often been confused;

normal/cyclic, decreasing trend/downward shift and increasing trend/ up-

ward shift.

4.2. Validation

When clustering a benchmark set, there are several indices which measure

how well the clustering partition P compares to the known optimum. With

the intention of making our results comparable we use the same similarity

indices as Chis et al. (2009). Chis et al. introduced a new evolutionary

time series clustering algorithm (ETSC) and tested their algorithm on the

CHART dataset. In order to assess the quality of the clustering result they

computed three similarity coefficients; namely the Jaccard Score (Jaccard),

the Rand statistic (Rand), and the Folkes and Mallow index (FM). We note

that for all these indices a value close to 1 indicates great similarity and that

all indices have a positive skew.

We calculate an additional similarity index used by Gavrilov et al. (2000)

and Wang and Megalooikonomou (2008) to further facilitate a comparison of

our results with (Wang and Megalooikonomou, 2008). Given the partitioning

result P = P1, P2, ..., Pn and the true clusters C = C1, C2, ..., CN the cluster

similarity can be computed by:

Sim(C,P ) =

∑N
i=1maxjSim(Ci, Pj)

n
, (11)
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Table 1: A comparison of Jaccard, Rand, and FM indices are presented for a standard

Gaussian kernel (RBF), and a range of GA Kernels applied on the full CHART dataset.

Column 1 shows the greatest index values obtained using a RBF kernel on normalised data

which leads to 3 clusters comprising 447 support vectors. Columns 2–4 show partitions

with generally twice the index values obtained using the GA kernel (where q values were

incremented by steps of 10) and SEP-CG labelling applied on the complete un-normalised

CHART dataset. The number of clusters increases with the amount of SVs used. The

higher index values obtained in columns 2–4 suggest far better similarity to the benchmark

partitioning compared to the RBF result.

SVC Kernel RBF GA GA GA GA

Parameters [q, C] [0.3, 0.1] [60-80, 1] [90-200, 1] [250, 1] [300, 1]

# Clusters 3 1 3 6 9

# SVs 447 154-204 217-319 413 434

Jaccard index 0.2183 0.1667 0.5000 0.5116 0.6683

Rand index 0.3031 0.1653 0.8331 0.8331 0.8877

FM index 0.3900 0.4065 0.7053 0.6973 0.7634

where

Sim(Ci, Pj) =
2|Ci ∩ Pj|
|Ci|+ |Pj|

. (12)

5. Experiments

We used SVC with the TGA kernel to cluster a subset of the CHART

dataset aiming to study whether complex alignment kernels and SVC yield

meaningful results on raw time series data. During our experiments the SEP-

CG and CG labelling procedures produced almost identical results with CG
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sometimes producing false negatives. The bandwidth parameter σ of the

TGA kernel was used in a similar fashion as the q parameter of the Gaus-

sian kernel. As a reference the Gaussian kernel (RBF) was used to cluster

the subset of the CHART data. The time series were normalised using two

different methods: normalisation of the entire sequences and piecewise nor-

malisation, following the approach of Gavrilov et al. (2000). No promising

partitions were obtained with either normalisation method when using the

RBF kernel; however, for comparison purposes, the result with the greatest

validity indices is shown in column 1 of Table 1.

5.1. GA Kernel

We begin our cluster analysis with the original GA kernel. Analogous to

Ben-Hur et al. (2001), we start with the lowest kernel width value and C = 1

(i.e. one cluster, no outliers), increasing the values until a stopping criterion

is met. The validity indices of the following partitions can be observed in

Table 1. A first stable and notable result was a partitioning of three clusters

(see Figure 2 and indices in column 3 of Table 1). It will be referred to as

the “Super Cluster” result as it already contains an intuitive level of truth.

It is noteworthy that this result was very stable over a wide range of the

width parameter, i.e. a range of several numbers of SVs, a condition Ben-

Hur et al. (2001) state as an indicator of a good clustering result. This result

was obtained without the invocation of outliers. The introduction of outliers

did not lead to better results in any of the following experimental cases.

Continuing from the super cluster partitioning we increased the number of

SVs and experienced further splitting of clusters. These partitions consisted

of six clusters; the subset of the three super clusters, with three additional
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Figure 2: Super Cluster result using the GA and TGA kernels. One cluster contains all

normal and cyclic sequences, a second cluster contains all downward shift and decreasing

trend sequences while a third contains all upward shift and increasing trend sequences.

smaller clusters formed from noisy samples in cyclic, step-up and step-down

sequences (see Table 1, Column 4). A further increase in the number of

SVs eventually leads to a partition of nine clusters (see Table 1, Column 5).

The additional clusters formed were a partition between normal and cyclic

groups, while other clusters were partitions due to noisy samples. To the

observer this behaviour appears understandable, as the sequences shown in

Figure 3 which separate and form their own cluster are very similar in the

magnitude of the upward shift as well as the point at which the shift occurs.

14



Figure 3: Normalised data from class 5 (upward shift). With a large number of SVs the

grey sequences separate from the cluster containing the upward trend and upward shift

sequences and form a new cluster. The two black sequences are representatives of upward

shift sequences that did not separate from the initial cluster.

5.2. The TGA Kernel

A very similar behaviour is observed when clustering the data with the

TGA kernel and varying window sizes, T . Analogous to the use of the GA

kernel, the result of the three Super Clusters was also obtained with a small

number of SVs. In contrast to the GA kernel, a small window leads to ear-

lier separation of clusters with regard to the number of SVs. Furthermore

with a smaller window, an increase of the width parameter q led to stronger

separation within the benchmark clusters as more emphasis was put on local

similarities. Increasing the number of SVs from the Super Cluster, a stable

result of 4 clusters was obtained (see Table 2, column 4-5). In comparison

to the partition results in columns 4-5 of Table 1 these obtained partitions

were able to split cyclic sequences from the Super Cluster of all cyclic and
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Table 2: The table shows the partitions obtained using SVC with the TGA kernel and

SEP-CG labelling (Column 2–6) compared to the ETSC clustering result by Chis et al.

(2009) (Column 1). Using SVC, increasing parameter T decreases the number of SVs and

the number of partitions found.

ETSC SVC SVC SVC SVC SVC

Method TGA TGA TGA TGA TGA

T = 4 T = 5 T = 6 T = 7 T = 10

[q, C] - [100,1] [100,1] [100,1] [100,1] [100,1]

Clusters 8,10,12 6 5 4 4 3

SVs - 385 353 325 310 261

Jaccard 0.4425 0.6250 0.6650 0.6667 0.6667 0.5000

Rand 0.8512 0.8781 0.8882 0.8887 0.8887 0.8331

FM 0.6155 0.7378 0.7712 0.7730 0.7730 0.7053

normal sequences without any additional clusters formed from noisy samples.

Results in columns 2-3 of Table 2 were able to separate the cyclic sequences

completely from the normal sequences and form several clusters of their own

while the other two super clusters remained unchanged. For an example, see

Figure 5. Judging from these results, it can be observed that a small window

distinguishes the local similarities of the cyclic sequences but is unable to

distinguish between shifts. A large window in contrast favours global sim-

ilarities such as the overall trend or skewness due to the smoothing of all

possible alignments.

From Table 2, it can be seen that with an increase of the window size,

T , the number of SVs also increases. This trend of increasing SVs can be

seen in Table 1, as the parameter q increases. This trend was repeated with
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Table 3: Variation of C: The table shows the partitions obtained using SVC with the

TGA kernel and SEP-CG labelling varying the parameter C on full CHART dataset.

Decreasing parameter C, increases the number of SVs and varies exponentially the number

of partitions found.

SVC SVC SVC SVC SVC

Method TGA TGA TGA TGA TGA

T=6 T=6 T=6 T=6 T=6

[q, C] [100,10-0.5] [100,0.4] [100,0.3] [100,0.2] [100,0.1]

Clusters 4 5 11 71 247

SVs 325 325 326 336 373

Jaccard 0.6667 0.6650 0.6600 0.4483 0.3000

Rand 0.8887 0.8882 0.8866 0.8753 0.8675

FM 0.7730 0.7712 0.7628 0.6883 0.5374

partitions obtained from using T = 4 to 7, with q = 90 to 200. On the other-

hand, with a decrease of the parameter C, the number of SVs increases and

also the number of clusters dramatically increases, as seen in Table 3.

As general summary, the parameters q, C and T were varied across our

series of experiments. When q was increased from 30 to 350 the numbers of

support vectors increased proportionally. When C was increased from 0.01

to 1000, the number of support vectors decreased at an exponential rate.

When T was increased from 0 to 30 the number of support vectors steadily

decreased. Generally, as the number of support vectors increased, the number

of clusters found also increased. At the extremes of these parameter ranges

(i.e. large q values, small C and T values) large numbers of support vectors

and consequently a large number of clusters occurred. However, none of the
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Figure 4: Isomap visualisation with k=300 nearest neighbours results in 4 distinct clusters.

Top cluster: class of cyclic series; Centre cluster: class of normal series; Left cluster:

classes of decreasing series (dark) and step-down series (bright); Right cluster: classes of

increasing series (dark grey) and step-up series (bright grey).

experiments with variations of T , q, or C could split the two large remaining

superclusters and separate downward shift from decreasing trend or upward

shift from increasing trend.

In order to find evidence that this result is sensible we employed isomap

(Tenenbaum et al, 2000) to generate a visualisation of the CHART data

and this resulted in the same superclusters; in the isomap visualisation with

k=300 nearest neighbours four distinct clusters became visible (see Figure 4):

The top cluster showing the cyclic class is separated from the centre cluster

showing the normal class. The left (super) cluster includes the decreasing

series (dark dots) and the downward shift series (light grey dots), and the

right (super) cluster shows the increasing series (dark grey) and upward shift

series (light grey dots). The close proximity of the series included in a super

cluster in this visualisation indicates that these series are very similar.

Our experiments employed workstations with Intel Xeon 2.13 GHz six
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Figure 5: A plot of normalised data of some cyclic sequences. With a large number of SVs,

the dotted and solid sequences separate from the Super Cluster containing all cyclic and

normal sequences. The dotted sequences are contained in a new, separate cluster. The

solid sequences also form a new, separate cluster.

core CPUs and 48GB RAM. There is scope for parallelization however our

experiments were conducted with single core implementations only. The

computationally most expensive scenario partitioning a full CHART dataset

took about 22 hours while we tested extreme parameter cases. However most

iterations were completed between 1 and 12 hours. Comparable experiments

using the standard Gaussian kernel required about 40 minutes, but were

unable to capture the inherent structure. For more information regarding

the time complexity using the TGA kernel, the reader is referred to (Cuturi,

2011).

6. Discussion

Using the approach of clustering the CHART dataset with SVC and a

TGA kernel we achieve the super cluster partitioning containing an intuitive

notion of similarity and dissimilarity. The splitting and forming of new clus-

ters from the super cluster solution indicates that SVC with a GA and TGA

kernel is in some way able to distinguish more elaborate differences such as
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Figure 6: A comparison of the accuracy index (Equation 11 and 12) of clustering results

of the CHART dataset (Wang and Megalooikonomou, 2008) (light grey) and some of our

results (dark grey) obtained with SVC and the TGA kernel from Table 2. Wang and

Megalooikonomou focused on 3 different piecewise dimensionality reduction techniques

and a Partitioning Around Medoids (Kaufman and Rousseeuw, 2008) algorithm. The

results suggest that our raw-data approach using SVC with a TGA kernel is competitive

with other approaches. The TGA result with 4 clusters achieved an accuracy index of

0.7778, an increase of approximately 7% when compared with PCA.
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cyclic sequences from normal sequences and shifts from trends. In these new

segmentations, several cyclic sequences form their own clusters as they split

from the super clusters. However these segmentations overfit the data as

we ultimately aim to have all instances of one class in the same respective

cluster separated from the other classes. We recall that Chis et al. (2009)

and Liu et al. (2006) already mention that these classes are easily confused,

which makes an ideal clustering a very difficult task.

Table 2 shows a comparison of the accuracy of our results with regard

to the different benchmark indices with the results obtained by Chis et al.

(2009). We also calculated the accuracy statistic of Equation 11 and 12

used by Wang and Megalooikonomou (2008) on their segmentations of the

CHART data (see Figure 6). The key differences are that Wang and Mega-

looikonomou used a Partitioning Around Medoids (Kaufman and Rousseeuw,

2008) algorithm and thus set the number of clusters k a priori. Their reported

accuracy values are the average accuracy over 10 clustering iterations. The

comparison to both of these literature results and the relevant validity in-

dices shows that the quality of the partitioning using SVC on raw time series

data is competitive. The segmentations we obtained were very stable within

intervals of several numbers of SVs, which serves as an indicator in choosing

relevant segmentations when clustering real world datasets. As expected,

we saw that the GA kernel smoothens the alignments and favours global

similarities compared to a TGA kernel with a small window size.

In the context of SVC the kernel is not only used during the computation

of the minimal enclosing sphere but also during the cluster labelling process

as parts of the calculations are carried out in feature space. Since the labelling
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stage was already identified as a bottleneck of the SVC algorithm, it performs

yet slower using such a complex kernel, which is an obvious disadvantage.

However a big advantage is that the strengths of SVC in finding clusters

of arbitrary number and shape can also be used on such complex datasets

as the CHART data. In addition, raw data can be clustered without pre-

processing. Moreover, incorporating knowledge of properties of the dataset

may help in increasing clustering quality and performance, e.g. in choosing

an appropriate window size T for the TGA Kernel.

7. Conclusion

We have found that raw data clustering of time series with SVC provides

a competitive alternative to existing clustering approaches with regard to

the quality of the clustering results. The results indicate that using SVC

with specialised kernels for structured data can provide a competitive al-

ternative to existing clustering approaches on structured data such as time

series. The most important challenges concern the development of faster ap-

proaches to the cluster description stage, faster labelling strategies in SVC

as well as improved normalised kernels for time series to reduce runtime.

Further important tasks involve establishing validity measures and stopping

criteria that can be used on real datasets where no benchmark exists. A gen-

eral disadvantage of non-parametric techniques is their lack of transparency.

With improvements in hardware and the potential of parallel implementa-

tions, there is potential for improving the currently still extensive running

times. This will allow for more systematic experimentation with variations

of the kernel and other time series data sets.
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