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ABSTRACT

We present a morphological texture contrast (MTC) operator that allows detection of textural and non-texture regions in images. We

show that in contrast to other approaches, the MTC discriminates between texture details and isolated features and does not extend

borders of texture regions. A comparison with other methods used for texture detection is provided. Using the ideas underlying

the MTC operator, we develop a complementary operator called morphological feature contrast (MFC) that allows extraction of

isolated features while not being confused by texture details. We illustrate an application of the MFC operator to extraction of

isolated objects such as individual trees or buildings that should be distinguished from forests or urban centers. We also propose an

MFC based detector of isolated linear features and compare it with an alternative approach used for detection of edges and lines in

cluttered scenes. We furthermore derive an extended version of the MFC that can be directly applied to vector-valued images.

1. Introduction

This paper1 focuses on the problem of distinguishing isolated

features from features that are part of a texture. We will re-

fer to the latter features as texture details. Isolated features,

also called individual features, are, for example, isolated ridges

(bars) or small blobs in images (peaks in the 1D case). This

problem may occur when one wants to detect texture regions,

and at the same time distinguish them from isolated features

that should not be assigned to a texture class. A dual problem

occurs when it is necessary to detect isolated features avoiding

detection of parts of neighboring or background texture even

if texture details are similar to features of interest. For exam-

ple, one may want to detect individual trees distinguishing them

from trees of a forest. Here we consider both problems, namely

detection of texture and of individual features.

Although a large variety of texture classification methods has

been developed, much less attention has been given to the ap-

parently simpler problem of texture detection that discriminates

between texture (of any type) and non-texture regions. This is

not a simple task if accurate localization is required and if tex-

ture must be distinguished from individual features.

In Dinstein et al. (1984) it was proposed to use the differ-

ence between maximal and minimal intensities (MaxMin diff.)

in a pixel neighborhood for a fast segmentation of an image

into textured and non-texture regions. A standard deviation

(StD) is frequently used as a measure of texture that describes

its smoothness (Gonzalez and Woods, 2002). In Ojala et al.

(2002), where the Local Binary Patterns (LBP) approach was
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e-mail: igor.zingman@uni-konstanz.de (Igor Zingman)
1This is a minor revision of the version to be published in Pattern Recogni-

tion Letters. DOI: 10.1016/j.patrec.2014.03.019

developed, the authors also suggested to incorporate a variance

based descriptor for texture classification purposes. While the

LBP descriptor is related to inherent texture properties, a com-

plementary variance based descriptor measures texture contrast.

The amplitude modulation function (AMF), derived from the

amplitude-modulation frequency-modulation model (Kokkinos

et al., 2009), can locally capture texture contrast. Although each

of the texture contrast descriptors mentioned above can be used

to discriminate between texture regions and non-texture areas,

also called smooth areas in this paper, they cannot distinguish

individual features from texture details.

Several descriptors were suggested to approach this prob-

lem. In Verbeek et al. (1988) the difference between closing

and opening, called texture range (TER), was suggested to dis-

tinguish individual step and ramp edges from texture edges.

The TER operator, however, cannot distinguish isolated fea-

tures, such as ridges and blobs, from texture details of com-

parable size. Recently, in Pesaresi et al. (2008) the PanTex in-

dex was developed to detect settlements in panchromatic satel-

lite imagery. The operator is able to distinguish texture areas

from individual linear features such as roads or borders be-

tween homogenous cultivated fields in satellite images. The

PanTex index is defined as a minimal contrast among contrast

measures derived from the gray-level co-occurrence matrixes

(GLCM) (Haralick et al., 1973), computed for different orien-

tations of displacement vectors. The PanTex method, however,

does not distinguish other individual features, such as isolated

peaks or small isotropic blobs, from texture. The component

count (CC) method (Bergman et al., 2008) is based on the prod-

uct of two measures computed in small image blocks. The first

one is the sum of the number of connected components (com-

ponent count) in the background and the foreground obtained

by simple binarization of image blocks. The second measure

is the difference between average intensities in the background
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and the foreground. This descriptor is supposed to discriminate

blocks covering texture and individual step edges at the bor-

ders between homogenous regions. A similar idea of counting

the number of local extrema (texture primitives) for detection

of texture regions was proposed earlier in Karu et al. (1996).

Since this method does not take into account contrast of texture

primitives, it can be very sensitive to noise.

Another disadvantage that all the above texture descriptors,

excluding the TER, have in common, is that they extend or

blur the borders of texture regions, preventing accurate localiza-

tion of texture borders. Recently, we introduced a morphologi-

cal texture contrast (MTC) descriptor that does not suffer from

the above disadvantages (Zingman et al., 2012). This opera-

tor, reviewed in Sec. 2, measures the difference between upper

and lower texture envelopes estimated by means of alternating

morphological filters (Serra and Vincent, 1992; Soille, 2003).

Its qualitative performance was illustrated in Zingman et al.

(2012), where only few remotely sensed images were used and

no quantitative comparison was provided. In Sec. 3 we provide

a quantitative comparison using artificially created images and

a qualitative comparison using a set of standard test images. In

this paper, we also define an alternative texture descriptor that

is computed as difference between alternating sequential filters

(ASF diff.) and compare it to the MTC.

As we stated in the beginning of this section, the dual prob-

lem to the problem of texture detection is detecting individual

features while distinguishing them from texture details. This

problem has mainly been treated in the context of edge de-

tection capable of discarding texture surroundings. For exam-

ple, recently in Grigorescu et al. (2003) a surround inhibition

mechanism was introduced to improve edge detection at region

boundaries. Dubuc and Zucker (2001) proposed a normal com-

plexity measure that is able to separate isolated curves and iso-

lated edges from texture in binary images. The paper provides

an original theoretical framework, but it seems to be computa-

tionally very expensive.

In Sec. 4 we show how the ideas underlying the MTC oper-

ator lead to a Morphological Feature Contrast (MFC) operator

that aims at the detection of small isolated objects, rather than

edges, in textured background. We illustrate the potential of the

MFC operator on gray-scale images and derive its extension to

vector-valued images. Additionally, we show how the MFC op-

erator can be incorporated into a scheme for extracting isolated

linear features. We show the advantages of this scheme over

the approach for the detection of contours with texture back-

ground suppression introduced in Grigorescu et al. (2003). A

preliminary short version of our work was recently presented in

Zingman et al. (2013b).

2. Detection of texture regions: The Morphological Texture
Contrast operator and the ASF difference

Below, we define the morphological texture contrast (MTC)

transformation ψMTC( f ) that we recently introduced in Zing-

man et al. (2012) for distinguishing texture regions (such as

forests, urban areas and rocky mountains) in satellite images

from smooth areas, which may also contain individual struc-

tures that should not to be assigned to texture2. Qualitatively,

MTC’s response is summarized in the first row of Table 1.

The MTC is based on alternating morphological filters, γrϕr

and ϕrγr, which are closing ϕ followed by opening γ and open-

ing followed by closing, respectively. r denotes the size of

the structuring element (SE). Alternating filters are usually em-

ployed for noise filtering. We use them to estimate texture en-

velopes. The difference between upper and lower envelopes

defines a measure of texture contrast, which can serve as an

indicator of the presence of texture

ψMTC( f ) = |γrϕr( f ) − ϕrγr( f )|+ , (1)

where the argument f denotes a 1D signal or a 2D gray-scale

image, and | · |+ is defined as

|ν|+ �
{
ν, ν > 0

0, otherwise .
(2)

A remarkable property of these envelopes is that they coincide

at individual features, thereby yielding low response at individ-

ual features even if they are of high contrast (see an example

in Fig. 1). Since in the 2D case, ϕrγr and γrϕr are not ordered

(Serra and Vincent, 1992; Soille, 2003), a lower envelope

might be above an upper envelope. However, Proposition 3

below shows that regions where this happens are small in

the sense that an erosion with a structuring element of size r
completely removes these regions. In the following discussion

we will show that r defines the minimal size of texture regions

to be detected (see Eq. (9)). Therefore, the regions where

γrϕr < ϕrγr are small enough to be considered as non-texture

regions. They are correspondingly removed by the |.|+ operator

in the definition of ψMTC above.

Let us denote morphological erosion of a set or a func-

tion by ε. Large letters will denote sets. Structuring elements

are identical for all morphological operators in the following

propositions.

Proposition 1. The following inequality holds: εγϕ ≥ εϕγ.
Proof. We have εϕ ≥ εϕγ due to the increasing property of

closing and erosion, and antiextensivity of opening. Proposi-

tion 1 follows directly from the last inequality and due to εγ = ε
.

Proposition 2. Given the ordering condition g1(x) < g2(x), x ∈
D the following inequality holds: [ε(g1)](y) < [ε(g2)](y), y ∈
ε(D).

Proof. Let us denote by By a structuring element shifted to

position y. For y ∈ ε(D) we have [ε(g1)](y) = min
x∈By⊆D

g1(x) <

min
x∈By⊆D

g2(x) = [ε(g2)](y), where the inequality follows from the

given ordering condition.

2This work was motivated by an archaeological project (Lambers and Zing-

man, 2012, in press) that targets detection of individual architectural remains

located in open grassland areas.
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Proposition 3. Given the set X = {x : γϕ < ϕγ}, the set Y =
{y : y ∈ ε(X)} is an empty set.

Proof. From the construction of the sets X,Y and from

Proposition 2 with g1(x) = [γϕ( f )](x) and g2(x) = [ϕγ( f )](x),

for x ∈ X, it follows that [εγϕ( f )](y) < [εϕγ( f )](y), for y ∈ Y .

Since the last inequality contradicts Proposition 1 we conclude

that Y is empty.

The results of applying the MTC to an artificial 1D sig-

nal and to a remotely sensed image3 of a forested area are

shown in Fig. 1(right) and Figs. 2(b, c), respectively. Note

that individual trees in Fig. 2, and individual peaks as well

as step edges (front and back of the wide pulse) in Fig. 1

were suppressed. Throughout this paper we use square SEs,

where the size refers to its side length. The size r of the SE of

ψMTC should be chosen to be larger than the maximal distance

between details in textured regions. Features that stand apart

from texture details farther than r are treated as individual

features and are suppressed correspondingly. In general, we

can use different sizes r1 � r2 for SEs of ψMTC,

ψMTC( f ) = |γr2
ϕr1

( f ) − ϕr2
γr1

( f )|+. (3)

The size of the SEs r1 and r2 should be chosen such that

D1 < r1 < D2, r2 < S 2, (4)

where D1 is the maximal distance between neighboring texture

details, D2 is the minimal distance to isolated features, and S 2

is the minimal size of texture regions. Comparing Figs. 2(b)

and (c) illustrates how r2 controls the minimal size of texture

regions to be detected. In addition, for the case r2 < r1, iso-

lated features of size S 1 are not suppressed if r2 < S 1 < r1.

Therefore, choices of r1 and r2 with r2 < S 1 < r1 should be

avoided.

−2

−1

0

1

2 SE

0

0.5

1

1.5

2
MTC/ASF diff.
white MFC
black MFC

Fig. 1. Left: An artificial signal composed of a slowly varying component, a
texture region, and individual features. Upper and lower envelopes of the
texture obtained with alternating morphological filters are shown by red
and green dashed lines. Right: Extraction of the texture region and indi-
vidual features with the MTC and ASF diff. (Sec. 2) and the MFC (Sec. 4)
operators. Note that MTC and ASF diff. yield identical responses for 1D
signals (Proposition 4).

Alternatively, we introduce an operator defined as the differ-

ence between alternating sequential filters ϕγϕ and γϕγ with

identical structuring elements

ψASF( f ) = ϕγϕ( f ) − γϕγ( f ) . (5)

3The satellite image was logarithmically transformed before applying the

MTC operator, see Sec. 3.1 for the rationale behind.

Alternating sequential filters ϕγϕ and γϕγ are ordered (Serra

and Vincent, 1992; Soille, 2003), which ensures that ASF dif-

ference (ASF diff.) always yields non negative values, allowing

to drop the |.|+ operator used in the MTC. In the next proposi-

tion we outline two properties of the ASF diff. that relate it to

the MTC.

Proposition 4. The MTC operator defined in Eq. (1)

1. has lower response than the ASF diff. with the same SE,
i.e. ψASF( f ) ≥ ψMTC( f ).

2. is identical to the ASF diff. with the same SE in the 1D
case.

The first property holds in general and is directly followed from

extensivity of closing and anti-extensivity of opening operators.

The second property above follows from the fact that in the 1D

case we have ϕγϕ = γϕ and γϕγ = ϕγ (Serra and Vincent,

1992). The ψASF operator applied to the artificial 1D signal is

shown in the blue dashed line Fig. 1. As we expect it has the

same response as the ψMFC operator. In the 2D case the ASF

diff. and the MTC operators are not equivalent. However, we

will show in Sec. 3 that they perform almost identically in their

ability to distinguish texture from individual features.

An important property of the ASF diff. and the MTC opera-

tors is that they neither extend nor blur the borders of textured

regions, thereby allowing accurate localization of texture bor-

ders. This property is illustrated in Fig. 3 in the rightmost col-

umn. Below we outline three other properties of the the ASF

diff. and the MTC that are desirable for texture detection.

Proposition 5. The MTC operator in Eq. (3) and the ASF diff.
(denoted in this proposition ψ without subscript) are

1. bias invariant, ψ( f ) = ψ( f + a),
2. invariant to signal inversion4, ψ( f ) = ψ(a − f ),
3. proportional to signal magnitude ψ(a f ) = |a|ψ( f ),

where a ∈ R is a constant.

These properties follow from the general property of morpho-

logical operators with flat structuring elements to commute

with increasing continuous functions5 and from the duality

of opening and closing. Namely, if we denote by ζ opening

or closing operators and by ζ∗ their dual (opening for clos-

ing and closing for opening), bias invariance follows from

ζ( f + a) = a+ ζ( f ), invariance to signal inversion follows from

ζ(a − f ) = a − ζ∗( f ), and proportionality to signal magnitude

follows from ζ(a f ) = aζ( f ), a ≥ 0 and ζ(a f ) = aζ∗( f ), a < 0.

As an example we prove the second property for the MTC

operator ψMTC( f ) defined in Eq. (3).

4In Mathematical Morphology signal inversion is also referred to as self-

complementarity (Soille, 2003, 2005).
5In Mathematical Morphology increasing and continuous functions are usu-

ally termed anamorphoses (Serra, 1982).
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(a) (b) (c) (d)

Fig. 2. (a) Pan-chromatic satellite image of 1500x1150 pixel size ( c©GeoEye 2011, distributed by e-GEOS). (b) and (c) The MTC descriptor. r1 = 30, r2 = 25

in (b) and r1 = 30, r2 = 35 in (c). (d) Extraction of individual dark features, i.e. individual trees, using the ψ−
MFC

operator with r1 = r2 = 30 (Sec. 4). Note
that the trees in forest areas are almost completely suppressed.

Proof.

ψMTC(a − f ) = |γr2
ϕr1

(a − f ) − ϕr2
γr1

(a − f )|+
= |γr2

(a − γr1
( f )) − ϕr2

(a − ϕr1
( f ))|+

= |a − ϕr2
γr1

( f ) − (a − γr2
ϕr1

( f ))|+
= |γr2

ϕr1
( f ) − ϕr2

γr1
( f )|+ = ψMTC( f ) .

Although, the MTC was developed to discriminate texture and

non-texture regions, its multi-scale extension can also be used

for classification of different types of texture. The MTC com-

puted for varying sizes of the SE generates a set of features

that can be used for this purpose. Since accurate localization

is an inherent property of the MTC, we expect that such MTC-

based classification will be more accurate at texture borders in

comparison to other texture classification approaches that in-

volve the computation of summary statistics of dedicated fea-

tures within a window, such as standard GLCM (Haralick et al.,

1973) or a more recent approach based on linear contact distri-

bution (Epifanio and Soille, 2007). In addition, for the MTC-

based classification no preprocessing is required to mask out

isolated structures (which are not part of any texture class) that

may disturb classification results. The extension of the MTC

approach to texture classification, as opposed to texture detec-

tion considered here, is, however, beyond the scope of this pa-

per.

3. Comparison of texture contrast descriptors

In this section we compare the performance of the MTC op-

erator with the ASF diff., the TER, the CC, the MaxMin dif-

ference, the StD, the LBP contrast, the AMF, and the PanTex

algorithms. We denote by w the scale parameter required for

all algorithms. For the MTC operator it equals the size of the

structuring elements r1 = r2. To allow a consistent comparison,

a few algorithms were slightly modified as follows.

In the CC algorithm we avoided several parameters sug-

gested by the authors since they need to be adjusted for each

type of image. Specifically, we used the simple product of con-

trast and number of connected components. Instead of disjoint

blocks, a sliding window of the single size w was used to com-

pute the texture measure at each pixel as in the other compared

methods. In the PanTex algorithm we used a square root of

contrast measure derived from the GLCM matrix. This contrast

measure can actually be computed without an explicit calcu-

lation of the GLCM matrix. The original PanTex index was

designed with a single window of 9 pixels size, which was ad-

justed to 5m satellite image resolution. Ten displacement vec-

tors with the length varying from w/9 to w
√

5/9 were chosen

in order to cover the full range of possible orientations. In our

comparison we computed the GLCM contrast measure within a

window of an arbitrary size w, such that displacement vectors

of an approximate length w
7

were determined by all pixels on a

discrete circle of radius w
7

. Taking shorter displacement vectors

did not significantly change the performance of PanTex, while

taking longer vectors, as in Zingman et al. (2013b), reduced the

performance estimated in Sec. 3.2.

To compute the LBP local variance and the AMF measures,

we used a Matlab code available online6. In the LBP we used

the square root of local variance computed as a variance of

4(w − 1) equally spaced point samples on a circle of radius

Round( w
2

). This, for example, gives 2, 4, 18 orientations (or

the doubled number of directions), and radii 1, 2, 5 for w equal

to 2, 3, 10, respectively. The AMF approach does not con-

tain an analysis window, but contains a free parameter, which

is the largest period of a sinusoid in the Gabor filters used in

the AMF. We set this largest period of a sinusoid to 3w pixels.

In the quantitative comparison in Sec. 3.2 w varies from 10 to

70. The corresponding largest periods of the AMF approach

included the recommended value given in the AMF code men-

tioned above. We also noted that choosing larger values only

decreased the performance.

Note that similar to the MTC operator, all the algorithms, af-

ter the small modifications described above (except for AMF),

fulfill the properties of Proposition 5.

3.1. Qualitative comparison
The texture contrast descriptors obtained using the compared

transformations are shown in Fig. 3. The first two original im-

ages are of a size of 512x512 pixels; the third image is a pan-

chromatic satellite image of 1300x1100 pixels size7; the fourth

image is an enlarged part of the third image. w = 10 for the first

6Matlab sources are available at

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab

and http://cvsp.cs.ntua.gr/software/texture/
7 c© GeoEye 2011, distributed by e-GEOS.
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two images and w = 30 for the satellite images. For the case

of satellite images, we applied all compared operators to loga-

rithmically transformed images. Such preprocessing improves

the robustness of the texture contrast descriptors to illumina-

tion variations (Zingman et al., 2012), and provides visual re-

sults of higher contrast. Given the limited space for this paper,

we refrained from showing the MaxMin diff., LBP contrast and

the AMF descriptors. Corresponding illustrations are, however,

provided in Zingman et al. (2013b). The performance of the

MTC operator and the ASF diff. is undistinguishable. All the

descriptors have high values in textured areas and low values

in smooth areas. However, contrary to the MTC operator and

the ASF diff., the other approaches yield also high responses at

isolated features that do not belong to texture. The TER oper-

ator is able to suppress step and ramp edges, but yields a high

response at isolated ridges and blobs. The PanTex descriptor

partially succeeds to suppress isolated curvilinear structures.

To better visualize the accuracy in texture localization, the

texture descriptors were superimposed on the enlarged part of

the satellite image in the fourth column of Fig. 3, where the

contrast of red tones is proportional to the values of the descrip-

tors. Since the distribution of descriptor values is strongly bi-

modal, one can distinguish two major levels of texture descrip-

tors, low and high, that appear as a gray-reddish and saturated

red overlaid on the original image. As can be seen from these

images, another advantage of the MTC operator and the ASF

diff. is that they do not extend the borders of texture regions as

other methods do, except the TER. Our implementation of the

CC method generates a halo near texture borders and around

individual features. This effect does not occur in the original

version of the CC method, in which disjoint/overlapping block

processing was performed that, however, would not allow ac-

curate texture localization.

3.2. Quantitative comparison

In order to quantitatively compare the ability of the methods

to distinguish between texture and non-texture areas we quan-

tify the separability between distributions of texture descriptors

in these areas. We used the Fisher criterion (Fukunaga, 1990)

that measures the distance between distribution means relative

to their compactness. The criterion is given by
(μ1−μ2)2

σ2
1
+σ2

2

, where μ

denotes the class mean and σ2 denotes the class variance. Since

ground truth data is required to define textured and non-texture

regions, we created an artificial data set of gray-scale images

along with corresponding masks of texture regions and non-

texture areas, whereby the last also include individual features.

The data set consists of 100 images of 300x300 pixels with

circular texture clusters and individual features (clusters may

overlap; see the upper-left image in Fig. 5). The number of

clusters and their diameters were chosen uniformly randomly

and varied from 2 to 4 and from 60 to 120 pixels, respectively.

The diameter of both individual features and texture details was

5 pixels. Texture details within clusters were placed at posi-

tions on a regular grid with random Gaussian offsets. The dis-

tance between nodes of the regular grid was set to 9 pixels.

The amplitude of texture details and individual features varied

randomly with normal distribution. White noise was added fol-

lowed by smoothing with an averaging filter with a 3x3 kernel.

The standard deviation of the noise was equal to one third of

the amplitude of the texture details.

In the first two experiments, we set the mean amplitude of

individual features equal and triple, respectively, of the ampli-

tude mean of texture details. Figs. 4(a, b) show the resulting

separability measure for the size parameter w varying from 10

to 70 pixels. A comparison of these figures reveal a high degree

of immunity of the MTC and ASF diff. to individual features

even of high magnitude. In contrast, the performance of other

methods severely decreased in the presence of such individual

features.

In the third experiment we restricted the class of non-texture

areas to smooth areas adjacent to texture regions and to individ-

ual features including their neighborhood. Fig. 4(c) shows the

separability between such restricted non-texture areas and tex-

ture regions when mean amplitude of texture details and indi-

vidual features is equal. A comparison of Fig. 4(c) and Fig. 4(a)

confirms that the superiority in the performance of the MTC and

ASF diff. methods stems from its ability to distinguish texture

from isolated features as well as from smooth regions adjacent

to texture borders. The disadvantage of the ASF diff. in com-

parison with the MTC is that the ASF diff. takes almost fifty

percent more time to compute. In practice, this makes the MTC

operator preferable for texture detection.

4. Extraction of isolated features: The Morphological Fea-
ture Contrast operator

Using the ideas underlying the MTC operator, below we pro-

pose a Morphological Feature Contrast (MFC) operator that ex-

tracts isolated structures while suppressing texture details of

textured background. Using alternating morphological filters,

upper and lower texture envelopes were estimated in the MTC

approach. To extract bright or dark individual features, we sug-

gest using the difference between the original signal and one of

its envelopes, as defined in the following equations

ψ+MFC( f ) = | f − γr2
ϕr1

( f )|+ , (6)

ψ−MFC( f ) = |ϕr2
γr1

( f ) − f |+ . (7)

To extract both types of individual features the sum of two op-

erators should be used

ψMFC = ψ
+
MFC + ψ

−
MFC . (8)

We call ψ+MFC and ψ−MFC white and black MFC, respectively.

The MFC operators applied to a 1D artificial signal are illus-

trated in Fig. 1. The appropriate sizes r1, r2 of the SEs should

be chosen such that

D1 < r1 < D2, S 1 < r2 < S 2, (9)

where D1 is the maximal distance between neighboring texture

details, D2 is the minimal distance to isolated features, S 1 is

the maximal size of isolated features, and S 2 is the minimal

size of texture regions. For the MFC operators these constraints

ensure detection of isolated features and suppression of texture.

As stated in the following proposition, the MFC operator ψMFC

shares with the MTC the three properties defined in Sec. 2.
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Fig. 4. (a) and (b): The measure of separability between texture and non-texture regions as a function of the scale parameter w. The mean amplitude of
individual features is equal to the amplitude of texture details in (a) and tripled in (b). (c) The measure of separability of texture regions from areas around
individual features and smooth areas adjacent to texture borders. The mean amplitude of individual features equals the amplitude of texture details.

Proposition 6. The ψMFC operator in Eq. (8) fulfills the three
properties of Proposition 5, i.e it is bias invariant, invariant to
signal inversion, and proportional to signal magnitude.

It can be shown that ψMFC is equal to max(ϕγ( f ), f ) −
min(γϕ( f ), f ), while ψ+MFC and ψ−MFC are equal to operators that

were already defined in Salembier (1990) as f −min(γϕ( f ), f )

and max(ϕγ( f ), f ) − f , and were used for detection of defects

in the noisy background of a metallic surface.

Fig. 5 and Fig. 2(d) show examples of the MFC operators

ψMFC and ψ−
MFC

applied to gray-scale images. Note that in all il-

lustrations throughout this paper, dark tones represent high val-

ues of transformations extracting isolated features. One can ob-

serve that various individual features/objects were highlighted

while texture areas were simultaneously suppressed. For ex-

ample, in the right image in Fig. 5 the forest texture area and

the texture of the village were suppressed, while isolated build-

ings (mostly bright roofs) outside the dense village center and

isolated trees (mostly shadows of trees) were preserved in the

output image. Additional examples can be found in Zingman

et al. (2013b). The MFC operator is capable of suppressing

texture areas even if composed of details of higher magnitude

and similar shape in relation with the magnitude and shape of

individual features. Although, several methods were developed

to extract object boundaries (edge features) from textured back-

ground, we are not aware of other techniques that perform qual-

itatively similar to the MFC when extracting blob-like features

(as well as features of arbitrary shape).

We have shown that the ASF diff., the MTC and the MFC

operators have similar properties and are good in distinguishing

texture from isolated features. The first two are complementary

to the MFC operator in the sense that they respond to texture

while the MFC responds to individual features. The qualitative

behavior of these operators is briefly summarized in Table 1,

which is conveniently interpreted along with Fig. 1. Note also

that these operators do not respond to step edges and respond

correctly (with ’Low’) at smooth regions nearby texture borders

and in the vicinity of isolated features.

4.1. MFC based extraction of isolated linear features

Above, we have shown that the MFC operators are capable

of extracting features of different types with width smaller than

Table 1. Qualitative behavior of the MTC and ASF diff. versus the MFC
operators.

Texture Isolated

features

Isol. features

within texture

Smooth

regions

MTC & ASF

diff.

High Low High Low

MFC Low High High Low

r2. Features of a specific type can be extracted by a sequence

of standard morphological transformations, with the structuring

element shaped similarly to features. Here we illustrate advan-

tages of the use of the MFC within such a sequence for the case

of linear features.

The remotely sensed images in Fig. 6 (left) contain rectan-

gular structures composed of nearly linear walls that were used

as livestock enclosures. This type of structures is needed to be

detected within the archaeological project (Lambers and Zing-

man, 2012, in press; Zingman et al., 2013a). The white top-hat

transform is commonly used to remove background and em-

phasize small bright structures in images. Fig. 6 (the second

column) shows the white top-hat transform followed by a fil-

ter γlin obtained by the point-wise maximum of morphologi-

cal openings with linear SE at 12 different orientations ranging

from 0 to π. This sequence of morphological operators high-

lights narrow linear features longer than the length of the linear

structuring element. However, texture details are also empha-

sized. Furthermore, an appropriate threshold setting is required

to obtain a binary map of features.

To remove texture while keeping isolated features, the MFC

operator ψ+MFC can be applied prior to γlin
8. We will call the se-

quence of the MFC operator and γlin the MFC based detector of

linear features. White top-hat followed by the MFC based de-

tector of linear features thresholded at zero level yields a map

of linear features with most texture details removed, see an ex-

ample in Fig. 6 (the third column). We used a 5x5 SE in the

top-hat operator, r1 = 5, r2 = 10 in ψ+MFC operator, and 15 pix-

els length for the linear SE in γlin. Note that threshold tuning

was not required to obtain the result. For the case of linear

8ψ+
MFC

could also be directly applied to the initial image without the use of

the white top-hat.
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Fig. 5. First row: 312x312 artificial and 5200x1900 satellite ( c© GeoEye 2011, distributed by e-GEOS) images. Second row: individual features extracted
by means of the MFC operator ψMFC. r1 = 30, r2 = 10 for the artificial image and r1 = r2 = 90 pixels for the satellite image.

(elongated) step edges, this approach can easily be adapted by

replacing the top-hat transform with the morphological gradient

(Rivest et al., 1993). To speed up the detector described above,

openings with linear SEs can be implemented using techniques

proposed in Soille and Talbot (2001).

4.1.1. Comparison of the MFC based and the non-CRF inhibi-
tion approaches for extraction of linear features

One of the advantages of the MFC based detector of linear

features is that it involves easily tunable geometry related pa-

rameters, i.e. r1, r2 for the MFC operator, and the length of the

structuring element for linear openings γlin. These parameters

define spatial constraints on the objects to be detected and tex-

ture to be suppressed. Moreover, final thresholding can always

be performed at zero level, which results in robust detection of

linear features in variable scenes and illumination conditions.

In contrast, other methods usually involve parameters related

to intensities of features or frequency of their appearance. For

example, an efficient approach was recently developed for de-

tection of object contours in cluttered scenes by means of bio-

logically motivated non-classical receptive field (non-CRF) in-

hibition (Grigorescu et al., 2003). In this approach an inhibi-

tion level needs to be carefully tuned. The suitable value of this

parameter may vary for different images depending on illumi-

nation conditions and ratio of features strength over clutter or

texture. A multilevel inhibition technique was suggested in Pa-

pari and Petkov (2011) to address this problem. It makes the

approach more robust, however, it may reduce the performance

when applied to a particular image comparing to the single op-

timal inhibition level. In addition, a multilevel inhibition in-

volves a fraction constant p with an appropriate value depend-

ing on the size and the number of structures of interest in the

image.

Below, we compare the MFC based and the non-CRF based

detectors of linear features. In this comparison we adapted the

isotropic non-CRF inhibition approach (Grigorescu et al., 2003)

to extraction of linear ridge (bar) features by using only an even

filter in the Gabor energy. Note, that the Gabor energy is not

invariant to constant bias because an even Gabor filter is not a

zero-DC filter. The right-most column in Fig. 6 shows the result

of applying the non-CRF inhibition approach with the param-

eters chosen for the best visual results, keeping the structures

of our interest extracted with the lowest level of clutter. In our

example the optimal inhibition level is α = 1.8. For the Ga-

bor filter the standard deviation is σ = 2, the spatial aspect

ratio γ = 0.25, and the wavelength λ = 5.7. For the inhibi-

tion term the standard deviation is σ = 1.5. For visualization

purposes the output of the non-CRF inhibition method was log-

arithmically transformed. Additional comparative examples of

the MFC based and the non-CRF based detectors can be found

in Zingman et al. (2013b).

To quantitatively compare the MFC based and the non-CRF

based detectors we generated a set of 26 512x512 artificial im-

ages composed of Brodatz textures and patterns of linear fea-

tures. Ground truth linear features were created as dashed lines

with an amplitude equal 0.8, three pixels width and 20 pixels

segment length. They were blurred by convolution with a 3x3

averaging kernel and then added to textures (see Fig. 7 on the

left). The gap between line segments was equal to the length

of segments. Line orientation was different for each texture and

taken from all possible equally spaced orientations. Prior to

the composition, the Brodatz textures were normalized to a unit

standard deviation and multiplied by a linear intensity gradient

image such that the right texture border was brighter than the

left border by four times (see Fig. 7 on the left).

Since we have very unbalanced classes (the class of lin-

ear features is much smaller in size than the size of texture

background), we used receiver operating characteristic (ROC)
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Fig. 6. First column: Aerial SWISSTOPO images (red channel) of 600x600 pixel size with man-made structures composed of linear walls. Second column:
White top-hat transform followed by an opening filter γlin obtained by the point-wise maximum of morphological openings with linear structuring elements
at different orientations. Third column: White top-hat transform followed by the MFC based detector of isolated linear features (ψ+

MFC
with subsequent

γlin). Non-zero pixels are shown in black. Fourth column: Non-CRF based detector of isolated linear features.

curves (Fawcett, 2006) to compare the detection performance

of the algorithms. ROC curves were previously used for com-

parison of edge detectors in Bowyer et al. (2001), which also

needed to account for unbalanced classes. A receiver operat-

ing characteristic (ROC) curve shows the relationship between

true positives detection rate and false positives rate of a par-

ticular detector. The true positives rate is the relative number

of pixels of linear features that were correctly identified, while

the false positive rate is the relative number of pixels of texture

background that were wrongly detected as linear features. An

important advantage of ROC curves is that they summarize the

performance of detectors for different class priors and detection

error costs. Fig. 8 shows the resulting ROC curves for low val-

ues of false positives, where the MFC based detector is superior.

For high false positives the non-CRF approach yields a higher

true positives rate. Moreover, the ROC curve of the MFC based

detector cannot be generated for true positives rates higher than

shown in the figure, because this detector completely removes

parts of linear features. This behavior fits visual results in Fig. 7

obtained for a couple of particular images (shown in Fig. 7 on

the left) from the image dataset. For visual purposes, the output

of the MFC and non-CRF based detectors was logarithmically

transformed. It can be seen that the MFC based approach is

more successful in suppressing texture background, but thins

linear features.

ROC curves were generated with optimal detector parame-

ters. In our experiments such parameters for the MFC based

detector were r1 = 10, r2 = 5. The length of the linear SE for

openings γlin was equal 5. For the non-CRF based detector op-

timal parameters were σ = 3.6, γ = 0.9, λ = 10.3 for the Gabor

filter and σ = 3 for the inhibition term. The inhibition level was

α = 1.8.

Fig. 7. Left: Examples of artificial images used for quantitative compari-
son of the MFC and the non-CRF based detectors of linear features. The
images were composed of Brodatz textures and patterns of linear features
(see details in Sec. 4.1.1). Middle: MFC based detector. Right: Non-CRF
based detector.
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Fig. 8. ROC curves of the MFC and non-CRF based detectors of linear
features.
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4.2. Extension of the MFC operator to vector-valued images
In this section, we generalize the MFC operators from gray-

scale to vector-valued discrete images, where each pixel is at-

tributed by a vector of values. A multispectral image is an ex-

ample of such a vector-valued image. The problem with ex-

tending morphological operators to vector-valued images lies

in the lack of a natural ordering of vectors. However, some

morphological transformations defined in terms of arithmetic

differences between morphological operators can naturally be

extended to vector-valued images without the need of chosing

a vectorial order. Examples of such extended transformations

were recently proposed for morphological gradient and for top-

hat in Evans and Liu (2006) and Hanbury (2004). Using similar

ideas, we derive an extended version of the MFC operators be-

low.

Proposition 7. The MFC operators ψ−MFC( f ), ψ+MFC( f ), defined
in Eq. (7) and in Eq. (6) with structuring elements of sizes r1

and r2, can be expressed in the following forms

[ψ−MFC( f )](x) = min
k∈B(2)

x

max
j∈B(3)

k

min
i∈B(1)

j

| f (i) − f (x)|+ , (10)

[ψ+MFC( f )](x) = min
k∈B(2)

x

max
j∈B(3)

k

min
i∈B(1)

j

| f (x) − f (i)|+ , (11)

where B(1)
p and B(2)

p are structuring elements of of sizes r1 and
r2, respectively, shifted to p, and B(3) denotes the structuring
element B(1) dilated by B(2).

Proof. Let us denote by δ and ε morphological dilation and

erosion, respectively. The MFC operator defined in Eq. (7) can

be rewritten as follows

[ψ−MFC( f )](x) = |[εr2
δr2
δr1
εr1

( f )](x) − f (x)|+
=|[min

k∈B(2)
x

max
j∈B(3)

k

min
i∈B(1)

j

f (i)] − f (x)|+ = | min
k∈B(2)

x

([max
j∈B(3)

k

min
i∈B(1)

j

f (i)] − f (x))|+

We note that for an arbitrary function g(y)

|min
y∈Bx

(g(y) − f (x))|+

=

⎧⎪⎪⎨⎪⎪⎩
min
y∈Bx

(g(y) − f (x)), if ∀y ∈ Bx : g(y) ≥ f (x)

0, otherwise

= min
y∈Bx
|g(y) − f (x)|+ ,

and

|max
y∈Bx

(g(y) − f (x))|+

=

⎧⎪⎪⎨⎪⎪⎩
max
y∈Bx

(g(y) − f (x)), if ∃y ∈ Bx : g(y) ≥ f (x)

0, otherwise

= max
y∈Bx
|g(y) − f (x)|+ .

Thus, we can proceed with

| min
k∈B(2)

x

([max
j∈B(3)

k

min
i∈B(1)

j

f (i)] − f (x))|+ = min
k∈B(2)

x

|[max
j∈B(3)

k

min
i∈B(1)

j

f (i)] − f (x)|+

=min
k∈B(2)

x

|max
j∈B(3)

k

([min
i∈B(1)

j

f (i)] − f (x))|+ = min
k∈B(2)

x

max
j∈B(3)

k

|[min
i∈B(1)

j

f (i)] − f (x)|+

=min
k∈B(2)

x

max
j∈B(3)

k

|min
i∈B(1)

j

( f (i) − f (x))|+ = min
k∈B(2)

x

max
j∈B(3)

k

min
i∈B(1)

j

| f (i) − f (x)|+.

This proves Eq. (10). Eq. (11) can be proved similarly.

We now define a new vectorial MFC operator ψMFC( f̄ ) that

applies to vector-valued images f̄ . We replace the non-negative

difference between intensity values in Eq. (10) and Eq. (11) by

a suitable metric distance D between vectors,

[ψMFC( f̄ )](x) = min
k∈B(2)

x

max
j∈B(3)

k

min
i∈B(1)

j

D( f̄ (x), f̄ (i)) . (12)

In contrast to ψ+MFC( f ) and ψ−MFC( f ), the ψMFC( f̄ ) operator ex-

tracts both dark and bright structures when applied to multi-

spectral images. If one is interested in extracting either dark

(or bright) structures only, i.e. structures having low (or high)

values relative to background, in all channels, pseudo-distances

may be used. For example, instead of using the D∞ distance,

pseudo distances defined by D+∞( f̄ , ḡ) = max
i
| fi − gi|+ and

D−∞( f̄ , ḡ) = max
i
|gi − fi|+ may be employed.

Vectorial operators may or may not be preferable to an in-

dependent processing of channels of a vector-valued image fol-

lowed by integration of the results. Another alternative is to

transform a vector valued image to a single channel image be-

fore processing. Finding a proper transformation or a way to

combine independently processed channels is a task dependent

problem, often approached by trial and error. A similar prob-

lem appears in the case of vectorial MFC, because a suitable

distance must be chosen. Fig. 9 shows examples of vectorial

MFC with Euclidean D2( f̄ , ḡ) = ‖ f̄ − ḡ‖2 and angular (spectral)

distances Dα( f̄ , ḡ) = ( f̄ · ḡ)/(‖ f̄ ‖2‖ḡ‖2). A comparative evalua-

tion of the vectorial MFCs, however, is beyond the scope of this

paper.

(a) (b) (c)

Fig. 9. An example of application of the vectorial MFC operator to an aerial
RGB (SWISSTOPO) image patch with an architectural structure shown in
(a). Vectorial MFC with (b) Euclidian distance and (c) angular distance.

5. Conclusions

We have shown how alternating morphological filters can be

used to design operators for detection of texture regions and iso-

lated features. The morphological texture contrast (MTC) op-

erator is designed for various applications where high contrast

textures of different types should be segmented out from non-

texture regions that may also contain isolated features. This

operator is able to discriminate texture from isolated features

irrespectively of their high magnitude and has a good localiza-

tion property. The comparison of the MTC operator based on

visual inspection and quantitative experiments, revealed its su-

periority over other methods used for texture detection.
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The morphological feature contrast (MFC) operator was pro-

posed for extraction of isolated features while simultaneously

being able to suppress texture background details. It has a sim-

ilar underlying structure as the MTC operator. An extension

of the MFC operator was derived allowing the MFC opera-

tor to be applied directly to vector-valued images. A simple

scheme based on the MFC operator was designed for detection

of isolated linear features. The advantages of this detector over

the recently introduced non-classical receptive field inhibition

approach were discussed and evaluated. We conclude that the

MTC and the MFC operators excel in tasks in which it is im-

portant to distinguish isolated features from texture details.
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