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Abstract 

Representation and classification of dynamic visual events in videos have been an active field of research. 

This work proposes a novel spatio-temporal descriptor based on phase congruency concept and applied it 

to recognize facial expression from video sequences. The proposed descriptor comprises histograms of 

dominant phase congruency over multiple 3D orientations to describe both spatial and temporal 

information of a dynamic event. The advantages of our proposed approach are local and dynamic 

processing, high accuracy, robustness to image scale variation, and illumination changes. We validated 

the performance of our proposed approach using the Cohn-Kanade (CK
+
) database where we achieved 

95.44% accuracy in detecting six basic emotions. We also validated its robustness to illumination and 

scale variation using our own collected dataset. 
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1 Introduction 

Detection of human facial expression from video sequences is a challenging problem due to real-

world constrains such as background clutter, partial occlusion, viewpoint variations, scale changes, 

and lighting conditions. Finding a suitable feature representation is a vital step to model the facial 

expression and subsequently recognize it in a video sequence.  

The traditional method for video representation is the extension of successful techniques used in 

static image analysis to support the dynamic requirement for video processing. 3D Scale Invariant 

Feature Transform (SIFT), Spatio-temporal Local Binary Pattern (LBP), and spatio-temporal 

descriptor based on 3D gradient are typical examples of video representation successfully applied in 

facial affect analysis or human action recognition [1, 2]. In this paper, we followed the same idea for 

feature representation by extending the Phase Congruency (PC) concept. We applied our proposed 

approach to dynamic facial emotion recognition from video sequences.  
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Local energy-based and phase-based models have emerged as successful tools to detect various 

image patterns such as step edges, corners, valleys, and lines. The phase-based feature extraction 

model proposes that the features of a signal are observed at locations where its Fourier components 

are in harmony. Such concept is also seen in the  human visual system that the image features are 

perceived at points where the phase values of its Fourier components are maximally in congruence 

[3].  

There are some advantages for PC-based feature extraction approaches over gradient-based 

techniques [4]. The gradient operators such as Prewitt, Sobel, Laplace, and Canny edge detector fail to 

precisely identify and localize all image features, especially in region affected by illumination 

changes. Unlike the gradient-based approaches which look for sharp changes of image intensity, PC is 

a dimensionless quantity which is robust to image contrast and illumination changes.  

In Figure 1, we show the advantages of PC-based line detection over Canny and Sobel methods. 

This figure illustrates that PC is able to localize the sharp line similar to the gradient operators. 

However, for features that are not sharp (gradual intensity variation), PC is able to detect such feature 

better than the traditional gradient operators as shown in Figure 1.  Indeed, PC captures the 

discontinuities even at small intensity differences which are missed by the typical image gradient-

based edge descriptors. It can be helpful for facial features detection including skin folds due to aging 

and expression.   

This paper explores the effectiveness of PC-based feature representation for video classification. 

The proposed descriptor, named Histogram of Dominant Phase Congruency (HDPC), comprises 

histograms of dominant PC over multiple 3D orientations to describe both the spatial and temporal 

information of a dynamic event. 

To construct HDPC descriptor, the spatio-temporal PC values are calculated for multiple 

orientations. Therefore, each pixel of a video is characterized by multiple oriented PC values. Thus 

the PC values are able to encode various features at different scales and orientations for both spatial 

and time domains. After calculating the oriented PC values, the next step is to find the maximum PC 

for each pixel while preserving the dominant orientation. In other words, each pixel is represented by 
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a vector where its length is equal to maximum PC, and its direction is determined by the dominant 

orientation. Keeping the dominant PC and its orientation information will preserve the key feature 

contributing to a dynamic event. The final step of our novel descriptor is building a local histogram of 

PC directions over all pixels over a spatio-temporal patch.  

The novelties of our proposed approach are:  

(1) Extending the PC concept to spatio-temporal domain to extract both static and dynamic 

information from a video sequence by applying the 3D log-Gabor filter. 

(2) Designing a bank of oriented 3D log-Gabor filters to detect the image features at various 

orientations.  

(3) Selecting dominant PC to capture the most significant motion information while preserving 

its direction.  

(4) Proposing histogram of dominant spatio-temporal PC to summarize the acquired 

information of each local 3D region.   

This paper is organized as follows: Section 2 summarizes the literature review. The proposed 

method for feature extraction is explained in section 3, including computing the 3D PC for sequenced 

images, the proposed HDPC algorithm, and summary of the algorithm’s properties. Section 4 and 5 

describe the experimental results and conclusion respectively. 

 

2 Related works 

Automated analysis of facial expression has been the subject of many researches due to its 

potential applications such as human-computer interaction, automated tutoring systems, image and 

video retrieval, smart environments, and driver warning systems. Although considerable progress has 

been reported in the literature, there are still challenges for a robust and automated analysis. Most 

previous works are focused on facial emotion recognition via static images. The static analysis 

systems ignore the dynamics of facial expression due to expensive computational time involved or the 

complicated temporal mode [5-9]. However, it is confirmed by human visual system that the 



5 
 

judgement about an expression is more reliable when its temporal information is also taken into 

account [10].  

To exploit the temporal information of facial expression, different techniques have been 

developed. There were several reported attempts to track the facial expression over time for emotion 

recognition via Hidden Markov Models (HMM). A multilevel HMM is introduced by Cohen et al. 

[11] to automatically segment the video and perform emotion recognition. Their experimental results 

indicated that the multilevel HMM have better performance than the one layered HMM. Cohen et al. 

[12] introduced a new architecture of HMMs for automatic segmentation and recognition of human 

facial expression from live videos.  

Dynamic Bayesian Networks (DBN) is another successful method for sequence-based expression 

analysis. Kwang-Eun and Kwee-Bo [13, 14] developed a facial expression recognition system based 

on combining the Active Appearance Model (AAM) for feature extraction and DBN for modelling 

and analysing the temporal phase of an expression. They claimed that their proposed approach is able 

to achieve robust categorization of missing and uncertain data and temporal evolution of the image 

sequences. 

Optical Flow (OF) is also a widely used approach for facial features tracking and dynamic 

expression recognition. Cohn et al. [15] developed an optical flow based approach to automatically 

discriminate the subtle changes in facial expression. They considered sensitivity to subtle motion 

when designing the OF which is crucial for spontaneous emotion detection.  

Methods based on local features or interest points such as SIFT have shown to perform well for 

object recognition and then extended for video analysis. Camara-Chavez and Araujo [16] proposed a 

method for event detection in a video stream by combining Harris-SIFT with motion information in 

the context of  human action recognition. They used the Harris corner detection for key-point 

extraction and the phase correlation method was used to measure the motion information.  

Guoying and Pietikainen[1] presented a successful dynamic texture descriptor based on the Local 

Binary Pattern (LBP) operator and applied it on facial expression recognition as a specific dynamic 
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event. Their proposed dynamic LBP descriptors were calculated on Three Orthogonal Planes (TOP) 

of the video volume, resulting in LBP-TOP descriptor. Local processing, simple computation and 

robustness to monogenic gray-scale changes are the advantages of their method.  

Dollar et al. [17] developed a general framework for dynamic behaviour detection from videos by 

proposing descriptors to encode the spatio-temporal cuboids surrounding the points of interest. 

Extracted cuboids are clustered to form a dictionary of cuboid prototypes and then the information of 

location and type of cuboid prototypes is kept for further processing. They argued that the proposed 

representation is robust to many data variations. Their experimental results on different databases 

including facial expression and human activity show that their method is applicable for these tasks.  

Guha and Ward [18] explored the effectiveness of sparse representations in the context of facial 

expressions and human actions recognition. They extracted a set of spatio-temporal descriptors named 

Local Motion Pattern (LMP) for the key points of video sequences. A compact and rich representation 

was then suggested by learning the overcomplete dictionary and its corresponding sparse model. Their 

work presented a new local spatiotemporal feature that is distinctive, scale invariant, and fast to 

compute. 

Our method does not require large training data which is needed for some techniques such as 

HMM, and also does not require key point extraction and feature tracking.  The main disadvantage of 

gradient-based key point extraction is that any slight variation in the illumination will produce 

candidate key points similar to those produced by large motion. The inability to specify in advance 

what level of response corresponds to a significant feature is the shortcoming of many feature 

detectors. The PC based descriptor is able to detect a wide range of feature types and identifying their 

uniqueness in the image. 

3 Methodology 

To detect a dynamic event such as facial expression, the feature representation is a vital step that 

should be able to describe the visual event in both spatial and temporal domains. To obtain such a 

representation, we proposed the spatio-temporal PC concept since it is able to capture significant 
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information in both the spatial and temporal domains. Additionally, we designed a new descriptor 

called Histogram of Dominant Phase Congruency (HDPC) which encodes the dominant oriented PC 

of local 3D patches to increase its robustness to noise or outliers. More precisely, the proposed 

approach involves two main steps: (1) Calculating the spatio-temporal PC at various orientations, and 

(2) encoding the pixel’s dominant oriented PC. We describe the details of each stage in the following 

subsections. 

 

3.1 Spatio-temporal PC calculation 

The monogenic signal framework provides the extended form of analytic signal to 3D by using a 

vector-valued odd filter (Riesz filter) which is represented in Fourier domain as follows [19]: 

𝐻1(𝑢, 𝑣, 𝑤) = 𝑖
𝑢

√𝑢2+𝑣2+𝑤2
  

𝐻2(𝑢, 𝑣, 𝑤) = 𝑖
𝑣

√𝑢2+𝑣2+𝑤2
          (1) 

𝐻3(𝑢, 𝑣, 𝑤) = 𝑖
𝑤

√𝑢2+𝑣2+𝑤2
  

where the 𝑢, 𝑣 and 𝑤 are the Fourier domain coordinates and 𝑖 represents the imaginary part of the 

signal. The monogenic signal 𝑓𝑀 is then calculated as follow: 

𝑓𝑀(𝑥, 𝑦, 𝑧) = [𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧), 𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗ ℎ1(𝑥, 𝑦, 𝑧), 𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗

ℎ2(𝑥, 𝑦, 𝑧), 𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗ ℎ3(𝑥, 𝑦, 𝑧)]       (2) 

where f is the original signal, h1, h2 and h3 are the spatial domain representations of 𝐻1, 𝐻2 and 𝐻3 

respectively, g is a bandpass filter, and ∗ denotes convolution operation. Indeed, the 3D image is first 

filtered using a bandpass filter such as log-Gabor filter. An oriented 3D log-Gabor filter is defined by 

the following Eq: 

𝐺(𝑤, 𝜑, 𝜃) = exp [ (−
(log(

𝑤

𝑤0
))

2

2(log(
𝑘

𝑤0
))

2 +
(φ−𝜑0)2

2𝜎𝜑
2 +

(θ−𝜃0)2

2𝜎𝜃
2 )      (3) 



8 
 

where 𝑤0 is the filter’s centre frequency,  parameter k controls the bandwidth of the filter, 𝜑0 and 𝜃0 

denote the filter angles, and 𝜎𝜑 and 𝜎𝜃 are the respective filter spread.  

The monogenic signal defined by Eq. 2 consists of 4 components: 

𝑓𝑀,1(𝑥, 𝑦, 𝑧) =  𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧),  

𝑓𝑀,2(𝑥, 𝑦, 𝑧) =  𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗ ℎ1(𝑥, 𝑦, 𝑧),      (4) 

𝑓𝑀,3(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗ ℎ2(𝑥, 𝑦, 𝑧), 

𝑓𝑀,4(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∗ ℎ3(𝑥, 𝑦, 𝑧)       

The even and odd components of a monogenic signal are represented as follows: 

𝑒𝑣𝑒𝑛𝑀𝐺(𝑥, 𝑦, 𝑧) = 𝑓𝑀,1(𝑥, 𝑦, 𝑧)         (5) 

𝑜𝑑𝑑𝑀𝐺(𝑥, 𝑦, 𝑧) = √𝑓𝑀,2(𝑥, 𝑦, 𝑧)2 + 𝑓𝑀,3(𝑥, 𝑦, 𝑧)2 + 𝑓𝑀,4(𝑥, 𝑦, 𝑧)2    (6) 

and therefore, similar to 1D analytic signal, the new representation of the monogenic signal is the 

combination of even and odd terms: 

𝑓𝑀𝐺 = 𝑒𝑣𝑒𝑛𝑀𝐺(𝑥, 𝑦, 𝑧) + 𝑖 × 𝑜𝑑𝑑𝑀𝐺(𝑥, 𝑦, 𝑧)       (7) 

Now, the phase congruency for multiple orientations and scales of log-Gabor filter is defined as: 

𝑃𝐶𝑜(𝑥, 𝑦, 𝑧) =
⌊𝐸𝑜(𝑥,𝑦,𝑧)−𝑇𝑜⌋

∑ √(𝑒𝑣𝑒𝑛𝑜
𝑠𝑐(𝑥,𝑦,𝑧))

2
+(𝑜𝑑𝑑𝑜

𝑠𝑐(𝑥,𝑦,𝑧))
2

+𝜀𝑠𝑐

      (8) 

where o and sc represent the orientation and scale variables respectively. 𝑃𝐶𝑜 is the phase congruency 

for a specific orientation and symbol ⌊ ⌋ denotes that the enclosed quantity is not allowed to be 

negative. 𝐸𝑜 and 𝑇𝑜 are the orientation specific energy and noise threshold respectively which can be 

calculated by Eq.9 and Eq.10, and 𝜀 is a small offset to avoid division by zero. 

𝑇𝑜 = ∑ 𝑒𝑥𝑝
𝑚𝑒𝑎𝑛[log(√(𝑒𝑣𝑒𝑛𝑜

𝑠𝑐(𝑥,𝑦,𝑧))
2

+(𝑜𝑑𝑑𝑜
𝑠𝑐(𝑥,𝑦,𝑧))

2
)]

𝑠𝑐       (9) 

𝐸𝑜(𝑥, 𝑦, 𝑧) = √(∑ 𝑒𝑣𝑒𝑛𝑜
𝑠𝑐(𝑥, 𝑦, 𝑧)𝑠𝑐 )2 + (∑ 𝑜𝑑𝑑𝑜

𝑠𝑐(𝑥, 𝑦, 𝑧)𝑠𝑐 )2     (10) 

To detect the image features at various orientations, a bank of oriented log-Gabor filters are 

designed. However, the multi-orientation representation for the PC calculation may cause high 
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dimensionality and expensive computational time. Therefore, we selected the dominant orientation 

where the PC value is the maximum and then designed a proper feature representation.  

 

3.2 Proposed HDPC feature 

This section describes the proposed local volumetric feature. The outline of the proposed 

descriptor is illustrated in Figure 2. The first step for HDPC feature extraction is the partitioning of 

volumetric data into local regions. The local regions are determined by dividing the data into 

predefined number of 3D blocks as shown in Figure 2a. To preserve the geometric information of the 

descriptors, each block is divided into predefined number of 3D grids named cells as illustrated in 

Figure 2b. The block-based approach is used to combine the extracted information from pixel-level, 

region-level, and volume-level. The video sequence can be partitioned using overlapping or non-

overlapping blocks. Then, for each pixel of a cell, multiple 3D PCs at various orientations are 

calculated using Eq. 8. As Figure 2c shows, each pixel is characterized by several oriented PC 

components. 

The next step is the selection of dominant orientation where the PC component is maximum. 

Therefore, each pixel of the 3D data is represented by an orientation and a maximum PC as shown in 

Figure 2d. Since we construct our descriptor based on the dominant PC for each cell, it will be less 

sensitive to noise.   

Finally, the sub-histogram for predefined number of orientations (bin numbers) can be constructed. 

Each bin will be weighted by its dominant PC. On the other hand, for each orientation which is 

defined for log-Gabor filter, we accumulate the dominant PCs over each cell. The block feature 

consists of the cell’s histograms. 

The final HDPC descriptor is the concatenation of all the block’s features. Therefore, our proposed 

spatiotemporal descriptor is able to handle different sequence length, allowing the use of variable 

length video segments which is common in real applications. 
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3.3 Unique properties of HDPC 

- Since the PC values are computed for multiple scales of the bandpass filter, HDPC descriptor 

has the ability to capture the image information at various scales, and thus it is robust to 

image scale. 

- Since the number of discretized directions defined for log-Gabor filter can be varied, HDPC is 

also able to detect the image features and motion information in multiple directions.  

- Using PC values instead of gradient magnitude for each pixel to construct the local histogram 

makes HDPC robust to illumination variation. PC is a dimensionless quantity which has been 

shown to be insensitive to lighting [19].  

 

4 Experimental Results 

We used  the extended Cohn-Kanade dataset (CK
+
) [20] for facial expression recognition task in our 

experiments. It contains 593 video sequences recorded from 123 university students ranging from 18 to 

30 years old. In this database, the subjects expressed a series of 23 facial displays including single or 

combined action units. Six of the displays are labeled as prototype basic emotions (joy, surprise, anger, 

fear, disgust, and sadness). In this work, we used all the 309 sequences from the dataset that have been 

labeled with at least one of the six basic emotions. 

Due to limited dataset, we adopted theLeave-One subject-Out (LOO) cross validation approach in 

our experiment. For the database with N subjects, we performed N experiments. For each step, the 

video samples of N-1 subjects are kept for training and the remaining samples for testing. Finally, the 

average classification accuracy on all the test samples is calculated as the true detection rate. This 

evaluation method makes the result obtained to be subject independent as there is no information of 

the same subject in both the training and test samples. 

For classification task, a Support Vector Machine (SVM) with polynomial kernel function has 

been used in the experiments. SVM has been originally proposed for binary categorization, and then 

developed for multi-class problems [21]. For our first database, we used one-against-all technique that 
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constructs 6 binary SVM classifiers to categorize each emotion against all the others. Classification of 

a new instance is done by a winner-takes-all strategy, where the classifier with the highest output 

function assigns the class. Regarding the parameter selection of SVM, we carried out grid-search on 

the parameters as suggested in [5] for LOO cross-validation. The parameters producing the best result 

are chosen. 

We applied a pre-processing stage before feature extraction. The images are aligned such that they 

have a constant distance between the two eyes. Since the facial landmarks’ locations are given in the 

dataset, the alignment is done manually and no eye detection algorithm is used. The face images are 

then rotated to line up the eye coordinates. Finally, the faces are cropped using a rectangle of size 

100×100.  

We carried out the first experiment on different settings including various numbers of blocks and 

cells to evaluate its effect on feature dimension and classification detection rate. The results are 

tabulated in Table 1. Based on the results, partitioning the volume data into 75 blocks (5×5×3) and 9 

cells (3×3×1) outperforms the other settings in term of classification detection rate. 

For bandpass filtering with log-Gabor filter defined by Eq. 3, proper parameter setting is important 

to have acceptable results. A 16-oriented filter bank (4 values for θ ranged over 0
0
-180

0
, and 4 values 

for φ ranged over 0
0
-180

0
) are found to be suitable for our experiment. Table 2 gives the effect of 

parameter 
𝑘

𝑤0
  on the classification performance. Based on this table, the value of 0.85 produced the 

best result. We also did an experiment to evaluate the log-Gabor wavelength on classification 

detection rate. As Table 3 shows, result using 3 scales of the bandpass filter with wavelengths of {8, 

12, 16} is superior to the other settings in term of detection rate. 

In the CK
+
 database, there are a few samples with illumination and skin colour variations. 

However, the variation is only minor and not sufficient to test the effect of illumination variation on 

our proposed descriptor. We have recorded some video sequences of surprise and happy expressions 

under different illumination conditions (8 video sequences for surprise and 7 sequences for happy). 

We used the recorded samples to evaluate our classifier trained using the CK
+
 database (which has 
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only minor illumination variation). Our proposed method is able to detect the true label for all 

sequences (100% accuracy). Figure 3 shows the recorded signals for surprise, and a sample face of 

each sequence together with the recognition results. 

We also tested the ability of the proposed descriptor for emotion detection from small scale and 

low resolution videos. We down sampled a recorded signal of happy expression with 5 sampling rate 

(1/2, 1/4, 1/6, 1/8, and 1/10). We again used the down sampled sequences to evaluate our classifier 

trained using the original CK
+
 database. The recognition results again do not degrade compared to the 

original. The result shows the ability of the method to be applied even for low resolution video 

analysis.  

Table 4 summarizes a comparison between the different approaches reported in the literatures and 

also our method applied to the same database. Brief information of the methods including number of 

subjects, number of video samples, static or dynamic process, evaluation measurements, and 

classification accuracy is given in this table. Note that direct comparison of the results is unfair since 

there are some differences in the experimental setup such as pre-processing approaches, number of 

samples, and evaluation methods among the reported results. Nevertheless, the table gives a 

qualitative performance difference among the various reported approaches on the same database and 

serves as a reference for the readers. The result shows that our person-independent result is 

comparable to the other approaches, and ranked just below the spatio-temporal LBP. However, our 

method is more robust to illumination variation as well as large change in scale. 

 

5 Conclusion  

In this paper, we proposed a novel descriptor for dynamic visual event analysis which has several 

desirable properties. Histogram of Dominant Phase Congruency (HDPC) is a spatio-temporal 

descriptor which is able to describe the motion features in addition to appearance features by 

extending the Phase Congruency to 3D and incorporating histogram binning. As such, it is also able to 

detect the features at different orientations and scales as well as robustness to illumination variation. 
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We have shown that it is an effective representation method for facial expression. Experimental 

results on facial expression Cohn-Kanade (CK
+
) database achieved an accuracy of 95.44%. The 

robustness of the proposed descriptor to illumination and low resolution conditions were evaluated 

using our own collected facial expression data. The high performance of the method suggests that it is 

applicable for dynamic video events recognition in natural situations. 
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Table 1: Effect of number of blocks and number of cells on detection performance of HDPC feature for CK
+
 database. 

No. Blocks No. cells No. features Detection rate (%) 

2×2×2 2×2×2 1024 84.73 

2×2×2 3×3×1 1152 91.84 

2×2×2 4×4×2 4096 91.92 

4×4×2 2×2×2 4096 91.64 

4×4×2 3×3×1 4608 92.25 

4×4×2 4×4×2 16384 93.55 

5×5×2 3×3×1 7200 93.99 

5×5×3 3×3×1 10800 95.44 

5×5×3 4×4×2 38400 95.13 

 

 

 

 

Table 2: Effect of log-Gabor bandwidth on classification accuracy for CK
+ 

database. The results are based on 75 blocks 
(5×5×3), and 9 cells (3×3×1). 

𝒌

𝒘𝟎
 

Detection Rate (%) 

0.55 93.00 

0.65 93.99 

0.75 94.10 

0.85 95.44 
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Table 3: Effect of log-Gabor scales on classification accuracy for CK
+ 

database. The results are based on 75 blocks (5×5×3), 
and 9 cells (3×3×1). 

# Scales Wavelength Detection Rate(%) 

2 {4, 8} 95.20 

3 {8, 12, 16} 95.44 

4 {2, 8, 12, 16} 95.20 

5 {2, 8, 12, 16, 32} 91.43 

 

 

Table 4: Comparison of the reported results for the CK
+
database. The number of sequences, statice or dynamic process, 

evaluation measurement, and classification detection rate. 

Method #Subject #Sequence Dynamic Evaluation 
Recognition 

Rate (%) 

LBP+SVM 

[22] 
96 320 N 10-fold 88.4 

Gabor+AdaSVM 

[23] 
90 313 N 10-fold 86.9 

Gabor+adaboost+SVM[24] 90 313 N LOO 93.8 

Optical flow+HMM[25] 97 - Y 5-fold 90.9 

Multistream NN 

[26] 
90 284 Y - 93.66 

Geometricalfeatures+NN 

[27] 
97 375 N - 93.8 

Spatio-temporal LBP 

[1] 
97 375 Y 10-fold 96.26 

Proposed method 

(HDPC+SVM) 
118 309 Y LOO 95.44 
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Figure 1: Comparison of methods for line detection; (a) sharp line; (b) line detection based on Phase Congruency; (c)  line 
detection based on Canny; (d) line detection based on Sobel; (e) Gradual line with intensity range of [0 3]; (f) Line 
detection based on Phase Congruency; (g) Line detection based on Canny; (h) Line detection based on Sobel. 

 

 

 

Figure 2: Descriptor computation; (a) The volume data is divided into a number of 3D grids. Each grid is denoted by a 
block (𝑩𝒊). The final descriptor (𝑭 ) consists of the block’s feature. (b) Each block is divided into number of 3D cells (𝑪𝒋). 

The block feature consists of the cell’s histograms. (C) Each cell includes a number of points (𝑷𝒌) which are characterized 
by several oriented PC components. (D) A PC component with Dominant orientation is selected for each pixel and then 
used to compute the histogram of a cell. 
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Figure 3: Variation of illumination; (a) Recorded samples of surprise expression under different illumination conditions; 
(b) Sample face of each sequence; (c) Classification results 


