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Abstract

Bernoulli HMMs are conventional HMMs in which the emission probabilities

are modeled with Bernoulli mixtures. They have recently been applied, with

good results, in off-line text recognition in many languages, in particular,

Arabic. A key idea that has proven to be very effective in this application of

Bernoulli HMMs is the use of a sliding window of adequate width for feature

extraction. This idea has allowed us to obtain very competitive results in the

recognition of both Arabic handwriting and printed text. Indeed, a system

based on it ranked first at the ICDAR 2011 Arabic recognition competition

on the Arabic Printed Text Image (APTI) database. More recently, this idea

has been refined by using repositioning techniques for extracted windows,

leading to further improvements in Arabic handwriting recognition. In the

case of printed text, this refinement led to an improved system which ranked

second at the ICDAR 2013 second competition on APTI, only at a marginal

distance from the best system. In this work, we describe the development

of this improved system. Following evaluation protocols similar to those of

the competitions on APTI, exhaustive experiments are detailed from which
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state-of-the-art results are obtained.

Keywords: Bernoulli HMMs, Printed Arabic Recognition, Sliding Window,

Repositioning

1. Introduction1

Hidden Markov Models (HMMs) are now widely used for off-line text2

recognition in many languages, in particular, languages with Arabic script (De-3

hghan et al., 2001; Günter and Bunke, 2004; Märgner and El Abed, 2007,4

2009; Grosicki and El Abed, 2009). Following the conventional approach5

in speech recognition (Rabiner and Juang, 1993), HMMs at global (line or6

word) level are built from shared, embedded, HMMs at character (subword)7

level, which are usually simple in terms of number of states and topology. In8

the common case of real-valued feature vectors, state-conditional probability9

(density) functions are modeled as Gaussian mixtures since, as with finite10

mixture models in general, their complexity can be easily adjusted to the11

available training data by simply varying the number of components.12

After decades of research in speech recognition, the use of certain real-13

valued speech features and embedded Gaussian (mixture) HMMs is a de-facto14

standard (Rabiner and Juang, 1993). However, in the case of text recognition15

there is no such standard. In fact, very different sets of features are in16

use today. In (Giménez and Juan, 2009) we proposed to by-pass feature17

extraction and directly feed columns of raw, binary pixels into embedded18

Bernoulli (mixture) HMMs (BHMMs), that is, embedded HMMs in which the19

emission probabilities are modeled with Bernoulli mixtures. The basic idea20

is to ensure that no discriminative information is filtered out during feature21
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extraction, which in some sense is integrated into the recognition model.22

In (Giménez et al., 2010), we improved our basic approach by using a sliding23

window of adequate width to better capture image context at each horizontal24

position of the text image. This improvement, to which we refer as windowed25

BHMMs, achieved very competitive results on the well-known IfN/ENIT26

database of Arabic town names (Märgner and El Abed, 2010). More recently,27

very good results on the Arabic Printed Text Image (APTI) database were28

also achieved using the same approach, which ranked first in the ICDAR29

2011 Arabic recognition competition for printed Arabic text (Slimane et al.,30

2011).31

Although windowed BHMMs achieved good results on IfN/ENIT and32

APTI, it was clear to us that text distortions are more difficult to model33

with wide windows than with narrow (e.g. one-column) windows. In order34

to circumvent this difficulty, we have considered new, adaptive window sam-35

pling techniques, as opposed to the conventional, direct strategy in which36

the sampling window center is applied at a constant height of the text image37

and moved horizontally one pixel at a time. More precisely, these adaptive38

techniques can be seen as an application of the direct strategy followed by a39

repositioning step by which the sampling window is repositioned to align its40

center to the center of gravity of the sampled image. This repositioning step41

can be done horizontally, vertically or in both directions. Although vertical42

repositioning is expected to have more influence on recognition results than43

horizontal repositioning, we have studied both separately and in conjunction,44

so as to confirm this expectation.45

In (Giménez et al., 2014b), the repositioning techniques described above46
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are introduced and extensively tested on different databases for off-line hand-47

writing recognition. As expected, vertical repositioning provides excellent re-48

sults, not only on IfN/ENIT, but also on other well-known databases such as49

IAM words and RIMES. In the case of printed text, the use of repositioning50

techniques has allowed us to significantly improve our system at the ICDAR51

2011 first competition on APTI. Indeed, our improved system obtained much52

better results at the ICDAR 2013 second competition on APTI, in which it53

ranked second at a marginal distance from the first (Slimane et al., 2013). In54

this work, we describe the development of this improved system. Following55

evaluation protocols similar to those of the competitions on APTI, exhaustive56

experiments are described from which state-of-the-art results are obtained.57

In what follows, we first review BHMMs (Sec. 2). Then, we describe58

the approach through which we are achieving the best results: windowed59

BHMMs with repositioning (Sec. 3) and its use for printed Arabic recognition60

by application of the Bayes decision rule (Sec. 4). In Sec. 5, we provide the61

results of a complete series of experiments on APTI as well as a comparison62

with results from other authors on this database. Finally, concluding remarks63

are given in Sec. 6.64

2. Bernoulli HMMs65

Let O = (o1, . . . , oT ) be a sequence of feature vectors. An HMM is a66

probability (density) function of the form:67

P (O | Θ) =
∑

q1,...,qT

T∏

t=0

aqtqt+1

T∏

t=1

bqt(ot) , (1)
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where the sum is over all possible paths (state sequences) q0, . . . , qT+1, such68

that q0 = I (special initial or start state), qT+1 = F (special final or stop69

state), and q1, . . . , qT ∈ {1, . . . ,M}, being M the number of regular (non-70

special) states of the HMM. On the other hand, for any regular states i and j,71

aij denotes the transition probability from i to j, while bj is the observation72

probability (density) function at j.73

A Bernoulli (mixture) HMM (BHMM) is an HMM in which the probabil-74

ity of observing a binary feature vector ot, when qt = j, follows a Bernoulli75

mixture distribution for the state j76

bj(ot) =

K∑

k=1

πjk

D∏

d=1

potdjkd (1− pjkd)
1−otd , (2)

where otd is the d-th bit of ot, πjk is the prior of the k-th mixture component77

in state j, and pjkd is the probability that this component assigns to otd to78

be 1.79

As discussed in the introduction, BHMMs at global (line or word) level80

are built from shared, embedded BHMMs at character level. More precisely,81

let C be the number of different characters (symbols) from which global82

BHMMs are built, and assume that each character c is modeled with a dif-83

ferent BHMM of parameter vector Θc. Let Θ = {Θ1, . . . ,ΘC}, and let84

O = (o1, . . . , oT ) be a sequence of feature vectors generated from a sequence85

of symbols S = (s1, . . . , sL), with L ≤ T . The probability of O can be calcu-86

lated, using embedded HMMs for its symbols, as:87

P (O | S,Θ) =
∑

i1,...,iL+1

L∏

l=1

P (oil, . . . , oil+1−1 | Θsl) , (3)

where the sum is carried out over all possible segmentations of O into L88
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segments, that is, all sequences of indices i1, . . . , iL+1 such that89

1 = i1 < · · · < iL < iL+1 = T + 1;

and P (oil, . . . , oil+1−1 | Θsl) refers to the probability (density) of the l-th90

segment, as given by (1) using the HMM associated with symbol sl.91

Maximum likelihood estimation (MLE) of BHMM parameters does not92

differ significantly from the conventional Gaussian case, and it can be effi-93

ciently performed using the well-known EM (Baum-Welch) re-estimation for-94

mulae (Rabiner and Juang, 1993; Young et al., 1995). Please see (Giménez95

et al., 2014b) for more details. Also as in the conventional Gaussian case,96

BHMM parameters can be estimated by discriminative training (Giménez97

et al., 2014a).98

3. Windowed BHMMs with repositioning99

Given a binary image normalized in height to H pixels, we may think of a100

feature vector ot as its column at position t or, more generally, as a concate-101

nation of columns in a window of W columns in width, centered at position102

t. This generalization has no effect neither on the definition of BHMM nor103

on its MLE, although it might be very helpful to better capture the image104

context at each horizontal position of the image. As an example, the first105

row in Fig. 1 shows a binary image of 4 columns and 5 rows, which is trans-106

formed into a sequence of four 15-dimensional feature vectors by application107

of a sliding window of width 3. For clarity, feature vectors are depicted as108

3×5 subimages instead of 15-dimensional column vectors. Note that feature109

vectors at positions 2 and 4 would be indistinguishable if, as in our previous110

approach, they were extracted with no context (W = 1).111
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Although one-dimensional, “horizontal” HMMs for image modeling can112

properly capture non-linear horizontal image distortions, they are somewhat113

limited when dealing with vertical image distortions, and this limitation114

might be particularly strong in the case of feature vectors extracted with115

significant context. To overcome this limitation, we have considered three116

methods of window repositioning after window extraction: vertical, horizon-117

tal, and both. The basic idea is to first compute the center of mass of the118

extracted window, which is then repositioned (translated) to align its center119

to the center of mass. This is done in accordance with the chosen method,120

that is, horizontally, vertically, or in both directions. Obviously, the feature121

vector actually extracted is that obtained after repositioning. An example122

of feature extraction is shown in Fig. 1 in which the standard method (no123

repositioning) is compared with the three methods repositioning methods124

considered.125

It is helpful to observe the effect of repositioning with real data. Fig. 2126

shows the sequence of feature vectors extracted from a real sample of the127

APTI database, with and without (both) repositioning. As expected, (ver-128

tical or both) repositioning has the effect of normalizing vertical image dis-129

tortions, especially translations.130

4. Bernoulli HMMs for printed Arabic recognition131

Given an observation O of unknown class, we use the Bayes decision132

rule to classify O into the class to which it belongs with highest (posterior)133

probability or, equivalently:134

c∗(O) = argmax
c=1,...,C

logP (c) + logP (O | c) (4)
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+
+ + +

o1 o2 o3 o4

Repositioning

None

+
+ + +

Vertical + + + +

Horizontal

+
+ + +

Both + + + +

Figure 1: Example of transformation of a 4 × 5 binary image (top) into a sequence of

4 15-dimensional binary feature vectors O = (o1,o2,o3,o4) using a window of width

3. After window extraction (illustrated under the original image), the standard method

(no repositioning) is compared with the three repositioning methods considered: vertical,

horizontal, and both directions. Mass centers of extracted windows are also indicated.
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Figure 2: Original sample Image 18 ArabicTransparent 5111 from set1 from APTI

database (top) and its sequence of feature vectors produced with and without (both)

repositioning (center and bottom, respectively).

where C is the total number of classes and, for each class c = 1, . . . , C,135

P (c) is its prior probability and P (O | c) is the class-conditional probability136

(density) for O to come from class c.137

Class priors and class-conditional probability (density) functions are usu-138

ally estimated from a set of training observations. The conventional approach139

to estimate class priors is simply to compute their relative frequencies from140

the training set. However, the estimation of class-conditional probability141

(density) functions is more involved and depends on the type of representa-142

tion space for the observations. Usually, each class-conditional probability143

(density) function is modeled by an appropriate parametric function whose144

parameters are estimated by MLE from the training data. As an example,145

consider the problem of classifying images of isolated printed Arabic charac-146

ters. The number of classes is modest and it is not difficult to collect many147
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training examples for each class. Therefore, class priors can be accurately148

estimated by the conventional method. Also, if images are represented as149

sequences of feature vectors, each class-conditional probability function can150

be modeled by an independent BHMM (Eqs. (1) and (2)) with parameters151

estimated by MLE from training observations of its class (Giménez et al.,152

2014b).153

The above approach for the estimation of class priors and class-conditional154

probability (density) functions is no longer applicable to classification prob-155

lems with large number of classes due to the lack of training data for each156

class. Consider, as we do in this work, the problem of classifying images157

of printed Arabic words. Collecting a number of training observations for158

each word will be really difficult if we are interested in recognizing a large159

number of different words. Indeed, it will be impossible if we are interested160

in building an open-vocabulary recognizer, that is, one even able to recognize161

words not “seen” (with no observations) in the training data. As with Arabic162

handwriting recognition in general, the usual approach in this case consists163

in using global (word) models defined in terms of local (subword) models.164

This is the approach followed in this work. Formally, given an observation165

O of an unknown word, we use Eq. (4) to decide to which word corresponds:166

w∗(O) = argmax
w

logP (Sw) + logP (O | Sw,Θ) (5)

where, for each word w, Sw is its sequence of symbols (characters), P (Sw)167

is its prior probability and P (O | Sw,Θ) is the probability for O to be168

generated from a BHMM for w (Eq. 3). Word priors are modeled with n-169

gram language models at character level (Jelinek, 1997). Word-conditional170

probability functions are modeled by BHMMs built from shared, embedded171
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BHMMs at character level (Eq. (3)) with parameters trained by MLE.172

Clearly, the direct way to measure the error of a word recognizer is to173

count the (relative) number of misclassified observations in a collection of174

test observations (i.e. samples held out during training). In what follows,175

this is referred to as the Word Error Rate (WER). Apart from the WER, we176

also use the Character Error Rate (CER), that is, the (relative) number of177

misclassified characters. In practice, the CER can be considered equivalent178

to the WER for comparison purposes.179

5. Experiments180

As indicated in the introduction, in this Section we provide the results of a181

complete series of experiments on APTI as well as a comparison with results182

from other authors on this database. APTI is briefly described in Section 5.1183

together with its basic preprocessing for the experiments below. Then, two184

experimental protocols are defined in Section 5.2, UPVPC1 and UPVPC2,185

whose results are reported separately in Sections 5.3 and 5.4 respectively.186

Finally, the idea of vertical repositioning is also tried on recent state-of-the-187

art techniques based on neural networks in Section 5.5.188

5.1. APTI database and preprocessing189

The Arabic Printed Text Image (APTI) database is a collection of images190

of Arabic Printed words. It was recently published by (Slimane et al., 2009)191

for large-scale benchmarking of open-vocabulary, multi-font, multi-size and192

multi-style text recognition systems in Arabic. It consists of 113284 different193

single words, each one available in 10 different fonts, 10 different font sizes,194

and also 4 different styles.195
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APTI is divided into six equilibrated sets (set1, set2, . . . , set6) to allow196

for flexibility in the design of experimental protocols. Each set has different197

words, but characters are equally distributed. The five first sets are available198

for the scientific community. The sixth set is kept by the authors for future199

evaluation of systems in blind mode.200

For the experiments reported below, APTI was preprocessed by scaling201

all images in the first five sets to a height of D pixels (for 10 different values202

of D from 30 to 50) while keeping the aspect ratio. Scaled images were then203

binarized by application of the Otsu’s method (Otsu, 1979).204

5.2. Experimental protocols: UPVPC1 and UPVPC2205

APTI was used first in the Arabic Recognition Competition of ICDAR206

2011 (Slimane et al., 2011). Two experimental protocols were defined which207

differ in the number of fonts used: APTIPC1 and APTIPC2. In APTIPC1,208

only the Arabic Transparent font was used. In APTIPC2, however, five dif-209

ferent fonts were used: Arabic Transparent (Trans), Andalus (Anda), Diwani210

Letter (Diw), Simplified Arabic (Simp), and Traditional Arabic (Trad). In211

both protocols, only the P lain font style was used, with sizes of 6, 8, 10,212

12, 18 and 24 pixels. As indicated above, the first five sets were available213

to participants for system training, while the sixth set was held-out by the214

organizers for system comparison in blind mode.215

In this paper, we could not use the training-test partition used at the216

ICDAR 2011 competition because the sixth set is not publicly available.217

Instead, we used the first four sets for training and the fifth set for testing.218

More precisely, we defined two new protocols: UPVPC1 and UPVPC2. In219

UPVPC1, 13000 images from the first four sets were randomly drawn (10000220
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for training and 3000 for testing). In UPVPC2, we used the whole first four221

sets for training and the whole fifth set for testing. In particular, we used222

2266500 images for training, and 566040 for testing.223

5.3. Results using the UPVPC1 protocol224

For (computational) simplicity, the UPVPC1 protocol was used in a first225

series of experiments to study the effect on the CER of various key parame-226

ters. We began with experiments for font size 6, which were then extended227

to other font sizes. In particular, for each dimension D in {30, 32, . . . , 50},228

each sliding window width W in {1, 3, . . . , 11}, each number of states Q in229

{4, 5, 6, 7, 8} and each number of mixture components K in {1, 2, 4, ..., 32},230

a BHMM-based word recognizer was trained from the training data of font231

size 6 in the UPVPC1 protocol. For K = 1, BHMMs were initialized by232

first segmenting training data with a “neutral” model, and then using the233

resulting segments to perform a Viterbi initialization. Initialized BHMMs234

were then trained with 4 EM iterations. For K > 1, BHMMs were initialized235

by splitting the mixture components of the models trained with K/2 mixture236

components per state. Again, after initialization, BHMMs were trained with237

4 EM iterations. On the other hand, word priors were modeled with 5-gram238

language models at character level.239

The above training procedure led to a different recognizer for each combi-240

nation of key parameter values (apart from the font size itself). Each of them241

was of the form given by Eq. (5) though, as usual in (Arabic) text recognition,242

a Grammar Scale Factor (GSF) was used to adjust the importance of class243

priors with respect to word-conditional observation probabilities (i.e. the GSF244

is a constant multiplier for log-priors). For each combination of parameter245
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values and each value of GSF ∈ {20, 30, 40, 50}, the corresponding recog-246

nizer was assessed in terms of CER from the test data of font size 6 in the247

UPVPC1 protocol.248

Figure 3 shows the CER as a function of D (top left), K (top right), Q249

(bottom left) and GSF (bottom right); for W = 1, 3, 7 and 11 (the curves250

for W = 5 and 9 are similar and have been omitted for clarity). Each plotted251

point shows the best CER obtained over all values tried for the parameters252

not given. The best CER obtained is 3.4% for D = 38, W = 7, Q = 7,253

K = 32 and GSF = 50. In the plot at the top left, it is shown for D = 38254

and W = 7, as the minimum CER obtained for all values tried for Q, K and255

GSF .256

From the results in Fig. 3, it is clear that the use of windowed BHMMs257

is of crucial importance. Indeed, the best CER obtained with no windows258

(W = 1) is 6.6%; i.e. it nearly doubles the best CER with windows. Note259

also that, as W , the number of mixtures components (K) has a strong effect260

on the CER. The best error rates were obtained with the maximum value261

of K tried (32). Therefore, this and larger values of K need to be tried in262

further experiments with more training data. The dimension (D), number of263

states (Q) and GSF are also key parameters to be adjusted, though Fig. 3264

does not show wide fluctuations in CER for the ranges of values considered.265

As discussed in (Dreuw et al., 2009), letters in Arabic script differ signif-266

icantly in length, and thus it might not be appropriate to model all of them267

using BHMMs of fixed number of states. With this idea in mind, an exper-268

iment similar to that described above was carried out for D = 38, W = 7,269

K = 32, GSF = 50 and variable number of states. To decide the number of270
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Figure 3: CER(%) as a function of the dimension D (top left), number of mixture com-

ponents K (top right), number of states Q (bottom left) and GSF value (bottom right);

for sliding window widths of W = 1, 3, 7 and 11.
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states for each character, we first Viterbi-segmented all training data using271

BHMMs of 7 states, and then computed the average length of the segments272

associated with each character. Given an average segment length for charac-273

ter c, T̄c, its number of states was set to F · T̄c, where F is a factor measuring274

the average number of states that are required to emit a feature vector. Thus,275

its inverse, 1

F
, can be interpreted as a state load, that is, the average num-276

ber of feature vectors that are emitted in each state. For instance, F = 0.2277

means that only a fraction of 0.2 states is required to emit a feature vector278

or, alternatively, that 1

0.2
= 5 feature vectors are emitted on average in each279

state. We tried all values of F in {0.1, 0.2, . . . , 0.9}. The best result achieved280

is a CER of 3.2%, using F = 0.5, which is significantly better than the best281

result obtained above with fixed number of states (3.4%).282

To complete our experiments with font size 6 data in the UPVPC1 pro-283

tocol, the best recognizer found above was also tested with the four reposi-284

tioning methods described in Sec. 3. As expected, the best CER, 1.1%, was285

obtained with vertical repositioning alone. Also as expected, it was similar286

to the CER achieved with repositioning in both directions (1.2%), and sig-287

nificantly better than those obtained with horizontal and no repositioning288

(3.2% for both).289

The experiments described above in this Section were extended to all290

font sizes. More precisely, for each font size S ∈ {8, 10, 12, 18, 24}, each D ∈291

{30, 32, . . . , 50}, W ∈ {1, 3, . . . , 11}, Q ∈ {5, 6, 7} and K ∈ {1, 2, 4, ..., 32},292

a BHMM-based word recognizer was trained and tested, for each value of293

GSF ∈ {30, 40, 50}, as described above. Also as above, the best recognizer294

for each size was then tested with variable number of states (F ∈ {0.3,295

16



. . . , 0.7}) and different repositioning techniques (R = {N, V,H,B}; where296

N=None, V=Vertical, H=Horizontal and B=Both vertical and horizontal).297

The results obtained were similar to those reported in Fig. 3 for font size298

6. More precisely, the best error rates were obtained with windows of width299

W ∈ {7, 9, 11}, K = 32 components, GSF = {40, 50}, variable number of300

states with F ∈ {0.4, 0.5, 0.6}, and vertical repositioning. For brevity, these301

error rates are not reported here in detail, as those in Fig. 3 for font size 6.302

Instead, only a summary of best error rates is reported in Table 1 (including303

font size 6 for completeness). Note that the best recognizer (combination of304

parameter values) for each font size is trained within the parameter ranges305

indicated above. Indeed, all recognizers trained within these ranges provide306

nearly identical error rates.307

Table 1: Best recognizer (combination of parameter values) and its CER(%) for each size.

Size D W R F K GSF CER(%)

6 38 7 V 0.5 32 50 1.1

8 40 7 V 0.6 32 40 0.6

10 44 9 V 0.5 32 40 0.6

12 40 9 V 0.5 32 40 0.4

18 40 9 V 0.5 32 40 0.5

24 42 11 V 0.4 32 40 0.8

To get some insight into the behavior of our windowed BHMMs, a real308

model for the character ê is (partially) shown in Figure 4 (bottom) together309

with its Viterbi alignment with a real image of the character ê, extracted from310

sample Image 24 ArabicTransparent 562, set1 (top). Bernoulli prototypes311
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are represented as gray images where the gray level of each pixel measures the312

probability of its corresponding pixel to be black (white = 0 and black = 1).313

From these prototypes, it can be seen that the model works as expected, i.e.314

each state from right to left accounts for a different local part of ê, as if the315

sliding window was moving smoothly from right to left.316

7 6 5 4 3 2 1

191927
21

8
23

2331
9

2930
24

3215

Figure 4: Real BHMM example for character è and its Viterbi alignment with a real image

of the character ê, extracted from sample Image 24 ArabicTransparent 562 (top).

5.4. Results using the UPVPC2 protocol317

The UPVPC1 protocol was used to study the effect on the CER of var-318

ious key parameters, variable number of states, and repositioning. Tak-319

ing into account the best results obtained with it, the UPVPC2 protocol320

was used in a new series of experiments to obtain results in conditions321
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similar to those used in the ICDAR 2011 Arabic Recognition Competi-322

tion (see Sec. 5.2). In particular, for each of the five font types consid-323

ered in UPVPC2, T ∈ {Trans, Anda,Diw, Simp, Trad}, and each font size324

S ∈ {6, 8, 10, 12, 18, 24}, a BHMM-based word recognizer was trained and325

tested from the data in UPVPC2 of font type T and size S. We used D = 40,326

W = 9, R = V , F = 0.5 (on a Viterbi segmentation produced by a recognizer327

trained with Q = 7, K = 128 and GSF = 40), K = 128 and GSF = 40.328

Except for the K, these parameter values are within the parameter ranges329

leading to the best error rates with the UPVPC1 protocol. However, in the330

case of K, we used 128 instead of 32. As discussed in Sec. 5.3, values of K331

larger than 32 had to be tried, especially with more training data as with332

the UPVPC2 protocol. Actually, we tried each K ∈ {1, 2, 4, ..., 128}, though333

K = 128 provided the best error rates in all cases.334

Table 2 shows CER results for each font type and size. The error rates335

labeled as 2013a in the Year column were obtained as described above. That336

is, each test sample was accompanied by its font type and size so as to select337

its appropriate recognizer. However, the error rates labeled as 2013b were338

obtained in a slightly different way, by only providing the font size of each339

test sample. In this case, given a test sample of size S, all the five font-340

dependent recognizers for size S were run in parallel and that producing the341

highest classification score (see Eq. (5)) was chosen to decide the recognized342

word. The error rates labeled as 2011 are the best results of the ICDAR 2011343

competition, which were also obtained by only providing the font size of each344

test sample.345

A first conclusion that can be drawn from Table 2 is that the figures346
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Table 2: CER results for each font type and size (2013a=”font type and size given”;

2013b=”only font size given”; 2011=”best results from the ICDAR 2011 competition”).

Font/Size Year 6 8 10 12 18 24 Mean

Andalus 2013a 0.9 0.2 0.1 0.1 0.0 0.0 0.2

2013b 0.9 0.2 0.1 0.1 0.0 0.0 0.2

2011 1.1 5.2 3.9 3.3 3.3 3.0 3.3

Arabic Transparent 2013a 0.6 0.1 0.1 0.0 0.0 0.1 0.2

2013b 0.6 0.1 0.1 0.0 0.0 0.0 0.1

2011 1.0 3.5 3.4 3.9 3.8 3.9 3.3

Simplified Arabic 2013a 0.5 0.1 0.1 0.0 0.0 0.0 0.1

2013b 0.4 0.1 0.1 0.0 0.0 0.0 0.1

2011 0.8 3.9 3.3 3.1 3.0 2.6 2.8

Traditional Arabic 2013a 6.4 1.3 0.5 0.3 0.2 0.2 1.5

2013b 6.5 1.3 0.5 0.3 0.2 0.2 1.5

2011 10.7 18.1 14.1 11.5 12.5 11.7 13.1

Diwani Letter 2013a 10.0 7.2 6.7 6.2 6.1 5.9 7.0

2013b 10.0 7.2 6.7 6.2 6.1 5.9 7.0

2011 9.1 24.2 16.6 10.9 5.1 7.4 12.2
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labeled as 2013a and 2013b are virtually identical. Therefore, when font347

size is known but font type is not, the procedure described above to obtain348

the 2013b results seems absolutely reliable. Another important conclusion349

from Table 2 is that the results of this work outperform by a large extent350

those from the competition. Note that, on average, recognition of Andalus,351

Arabic Transparent and Simplified Arabic is nearly perfect in terms of CER.352

On the other hand, recognition of Traditional Arabic and Diwani Letter is353

fairly good and comparatively much better than that of the ICDAR 2011354

competition.355

Apart from the above multi-font and mono-size recognition results, the356

ICDAR 2011 competition also included mono-size results on only the Ara-357

bic Transparent font. For this particular font, results were published for358

both, competition participants (IPSAR and UPV) and organizers (DIVA-359

REGIM). Also, more recent results have been published by (Awaida and360

Khorsheed, 2012), and by (Dershowitz and Rosenberg, 2013). The most re-361

cent results come from the ICDAR 2013 second competition on APTI, which362

included three more participants than in its first edition: SID, THOCR and363

Siemens (Slimane et al., 2013). All these results are shown in Table 3 in364

terms of CER and WER. UPV-REC1, UPV-BHMM and UPV-2013 refer to365

our system at, respectively, ICDAR 2011, ICDAR 2013 and this work. Note366

that the results of UPV-BHMM and UPV-2013 are nearly identical and thus,367

as expected, the UPVPC2 protocol provides a good approximation to the ex-368

perimental conditions of the ICDAR competitions on APTI. These results369

are much better than those of UPV-REC1 and only at a marginal distance370

from the best system at the ICDAR 2013 second competition on APTI. They371
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are also much better than those reported in (Khoury et al., 2013), where an372

initial, preliminary part of the experiments and results described here can373

also be found.374

Table 3: CER and WER results for the Arabic Transparent font in each size.

System Year 6 8 10 12 18 24 Mean

IPSAR 2011
WER 94.3 26.7 25.0 16.9 22.9 22.5 34.7

CER 40.6 5.8 4.9 3.1 4.3 3.2 10.3

UPV-REC1 2011
WER 5.5 2.6 3.3 7.5 15.4 15.6 8.3

CER 1.0 0.4 0.6 1.3 3.1 4.0 1.7

DIVA-REGIM 2011
WER 13.1 4.1 4.3 6.1 2.1 1.1 5.1

CER 2.0 0.8 0.7 1.2 0.3 0.3 0.9

Awaida et al. 2012 CER - - - - - - 3.4

Dershowitz et al. 2013
WER 72.4 21.1 10.2 6.0 1.0 1.5 18.7

CER 31.8 5.6 2.5 2.4 0.2 0.4 7.2

UPV-BHMM 2013
WER 2.8 0.3 0.2 0.1 0.1 0.1 0.6

CER 0.5 0.1 0.1 0.0 0.0 0.0 0.1

SID 2013
WER 5.7 3.8 1.8 1.2 3.4 2.6 3.1

CER 0.3 0.0 0.0 0.1 0.0 0.0 0.1

THOCR 2013
WER 10.5 4.2 5.2 7.5 5.4 5.0 6.3

CER 1.7 0.5 0.8 0.9 0.9 0.8 0.9

Siemens 2013
WER 0.1 0.1 0.0 0.1 0.0 0.0 0.1

CER 0.0 0.0 0.0 0.0 0.0 0.0 0.0

UPV-2013 2013
WER 3.0 0.4 0.3 0.2 0.2 0.2 0.7

CER 0.6 0.1 0.1 0.0 0.0 0.1 0.2
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5.5. New results using a DNN hybrid HMM system and vertical repositioning375

Previous experiments have shown that the results obtained by using BH-376

MMs are improved by applying the vertical repositioning technique. In recent377

work on handwritten recognition, vertical repositioning has also shown a sig-378

nificant improvement when used with other models than Bernoulli HMMs. In379

particular, in (Doetsch et al., 2012), a notable improvement was reported by380

using a Long Short Term Memory recurrent neural network (LSTM-RNN)381

tandem HMM and vertical repositioning on Arabic and French handwrit-382

ing. This improvement is also observed in (Hamdani et al., 2014) where the383

window repositioning is used as a preprocessing step.384

In order to asses that the vertical repositioning is useful for printed Ara-385

bic recognition with the current state-of-the-art techniques based on neural386

networks, such as LSTM-RNN, we have carried out a new series of experi-387

ments using the UPVPC2 protocol and a Deep Neural Network (DNN) hy-388

brid HMM system (Dahl et al., 2012). This technique is similar to the Long389

Short Term Memory (LSTM) technique applied in (Rashid et al., 2013). It390

has been implemented in a recently released, open-source toolkit for auto-391

matic speech recognition called TLK toolkit (The transLectures-UPV Team,392

2013). On the basis of our experience on the application of TLK to speech393

recognition tasks within the transLectures project, we decided to use it also394

for the additional experiments discussed in this Section. The results of these395

experiments, with and without vertical repositioning, are shown in Table 4.396

As with the winner of ICDAR 2013 (Table 3), the results in Table 4 are397

nearly perfect. Even though the error is nearly zero, vertical repositioning398

still obtains slight improvements. In particular, for the more challenging399
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Table 4: CER and WER results for the Arabic Transparent font in each size.

System Year 6 8 10 12 18 24 Mean

Vertical Rep. 2014
WER 0.16 0.13 0.12 0.12 0.13 0.15 0.14

CER 0.03 0.03 0.02 0.02 0.03 0.03 0.03

Without Rep. 2014
WER 0.22 0.20 0.12 0.13 0.13 0.16 0.16

CER 0.04 0.04 0.02 0.02 0.03 0.03 0.03

font sizes (6 and 8), a modest improvement is achieved when applying repo-400

sitioning. Specifically, for font size 6 results were 0.16% with repositioning401

and 0.22% without repositioning. (Note that, as we were using 19000 test402

samples approximately for each font size, a difference of 0.06% accounts for403

about 11 classification errors.) In a similar way, for font size 8, results were404

0.13 and 0.20 for repositioning and non-repositioning respectively.405

6. Concluding remarks406

Windowed Bernoulli HMMs with repositioning have been described and407

extensively tested for printed Arabic recognition on the Arabic Printed Text408

Image (APTI) database. A system based on these models, though with no409

repositioning, ranked first at the ICDAR 2011 Arabic recognition competi-410

tion for printed Arabic text, also based on the APTI database. Following411

evaluation protocols similar to those of the competition, this system has been412

largely improved by the use of repositioning and an exhaustive experimenta-413

tion to adjust various key parameters and model topology (variable number414

of states). Results comparatively much better than those of the competition415

have been reported on multi-font and mono-size recognition, with nearly per-416

fect performance for most fonts in terms of Character Error Rate. Indeed, a417
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second edition of the competition on APTI was recently held at the ICDAR418

2013 and our improved system obtained results nearly identical to those re-419

ported here. This second edition was harder than the first and our system420

ranked second, though only at a marginal distance from the best.421

For future work, we would be interested in carrying out a deep analysis422

to compare repositioning with other, more complex, techniques for baseline423

detection and correction.424
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Giménez, A., Khoury, I., Andrés-Ferrer, J., Juan, A., 2014b. Handwriting458

word recognition using windowed Bernoulli HMMs. Pattern Recognition459

Letters 35, 149 – 156. Frontiers in Handwriting Processing.460

26
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