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This paper presents a confidence-based late fusion framework and its applica-
tion to audio-visual biometric identification. We assign each biometric matcher
a confidence value calculated from the matching scores it produces. Then
a transformation of the matching scores is performed using a novel confi-
dence-ratio (C-ratio) i.e., the ratio of a matcher confidence obtained at the test
phase to the corresponding matcher confidence obtained at the training phase.
We also propose modifications to the highest rank and Borda count rank fusion
rules to incorporate the matcher confidence. We demonstrate by experiments
that our proposed confidence-based fusion framework is more robust compared
to the state-of-the-art late (score- and rank-level) fusion approaches.
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1. Introduction

Identification systems have long been used for criminal in-
vestigations and are now increasingly being used for various
real life applications, e.g., computer login, physical access con-
trol, time attendance management (Murakami and Takahashi,
2009). The identification task can be more challenging com-
pared to the verification when the number of enrolled users is
large. One way of developing an accurate identification system
is to use instances from multiple modalities (Nandakumar et al.,
2009), such as the face image, speech and fingerprint. Multiple
modalities are usually combined either at an early or at a late
stage of recognition.
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Existing score fusion techniques can be categorized into four
groups. The first group are the transformation-based fusion
methods: the match scores are transformed into (not necessar-
ily) a common range and then simple rules (e.g., product, sum,
mean, max, etc.) (Kittler et al., 1998) are applied to them. The
second group are the density-based fusion methods: underlying
match score densities are first estimated and then the joint like-
lihood ratio is calculated (Nandakumar et al., 2008) (Abaza and
Ross, 2009). The third group are the classifier-based fusion
methods: the match scores are considered as features of a fusion
classifier (Sanderson and Paliwal, 2002) (Ross et al., 2006) (Tao
and Veldhuis, 2008). Recently, another framework reported in
(Poh and Kittler, 2012) is known as the quality-based fusion ap-
proach: the modalities are weighted based on the quality mea-
sure of the corresponding biometric samples. Although score-
level fusion is commonly adopted in multimodal biometrics,
rank-level fusion is considered a more viable option (Abaza and
Ross, 2009) for systems operating in the identification mode.
The ranked lists from different matchers are combined to reach
a final decision (Ho et al., 1994). Unlike score-level fusion, the
accurate estimation of the underlying genuine/impostor score
distributions and normalization are not required in rank-level
fusion.
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1.1. Motivation and Contributions
In real life scenario, a biometric system may encounter noisy

outdoor environments. For example, a missing/wanted person
detection system being operated at an airport, train/bus station,
or some other public place. The biometric traits to be used in
these types of applications must be unobtrusive (e.g., audio-
visual) and the user’s claim of an identity for verification may
not be available. The challenge is, in an outdoor environment,
the captured biometric samples may contain noise or corruption
due to various environmental conditions (e.g., windy/gloomy
atmosphere and low configuration capture devices). Quality-
based fusion (Poh and Kittler, 2012) offers a solution to this
problem by measuring the quality of the input samples and
passing this bit of additional information to the fusion module.
However, measuring the quality at the signal level is particu-
larly difficult from face image samples (Chetty and Wagner,
2008) because the source of statistical deviation is varied and
difficult to model. Alternatively, the matching scores from a
biometric matcher provide a good indication of the quality of
the input samples, given the matcher’s decision making ability
is strong under normal circumstances. Incorporating a system’s
confidence in the participating modalities (matchers) has not
been well studied and this lack of development has also been
highlighted in (Marasco and Sansone, 2011).

Our motivation is to develop a fusion framework that works
well when either or all input samples presented are contami-
nated by noise (e.g., detector noise, bit-error, transmission er-
ror and additive noise). The core contributions of this paper are
listed below:

• We propose a novel C-ratio which is the ratio of the
matcher confidence obtained from the matching scores
during the test phase to the maximum value of the matcher
confidence obtained at the training phase (Section 3.1).

• We also propose a confidence factor to be used in rank-
level fusion (Section 3.2). Our proposed confidence-based
rank-level fusion approach considers that only the ranked
lists and the maximum matcher confidence obtained at the
training phase are available to the fusion module.

• We evaluate the robustness of our proposed framework and
compare its performance with state-of-the-art score fusion
approaches (Section 5). We also present a comparative
analysis of our proposed confidence-based rank-level fu-
sion approach with state-of-the-art rank-level fusion ap-
proaches.

In Fig. 1, a typical audio-visual biometric recognition sys-
tem is shown with all possible fusion approaches including our
proposed confidence-based fusion. Our contribution as a whole
lies in the shaded box where the matcher confidence values are
calculated from the match scores.

2. Fusion In Multiobiometric Identification

Let N denote the number of enrolled users and M denote
the number of modalities. If sm, j is the score and rm, j the rank
provided for the j-th template by the m-th matcher, j = 1 . . .N;

m = 1 . . . M then for a given query we get M×N score and rank
matrices as follows:

S =


s1,1 · · · s1,N
s2,1 · · · s2,N
...

. . .
...

sM,1 · · · sM,N

 , (1)

and

R =


r1,1 · · · r1,N
r2,1 · · · r2,N
...

. . .
...

rM,1 · · · rM,N

 . (2)

Our objective is to determine the true identity of the given query
from S and (or) R. In this section, we briefly discuss the state-
of-the-art in late fusion for multibiometric identification.

2.1. Existing Score-level Fusion Approaches

Existing score fusion approaches can be categorized into four
groups (Section 1). Here, we briefly discuss all four approaches
of score-level fusion for multimodal biometric identification.

2.1.1. Transformation-based Score Fusion
An example of a simple transformation-based score fusion

approach is the use of the min-max score normalization to trans-
form the raw scores into [0,1] range and then use the equally
weighted sum rule (EWS) of fusion. The min-max normaliza-
tion is performed as

s′m, j =
sm, j − min(S m)

max(S m) − min(S m)
, (3)

where sm, j is the match score provided by the m-th matcher to
the j-th identity, S m is the m-th row in S that corresponds to
the matching scores from the m-th matcher. Then, the matching
scores from all the matchers are added without any bias to a
particular matcher:

f j =

M∑
m=1

wms′m, j, (4)

where, f j represents the fused score for the j-th identity and wm

is the weight assigned to the m-th matcher such that w1 = w2 =

. . . = wm.

2.1.2. Density-based Score Fusion
In (Nandakumar et al., 2009) the authors used a likelihood ra-

tio score fusion (Nandakumar et al., 2008) which was originally
designed for verification under certain assumptions: (i) prior
probabilities are equal for all the users, (ii) the match scores for
different users are independent of one another, and (iii) genuine
(impostor) match scores of all users are identically distributed.
The aim of an identification system is to assign the query an
identity I j0 that maximizes the posterior probability. The deci-
sion rule for closed set identification is governed by

P(I j0 |S ) ≥ P(I j|S ),∀ j = 1, . . . ,N. (5)
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Fig. 1: Block diagram of an audio-visual biometric system that incorporates sample quality and (or) matcher confidence measures in the fusion. Although quality-based fusion has been
studied extensively (Poh and Kittler, 2012), incorporating matcher confidence in the fusion has not been well studied (Marasco and Sansone, 2011). Moreover, achieving sample quality in
audio-visual biometrics is challenging (Chetty and Wagner, 2008). The shaded box highlights our contribution.

For open set identification, the query is assigned identity I j0
only when P(I j0 |S ) > τ in the above equation. According to
Bayes theory (Duda et al., 2012) we can calculate P(I j|S ) as
follows:

P(I j|S ) =
p(S |I j)P(I j)

p(S )
. (6)

Now, under the assumption of equal prior P(I j) for all users
(Nandakumar et al., 2009), the posterior probability P(I j|S ) is
proportional to the likelihood p(S |I j). The likelihood p(S |I j)
can be written as

p(S |I j) =
fgen(s j)
fimp(s j)

N∏
i=1

fimp(si) (7)

where s j = [s1, j, . . . , sM, j] is the score vector corresponding to
user j from M modalities, and fgen(s j) and fimp(s j) are the den-
sities of genuine and impostor match scores, respectively, as-
suming that they are identically distributed for all users. Thus,
the likelihood of observing the score matrix S given the true
identity is I j is proportional to the likelihood ratio for verifi-
cation used by the authors in (Nandakumar et al., 2008). The
authors in (Nandakumar et al., 2009) assumed that the scores
from different matchers are conditionally independent. Hence,
the joint density of the genuine (impostor) match scores can be
estimated as the product of marginal densities, which we refer
to as LRT-GMM in this paper:

M∏
m=1

f m
gen(sm, j0 )

f m
imp(sm, j0 )

≥

M∏
m=1

f m
gen(sm, j)

f m
imp(sm, j)

,∀ j = 1, . . . ,N. (8)

2.1.3. Quality-based Score Fusion
In (Nandakumar et al., 2008), the authors presented the

quality-based likelihood ratio (QLR) fusion technique provided
the sample quality information is available. Being inspired by
their LRT-GMM method, we can define the QLR framework
for identification problem as follows

M∏
m=1

f m
gen(sm, j0 ,Qm)

f m
imp(sm, j0 ,Qm)

≥

M∏
m=1

f m
gen(sm, j,Qm)

f m
imp(sm, j,Qm)

,∀ j = 1, . . . ,N. (9)

We use the universal image quality index presented in (Wang
and Bovik, 2002) to represent face image quality and the NIST-
SNR as in (Kim and Stern, 2008) to represent speech signal
quality.

2.2. Existing Rank-Level Fusion Methods

In rank-level fusion, the ranked lists from different matchers
are combined using a number of methods, such as the highest
rank, Borda count, logistic regression, etc.

2.2.1. Highest Rank Fusion
In the highest rank method (Ho et al., 1994), the combined

rank r j of a user j is calculated by taking the lowest rank (r)
assigned to that user by different matchers. One of the short-
comings of the highest rank fusion is that it may produce the
same final rank for multiple users. The authors in (Ho et al.,
1994) proposed to randomly break ties between different users.
On the other hand, in (Abaza and Ross, 2009) a perturbation
factor ε was introduced to break ties:

r j =
M

min
m=1

rm, j + ε j, (10)

where,

ε j =

M∑
m=1

rm, j

K
. (11)

The perturbation factor biases the fused rank by considering all
the ranks associated with user j, by assuming a large value for
K.

2.2.2. Borda Count Rank Fusion
In Borda count method (Ho et al., 1994), the fused rank is

calculated by taking the sum of the ranks produced by individ-
ual matchers for a user j. The Borda count method accounts
for the variability in ranks due to the use of a large number
of matchers. The major disadvantage of this method is that it
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Fig. 2: Variation of match scores with the (a) speech and (b) face matcher confidence
measures in the training dataset (T ). Our proposed matcher confidence measure is able to
separate the genuine scores from the impostor scores. For example, the difference between
the genuine and impostor scores is high when our proposed matcher confidence measure
is high and vice versa. The maximum value of CT

f ace is 0.899 whereas the maximum value
of CT

speech is 0.403. We calculate the C-ratio of a modality by normalizing the matcher
confidence obtained at the evaluation phase (cE

m) by the maximum value of corresponding
CT

m.

assumes all the matchers are statistically independent and per-
form equally well. In practice, a particular matcher may per-
form poorly due to various reasons, such as the quality of the
probe data, quality of the templates in gallery etc. In (Abaza
and Ross, 2009), a method which is also known as the Nanson
function (Fishburn, 1990), was used to eliminate the worst rank
for a user:

M
max
m=1

rm, j = 0. (12)

This can be extended by eliminating the lowest rank k times
before applying the Borda count on remaining ranks.

Another quality-based approach was proposed in the same
paper (Abaza and Ross, 2009) with the inclusion of an input
image quality in Borda count method as follows:

r j =

M∑
m=1

Qm, j.rm, j, (13)

where, Qm, j = min(Qm,Q j), and Qm and Q j are the quality
factors of the probe and gallery fingerprint impressions, respec-
tively. A predictor-based approach was proposed in (Marasco
et al., 2010) which calculates the final rank for each user as the
weighted sum of individual ranks assigned by M matcher. A
higher weight was assigned to the ranks provided by the more
accurate matcher:

r j =

M∑
m=1

wm.rm, j, (14)

where, wm is the assigned weight for matcher m. An additional
training phase was used for determining the weights. In (Kumar
and Shekhar, 2011) a non-linear approach of rank-level fusion
was proposed for palm-print recognition. On the other hand, in
(Monwar and Gavrilova, 2009) the ranks of only those identities
were fused which appear in at least two classifiers (face, ear and
signature).

3. Proposed Fusion Framework

3.1. C-ratio Score Fusion
It is a well known fact that the difference between the gen-

uine and impostor match scores is usually high under normal

circumstances (e.g., clean conditions). In practice, noisy sam-
ples may be presented to the system and therefore the decision
making task may become difficult for the matchers. We propose
to set the confidence of a matcher as the normalized difference
between the best match score and the mean of the k subsequent
match scores.

We obtain a two column matrix S − by first sorting the score
matrix S and then keeping the best matching score (i.e., column
1) and the mean of k subsequent matching scores:

S − =


s1

1 µ1
s1

2 µ2
...

...
s1

M µM

 , (15)

where,

µm =
1

k − 1

k∑
n=2

sn
m. (16)

Then, the matcher confidence for modality m is calculated as

cm =
|s1

m − µm|

µm
. (17)

Here, a higher value of cm refers to a strong classification (i.e.,
clean probe data), and a smaller value of cm refers to a weak
classification (see Fig. 2).

We propose a novel confidence-ratio (C-ratio) for a matcher
m as follows:

γm = cE
m/max(CT

m), (18)

where cE
m is the matcher confidence for modality m obtained at

the evaluation (E) phase and max(CT
m) is the maximum matcher

confidence for modality m from the training (T) phase. This ap-
proach requires that the most likely identity is assigned the low-
est matching score and other identities get higher scores (e.g.,
Euclidean distance). If the match scores follow opposite trend
(e.g., likelihoods or probability) they must be inverted before
our proposed matcher confidence and C-ratio can be applied.
We then transform the matching score matrix (S ) and perform
fusion as follows:

f = S T x (19)

where, x = [γ1 . . . γM]T is the transformation vector contain-
ing the C-ratio of all the matchers and f = [ f1 . . . fN]T is the
fused score vector. The decision is ruled in favor of the tem-
plate achieving highest fused score.

3.2. Confidence-Based Rank-Level Fusion
In this section, we discuss the confidence-based approach in

rank-level fusion. We propose to use a novel confidence factor
to be used with the highest rank fusion rule. We also propose a
modification to the Borda count rank fusion.

3.2.1. Confidence-Based Highest Rank Fusion
The confidence measures obtained by Eq. (17) can be con-

solidated into a confidence-based highest rank fusion rule as
follows:

r j =
M

min
m=1

rm, j + η j, (20)
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(a) Reference (b) QI=0.28 (c) QI = 0.057 (d) QI=0.0378

(e) QI=0.029 (f) QI=0.1152 (g) QI=0.0409 (h) QI=0.0135

Fig. 3: Universal image quality index (QI ) for a reference image (a) matched against clean
input image (b) from a different user, and against the same image (a) corrupted with AWGN
of levels of (c) σ2 = 0.3 (d) σ2 = 0.3 and (e) σ2 = 0.9 as well as (f) 25% (g) 50% and (h)
75% salt and pepper noise.

where the term η j is the confidence factor which can be calcu-
lated as follows:

η j =

M∑
m=1

max(CT
m).rm, j

M∑
m=1

rm, j

, (21)

We use the novel confidence factor (η j) so that the ranks pro-
duced by a more confident classifier get more emphasis. The
denominator in Eq. (21) transforms the confidence factor for a
user ( j) into the range [0, 1].

Here, we analytically show how the use of a confidence fac-
tor η j can handle ties in the highest rank fusion better than the
modified highest rank fusion rule in Eq. (10). Let the ranks for
a user ( j = 1) from two matchers of a mutibiometric system be
r1,1 = 1 and r2,1 = 2, while for another user ( j = 2), let r1,2 = 2
and r2,2 = 1. By the modified highest rank fusion in Eq. (10),
we obtain r1 = 1.03 and r2 = 1.03, when K = 100 as in (Abaza
and Ross, 2009). On the other hand, let the confidence measure
max(CT

1 ) for a matcher be 0.3 and max(CT
2 ) for another matcher

be 0.9. By using Eq. (21), we get r1 = 1 +
(0.3×1)+(0.9×2)

(1+2) = 1.7
and r2 = 1 +

(0.3×2)+(0.9×1)
(1+2) = 1.5. Thus, not only a tie between

the final ranks of the users j = 1 and j = 2 is avoided but also
the ranking of the more confident classifier is emphasized.

3.2.2. Confidence-Based Borda Count Fusion

We propose to modify the Borda count method as follows:

r j =

M∑
m=1

max(CT
m).rm, j. (22)

The proposed confidence-based Borda count fusion rule is in-
deed the numerator of Eq. (21) and similar to the quality based
Borda count fusion in (Abaza and Ross, 2009). Here, instead
of quality measures for the probe data, we propose to use con-
fidence measures for the classifiers.

4. Databases And Systems

4.1. AusTalk

In our experiments, we used a new audio-visual database,
namely the AusTalk (Burnham et al., 2011). The AusTalk is a
large collection of audio-visual data captured at several univer-
sity campuses across Australia. We used audio-visual data from
248 individuals that consists of 4-digits utterances recorded in
twelve sessions. We used the data in the first six sessions for
enrollment of speaker models/templates and the data in the re-
maining six sessions as probes.We randomly selected half the
users to be in the training set (T ) and the remaining half in the
evaluation set (E). This process was repeated five times and
therefore the recognition performances reported in this paper
on the AusTalk are the averages of five test runs. We needed the
training set (T ) to estimate the genuine/impostor score densities
to implement LRT-GMM and QLR. We used the GMM fitting
algorithm presented in (Figueiredo and Jain, 2002) for density
estimation. Since the AusTalk database consists of clean speech
and videos recorded in room environment, we degraded the data
using additive white Gaussian noise (AWGN) and salt and pep-
per noise. In Fig. 3(b), a value of the universal image qual-
ity index is shown for the face image from a person when it is
matched with a reference image in Fig. 3(a). In Fig. 3(c-h), the
values of the universal image quality are shown when the ref-
erence image is compared with itself, but corrupted at different
levels of AWGN and salt and pepper noise.

4.2. VidTIMIT

We also used the VidTIMIT database (Sanderson and Lovell,
2009) to evaluate the performance of our prosed fusion frame-
work. It comprises audio-visual data from 43 persons (19 fe-
males and 24 males) reciting short sentences in 3 sessions.
There are 10 sentences per person, with the first six sentences
captured in Session 1, the next two sentences in Session 2 and
the remaining two in Session 3. In our experiments, we used
Session 1 and Session 2 data for the enrollment of speaker mod-
els/templates and Session 3 data as probes. We randomly se-
lected 21 speakers (9 females and 12 males) to be in the training
set (T ) and the remaining 22 speakers in the evaluation set (E).
This process was repeated five times; therefore, the recognition
performances reported in this paper on the VidTIMIT database
are the averages of five test runs. We used the same mecha-
nisms for density estimation and data degradation as described
in Section 4.1.

4.3. System

We used the LRC-GMM-UBM and LRC-ROI-RAW frame-
works that we previously used in our works in (Alam et al.,
2013) and (Alam et al., 2014) as the matchers of the audio and
visual modalities, respectively. The main concept is that the
samples from a specific user lie on a linear subspace, and there-
fore the task of person identification is considered to be a linear
regression problem (Naseem et al., 2010). In the LRC-GMM-
UBM, a Universal Background Model (UBM) is trained using
the MFCCs extracted from the enrollment data of all the speak-
ers in the training set (T). Then, the enrollment data from an
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Table 1: Rank-1 identification at various levels of additive white Gaussian noise on speech
and face probes in AusTalk

Noise Level Speech Face LRT-GMM QLR EWS C-ratio
(SNR,σ2) (%) (%) (%) (%) (%) ( %)

(clean, 0.3) 99.02 86.81 95.99 98.25 99.6 99.19
(clean, 0.6) 99.02 48.27 94.32 98.17 97.23 96.43
(clean, 0.9) 99.02 26.87 93.38 97.92 95.83 94.35

(30dB, clean) 75.56 97.95 98.95 98.95 98.11 98.84
(20dB, clean) 30.99 97.95 95.69 96.68 89.22 98.41
(10dB, clean) 3.93 97.95 89.40 92.01 65.88 98.09
(30dB, 0.3) 75.56 86.81 75.15 81.18 91.56 96.39
(30dB, 0.6) 75.56 48.27 68.12 74.84 82.24 83.19
(20dB, 0.3) 30.99 86.81 34.11 42.71 64.15 89.50
(20dB, 0.6) 30.99 48.27 27.82 33.54 51.96 58.51
(20dB, 0.9) 30.99 26.87 27.17 32.76 46.15 51.55

Average 59.23 68.43 72.73 77 80.17 87.67

individual speaker is used to adapt a Gaussian Mixture Model
(GMM) from the UBM. An adapted GMM from the UBM is
also commonly known as the GMM-UBM speaker model. Fi-
nally, the means from all the GMM-UBMs are concatenated
to form a supervector. Speaker-specific templates are created
stacking all the feature vectors (GMM-UBM means) from the
enrollment data. Similarly, in the LRC-ROI-RAW framework,
user-specific templates are created by stacking the feature vec-
tors obtained from down-sampled raw face images. In the test
phase, a feature vector is first extracted from the probe data and
a response vector is then predicted as a linear combination of
the templates of each speaker stored in the gallery. Finally, the
Euclidean distance between the test and a predicted response
vector is used as a matching score.

5. Experiments, Results and Analysis

In this section, we present experimental results on the
AusTalk and the VidTIMIT databases. We evaluated the ro-
bustness of our proposed fusion framework considering addi-
tive white Gaussian noise (AWGN) and salt and pepper noise
on the face images as well as AWGN in the speech samples.
We compared the performance of our fusion framework with
the LRT-GMM, QLR and min-max normalized equal weighted
sum (EWS) methods for score-level fusion.

Then, we tested the robustness of our proposed framework
for rank-level fusion on the AusTalk database with AWGN only.
We compared the performance of our proposed confidence-
based rank-level fusion (conBordaCount and conHighestRank)
with the Borda count (bordaCount) and the highest rank (high-
estRank) fusion as well as the perturbation factor based high-
est rank (pFactorHighestRank) and the predictor based Borda
count (predictorBasedBorda) methods of rank-level fusion. The
weights wm in Eq. (14) were computed using the probe data in
the training set (T ). The ratio between correct identification and
the total number of probes (Marasco et al., 2010) as determined
by the matchers were used as weights. In our predictor-based
experiments, the audio sub-system weight w1 = 0.98 and the
visual sub-system weight w2 = 0.97.

5.1. Robustness to AWGN

The additive white Gaussian noise is always an important
case-study in the context of robustness because it models the
detector noise of the imaging system (Nakamura, 2005) . The

Table 2: Rank-1 identification at various levels of additive white Gaussian noise on speech
and face probes in VidTIMIT

Noise Level Speech Face LRT-GMM QLR EWS C-ratio
(SNR,σ2) (%) (%) (%) (%) (%) (%)

(clean, 0.3) 80.90 73.36 88.18 88.63 91.67 90.45
(clean, 0.6) 80.90 61.81 81.36 83.63 89.39 90.00
(clean, 0.9) 80.90 49.99 73.18 79.54 84.09 88.18

(30dB, clean) 77.95 77.81 86.36 86.80 92.42 87.27
(20dB, clean) 58.86 77.81 83.63 84.09 87.88 85.45
(10dB, clean) 26.36 77.81 69.99 71.81 69.70 81.36
(30dB, 0.3) 77.95 71.36 88.18 87.72 90.15 89.09
(30dB, 0.6) 77.95 61.81 80.90 81.36 85.61 87.73
(20dB, 0.3) 58.86 71.36 83.18 83.63 85.61 85.45
(20dB, 0.6) 58.86 61.81 70.00 76.36 81.06 84.09
(20dB, 0.9) 58.86 49.99 56.00 68.63 75.76 79.09

Average 67.12 66.81 78.26 81.11 84.84 86.19

Table 3: Rank-1 identification at various levels of additive white Gaussian noise on speech
and salt and pepper noise on face probes in AusTalk

Noise Level Speech Face LRT-GMM QLR EWS C-ratio
(SNR,σ2) (%) (%) (%) (%) (%) (%)

(clean, 0.25) 99.02 96.98 99.35 99.65 99.81 99.33
(clean, 0.50) 99.02 57.06 95.61 98.65 98.36 97.39
(clean, 0.75) 99.02 6.16 93.46 97.68 91.07 89.49
(30dB, 0.25) 75.56 96.98 92.18 95.61 95.83 99.06
(30dB, 0.50) 75.56 57.06 71.85 77.39 84.54 86.18
(20dB, 0.25) 30.99 96.98 65.88 77.87 76.96 98.06
(20dB, 0.50) 30.99 57.06 30.43 35.32 55.24 69.78
(20dB, 0.75) 30.99 6.16 26.72 30.83 32.51 33.52

Average 67.64 59.30 71.93 76.62 79.29 84.10

input face images were distorted by adding zero-mean Gaus-
sian noise with three different error variances (see Fig. 3(c-e)).
The speech samples were distorted by adding white noise at
three different SNR levels. In Table (1-2), the rank-1 identifica-
tion accuracies for the LRT-GMM in Eq. (8), QLR in Eq. (9),
and our proposed confidence-based (C-ratio) score fusion in Eq.
(19) as well as the EWS in Eq. (4) with min-max score normal-
ization are listed for the AusTalk and the VidTIMIT databases,
respectively.

On the AusTalk database, our proposed C-ratio score fusion
outperforms the state-of-the-art density-based, quality-based
and transformation-based fusion techniques, particularly when
probes from both modalities are degraded due to AWGN. For
example, in Table 1, when the speech signal is corrupted with
30dB and face images with σ2 = 0.3 of AWGN, our proposed
C-ratio score fusion achieves a rank-1 recognition accuracy of
96.39%, which is significantly higher than the state-of-the-art
in score fusion. We achieved 75.15%, 81.18% and 91.56%
rank-1 recognition rates with the LRT-GMM-UBM, QLR and
EWS fusion methods, respectively and at the same noise level.
The overall rank-1 identification accuracy using our proposed
C-ratio score fusion on the AusTalk is 87.67% which is also at
least 7.5% higher than any other method. Similarly, our pro-
posed method outperforms state-of-the-art score fusion tech-
niques on the VidTIMIT database. The overall rank-1 identi-
fication accuracy (Table 2) obtained using our proposed C-ratio
score fusion is 86.19% which is slightly better than the rank-
1 identification accuracy obtained using the EWS method and
at least 5% higher than the accuracies achieved using the LRT-
GMM and QLR methods.

5.2. Robustness to Salt and Pepper Noise
In the next set of experiments, we tested the robustness of

our proposed confidence-based score fusion by considering in-
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(a) Noise = (clean,0.3)
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(b) Noise = (clean,0.9)
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(c) Noise = (30dB, clean)
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(d) Noise = (10dB, clean)
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(e) Noise = (30dB,0.6)
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(f) Noise = (20dB,0.9)

Fig. 4: CMC curves for our confidence-based rank fusion method (conBordaCount and conHighestRank) at different (audio,visual) noise levels and compared against the Borda count
(bordaCount), the highest rank (higestRank), perturbation-factor highest rank (pFactorHighestRank) and the predictor based Borda count (predictorBasedBorda) methods.

Table 4: Rank-1 identification at various levels of additive white Gaussian noise on speech
and salt and pepper noise on face probes in VidTIMIT

Noise Level Speech Face LRT-GMM QLR EWS C-ratio
(SNR,σ2) (%) (%) (%) (%) (%) (%)

(clean, 0.25) 80.90 76.13 88.18 89.54 90.91 89.55
(clean, 0.50) 80.90 65.90 82.73 84.54 87.88 90.00
(clean, 0.75) 80.90 29.31 64.54 69.54 75.00 82.73
(30dB, 0.25) 77.95 76.13 87.72 89.09 91.67 86.82
(30dB, 0.50) 77.95 65.90 81.36 83.63 85.61 88.64
(20dB, 0.25) 58.86 76.13 85.00 85.00 87.12 85.45
(20dB, 0.50) 58.86 65.90 75.91 79.54 82.58 83.64
(20dB, 0.75) 58.86 29.31 43.18 55.90 59.85 65.91

Average 71.89 60.58 76.07 79.59 82.57 84.09

put probes contaminated with data drop-out and snow in the im-
age simultaneously, usually referred to as salt and pepper noise
(Gonzalez et al., 2009). This type of noise can be caused by
analog-to-digital converter errors and bit errors in transmission
(Naseem et al., 2012).

In Table 3, a summary of rank-1 identification accuracies on
the AusTalk databse has been presented. It shows that the pro-
posed C-ratio score fusion also performs better than the state-
of-the-art score fusion methods when salt and pepper noise was

considered for face images and AWGN on speech signals. For
example, when the speech signal is corrupted with 30dB SNR
and 25% of the pixels on the face image are assumed to be con-
taminated, our proposed C-ratio fusion achieves 99.06% rank-1
accuracy. The overall rank-1 identification accuracy using the
proposed C-ratio score fusion is at least 4.8% higher than any
other method. Similarly, our proposed C-ratio score fusion out-
performs state-of-the-art on the VidTIMIT database. The over-
all rank-1 identification accuracy (Table 4) using our proposed
C-ratio score fusion on VidTIMIT is 84.09% which is at least
1.5% higher than the accuracies obtained using the EWS, LRT-
GMM, and QLR fusion methods.

5.3. Rank-level Fusion With AWGN
We also performed experiments on rank-level fusion under

various levels of audio and visual degradations on the AusTalk
database. In Fig. 4(a-f), the Cumulative Match Characteris-
tics (CMC) curves for different (audio,visual) noise levels are
shown. Our proposed confidence-based rank fusion approach
achieved better rank-1 identification rates than the state-of-
the-art highest rank fusion approaches. For example, in Fig.
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4(a) the CMC curve for clean speech and slightly corrupted
face images is shown. Our proposed confidence-based highest
rank fusion achieved 99% rank-1 identification accuracy that is
2.5% higher than the conventional highest rank fusion (highes-
tRank) and slightly higher than the modified highest rank (pFac-
torHighestRank) approach in (Abaza and Ross, 2009). Fig. 4(b-
d) shows the CMC curve at other (audio,visual) noise levels.
In all settings, the rank-1 recognition rate obtained using the
confidence-based highest rank fusion was higher than the high-
est rank (highestRank) and the modified highest rank (pFac-
torHighestRank) . In Fig. 4(e-f), we show the CMC curves of
our proposed rank fusion approach considering that data from
both modalities are degraded. Although the confidence-based
rank fusion approach outperforms the conventional highest rank
fusion (highestRank) on both the occasions, its performance
is almost equal at (30dB,0.6) noise level and slightly worse at
(20dB,0.9) noise level when compared with the modified high-
est rank fusion (pFactorHighestRank) approach.

On the other hand, the performance improvement by using
the confidence-based Borda count method was higher for all
rank levels (rank-1 to rank-10). Therefore, the confidence-
based rank-level fusion clearly improves the recognition accu-
racy. Another interesting observation is that the predictor-based
Borda count method (Marasco et al., 2010) does not improve
recognition performance if there is noise on probe data because
the predictor-based method uses fixed weights for the matchers.

6. Conclusions

We have presented a confidence-based late fusion framework
and its application to audio-visual biometrics. We showed that
matcher confidence can be calculated from the output match
scores and a novel C-ratio can be calculated for transforming
the match scores before they are fused. We have also proposed
a novel confidence-factor that can successfully break the ties in
the highest rank fusion. Finally, experimental results have been
presented which give us a clear indication that confidence-based
fusion can be considered as a robust and accurate fusion method
for biometric systems operating in the identification mode.
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