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Gear Classification and Fault Detection Using
a Diffusion Map Framework*

Tuomo Sipola’  Tapani Ristaniemi* ~ Amir Averbuch®

Abstract

A system health monitoring scheme using diffusion map is proposed. Diffu-
sion map reduces the dimensionality of measurement data. This facilitates the
comparison of newly arriving measurements to the known training data. The
method is trained and tested with real gear monitoring data. The results show
that data recordings can be classified as working or broken using dimensional-
ity reduction.

1 Introduction

Modern industry monitoring systems produce high-dimensional data that are diffi-
cult to analyze as a whole without dimensionality reduction. The goal of the study is
to estimate whether the proposed dimensionality reduction scheme effectively dis-
tinguishes working gears from broken ones. System health management has mul-
tiple sensors that measure vibration, temperature and oil properties. The early de-
tection of anomalous gear behavior using this sensor data reduces the risk of severe
damage. Sensor data are then used to monitor the health of the system, to detect
anomalies and to predict problems [3, pp. 15-16].

Anomaly detection methods try to find deviant or atypical measurements from a
large datamass [3]. In this study known anomalies are in the training so that they can
be contrasted with the normal behavior. Anideal indicator would tell with certainty
that a machine works or is going to fail. However, in reality the non-working state
is ambiguous and it can be difficult to classify.

Spectral dimensionality reduction methods include principal component anal-
ysis (PCA), kernel PCA, multi-dimensional scaling (MDS), Laplacian eigenmaps,
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isomap and locally linear embedding (LLE). These methods facilitate the analysis
of high-dimensional data by mapping the high-dimensional coordinates to a lower
dimension. The spectral approach also leads to the concept of spectral clustering
[2, 19]. Spectral methods have been used to analyze system operational states [15],
motor fault detection [14] and anomaly detection for spacecraft [7].

This study uses diffusion map, which is another spectral dimensionality reduc-
tion method. Its mathematical foundation is random walk on Markov transition
matrix of the graph of the data [4]. Diffusion map can be classified as a nonlinear
distance-preserving dimensionality reduction method that preserves global proper-
ties [18]. Furthermore, the Nystrom method is used to extend new points, although
newer methods such as geometric harmonics exist [6, 5]. A similar study using
diffusion map has been made concerning machine condition monitoring [8]. This
study presents a way to detect faults in gears by devicing an index to describe how
close to the faulty state a gear is. Besides gear fault detection, this method can also
be used with other collections of high-dimensional time series data.

2 Method

This method trains a diffusion map that describes the good and bad state of the
gears. It then extends newly arriving test measurements to the model and clas-
sifies the gear as good or bad. Most of the preprocessing is domain specific, but
the dimensionality reduction and classification, that are more universally applica-
ble, are presented here. Figure 1 introduces the overall data processing architecture.
The equations are in matrix form. The details behind them are discussed elsewhere
[12, 6, 1].
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Figure 1: Data processing block diagram.



2.1 Training dimensionality reduction

The underlying assumption in manifold learning methods is that the data is situ-
ated on a lower-dimension manifold in the high-dimension measurement data [3, p.
37]. We try to create a function that maps the behavior of high-dimensional points
to lower dimensions. Then new measurement points are mapped from high dimen-
sions to this low-dimensional presentation.

Let ; € R",7 = 1... N be a measurement in n-dimensional space. The kernel
matrix W includes the pairwise distances of these points. The used kernel is the
Gaussian kernel using Euclidian distance measure. This is the most computationally
intensive step because each point is compared to other points:

|2
W;; = exp <_—||x2 il > (1)

€

Determining e is a problem in itself. The chosen estimation is the median of the
distances between the points, ¢ = median{||z; — 2||}+, +;er» [16]. Depending on the
problem, changing this parameter might give more meaningful results.

Matrix D;; = Zjvzl W;; has the degree of each point on its diagonal. The degree
of a point is the sum of weights that connect to other points. This is equal to the sum
of kernel matrix rows.

The rows are normalized by these sums. The result can also be understood as
transition probabilities between points. These probabilities are collected in matrix
P,

P=D"'W. )

However, future calculations on P become easier if a similarity transformation
symmetricizes the matrix:

P=D:PD s, 3)
These last two steps can be combined. Substituting P with D~'W yields:
P=D WD . 4)
Such normal matrix is decomposed as:

P =UAU". (5)

This decomposition is done using singular value decomposition (SVD). The columns
of matrix U contain eigenvectors u; of matrix P. Likewise, the diagonal of A con-
tains its corresponding eigenvalues. However, the real interest is in the eigenvectors
of the transition matrix P. The eigenvalues of P are the same, but the eigenvectors
are obtained from V:

V =D:U. (6)



Recall that the eigenvalues A are in the diagonal of A. The eigenvector v are
columns of V. An original data point z; has a corresponding value on the ith row of
the eigenvector. For example, v;(x235) would signify the second eigenvector and its
236th row, corresponding to the 236th sample 534 of the original dataset.

The diffusion map itself is a function in the form ¥ : R” — R? when d < n. We
multiply the eigenvectors and eigenvalues to get the diffusion coordinates of the
training points:

W= VA. (7)

The first eigenvector is constant, so only the following eigenvectors and eigen-
values are used. This way we get the following function that maps the original data
points to a lower-dimensional space:

/\2U2($i)
)\31}3(901‘)
Vo — )\41)4(33'1') . (8)

>\d+1vd+1($i)

It has been shown that the diffusion distance in the original space equals to the
Euclidean distance in the diffusion space [4]. Thus, the distance measurements in
the diffusion space are actually meaningful and can be used in further analysis in
this lower-dimensional space.

Later analysis uses only the first few diffusion coordinates. Fast decay of eigen-
values leaves most of the diffusion coordinates rather small compared to the first
tew. The overall reconstruction of P does not differ much from a reconstruction that
uses only the first coordinates. These coordinates capture most of the differences
between the data points [4, 11].

2.2 Extension of new measurements

New measurements that are not part of training are extended to the model with
Nystrom method [6, 1]. The features selected during training are the only ones
needed. These new measurements are normalized using the same normalization as
during training.

Let a new data point be y; € R". Then the distance between the new points and
each training point are collected in a matrix 1. This function uses the same e as the
one in training phase:

a2
R ©)

Diagonal matrix D; = Y.~ | W;; contains the column sums of . Now we can
create the transition probability matrix B:



B=1WxD" (10)

The following matrix multiplication produces new eigenvectors for the new point.
The eigenvectors V' and eigenvalues A are the same as in training;:

V =BTvA™ (11)

These new eigenvectors now extend the new point to the diffusion coordinates:

¥ =TVA. (12)

The last two steps can be combined:

¥ = BTV (13)

Matrix ¥ now contains the extended eigenvectors in its columns for the new
points y;.

2.3 C(Classification of new measurements

Low-dimensional presentation of the data facilitates clustering. The clustering ap-
proach here is spectral clustering and it reveals the normal and anomalous areas
[19, 9]. Any other clustering, for example k-means, can be used if they provide bet-
ter results [13, 10, 17]. The used algorithm simply tests whether the sample is to the
left or to the right of 0 on the dimension corresponding to the 2nd eigenvector. This
provides a classifier that discriminates two states: working or broken.

2.4 Warning levels

For more warning levels, different thresholds can be applied. There are three warn-
ing levels: note, warning and damage. These describe the severity of the problem in
the gear.

Note means that there is an unusual measurement in the data, but the gear is still
in operational state. The sample is not inside the good cluster but is still closer to it
than to the bad.

enote - min{qjl,good} (14)

Warning level is at 0,,4,ning = 0. It describes the border between good and bad
clusters. The sample is closer to the bad cluster. This can be seen as a predictive
sign that the gear has problems. If the bad cluster goes beyond 0, the middle point
between the two clusters can be used.

Damage level is at 044mqge = max{V; psq}. This means that the sample is within
the bad cluster.



3 Results

This study uses a dataset consisting of gear monitoring recordings of multiple fea-
tures. It consists of recordings of 18 good and 20 bad machines labeled by domain
specialists. The gears come from different locations where the operational environ-
ment varies. However, each gear is of the same type and includes same features.
Two of the gears are discarded because they contain empty data due to instrument
failures. The dataset is divided to training and testing sets. The training set includes
five good and five bad gears. The testing set includes the rest of the gears.

3.1 Preprosessing

The data are sampled at an approximate frequency of one sample per 30 minutes.
The recordings last for months. Because there were times when no data were avail-
able, linear interpolation is used. This data formed the samples x features matrix.

Instrument failures give unrealistic or missing measurements. Because it is diffi-
cult to compare such measurements to ones that do not have unrealistic values, mea-
surements containing missing values are discarded. However, this process might
lose some usable information.

3.1.1 RPM filtering

Samples whose rotations per minute (RPM) value is too small are filtered out, be-
cause only higher values represent the actual working state of a gear. Lower values
are associated with idle state, and those measurements are not interesting when
monitoring actual working gears. The RPM values are clustered into two clusters
using k-means clustering. The threshold value,

thresholdgpy = max{min{ RPM_yster 1}, min{ RP M uster 2} }, (15)

is calculated and all the samples whose RPM value is below this threshold are re-
moved.

3.1.2 Data scaling

All the data are normalized with logarithm. Other normalizations, like dividing by
maximum or dividing by norm, do not give as good separation for this dataset.

3.1.3 Feature selection

There are 136 features. The initial feature selection reduced their number to 20.
Some features separate more clearly the two groups from each other. A preliminary
feature selection in the original feature space gives these features. One feature is
left out at a time. The average Mahalanobis distance between the good and bad
machines shows how much that feature describes the difference. The features with



smallest averaged Mahalanobis distances are most useful. Small distance reveals
that leaving the feature out affects negatively the separation of good and bad. Thus,
using the feature separates the groups well in the feature space.

4 C(Classification results

Five good and five bad gears were used in training. The data has 136 features, 20 of
which are used after preliminary feature selection. All the gears, including training
gears, were then tested as new incoming data. Table 1 shows that each of the broken
test gears had alerts. Table 2 shows that no working gear had warnings, although
some of them had notes.

gear alerts
0003  2.5703% gear alerts
*O006 14.4068% *AH10 0%
0008  42.6573% AH16 0%
0009  6.6667% AH18 0%
AHO1  16.835% FEO1 0%
AHO02 16.7431% *FE02 0%
AHO06  2.8777% FEO3 0%
*AH11  14.916% CA01 0%
AH18  7.0941% LS04 0%
FE09  5.3495% *LS05 0%
FE10  4.4068% MB08 0%
*FE12  16.0083% QU32 0%
CA03  22.7599% *PHO1 0%
CA04 7.7089% PHO3 0%
QU23  6.0469% PHO5 0%
*QU32  21.6535% PHO8 0%
ET104 0.32841% *PHO9 0%
*ET403  3.3597% PH13 0%

PHO5  9.3694%
Table 2: Working gear units (alert

Table 1: Broken gear units (alert threshold 0). Asterisk marks training
threshold 0). Asterisk marks training gears.
gears.

The following figures illustrate the behavior of broken gears. Normal state does
not produce figures of interest because there are no alerts. Figure 2 shows how the
newly incoming data is situated in low-dimensional space. Figure 3 shows the alert
index, while Figure 4 indicates the accumulating number of alerts. The alerts them-
selves are in Figure 5. Figures 6, 7, 8, 9 show the same measurements for another
gear. It breaks down more slowly but the high number of notes can be seen.



Embedding of new data set 0003. Fault type: OR
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Figure 2: Samples of a broken gear in low-dimensional space.
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Figure 3: Alert level index of a broken gear. Above 0 is considered normal working
state.
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Warnings for O003. Fault type: OR
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Figure 5: Alerts given by the method.

Embedding of new data set CA04. Fault type: IR

12-
10F ¢
sk :
. - N
2 6 L
H s
o .
2 “
3 E
T 4t
&
s
oF : % jodeng
- Good machines R
- Bad machines
O New machine CA04
1 1 1 1 ;

) 5 -4 -3 -2 -1 [ 1
2nd eigenvector

Figure 6: Samples of a broken gear in low-dimensional space.
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Figure 7: Alert level index of a broken gear. Above 0 is considered normal working
state.
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5 Discussion

The goal of this study is to estimate the usefulness of dimensionality reduction
methods in gear fault detection. This goal is met since almost all the gears are clas-
sified correctly according to their labels. This proves that the training is successful
and separates the good gears from the bad. More importantly, measurements from
totally different gears can be extended into the model.

The misclassification of good machine FEO1 as bad is probably because of the
data interpolation. Further domain analysis revealed that there actually had been
a small problem with the gear, and thus raises the question whether it is labeled
correctly. The misclassification of bad machine ET104 as good can be explained.
Firstly, there are no training gears from this location. ET104 is too close to the good
gears in diffusion space. Secondly, domain analysis reveals that this gear has only
a small problem. Better training data and more detailed labeling could prevent this
kind of misclassification. Vastly different operating environment and behavior of
gears in ET1 might also cause this misclassification.

The problems of spectral methods in general need some addressing. The pro-
posed method works because, after slight filtering, the good and bad gears are sep-
arable in the lower dimensions. However, the high computational cost could be a
problem in a more real-time system. The classification of a gear time series itself is
an ambiguous concept. However, this study shows that gears in normal condition
and gears that are going to break down behave differently and can be separated
from each other.
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