
Pattern Recognition Letters 64 (2015) 44–52

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Computation and dissipative dynamical systems in neural networks

for classification ✩

Frank van der Velde a,b,∗

a University of Twente, CPE-BMS, Drienerlolaan 5, 7522NB Enschede, The Netherlands
b IO, Leiden University, The Netherlands

a r t i c l e i n f o

Article history:

Available online 2 March 2015

Keywords:

Classification

Classical cognitive science vs. dynamical

systems

Computation

Dissipative systems

Induction

Neural networks

a b s t r a c t

Foundational issues related to learning, processing and representation underlying pattern recognition have

been discussed in history and in recent times. The scientific approach to pattern recognition could provide

new tools to investigate these foundational issues, which in turn could inform the scientific approach to

pattern recognition as well. One such tool could be the analysis of learning, processing and representation

in connectionist (or neural) networks, which have been extensively used for pattern recognition. Based on

a mathematical analysis of the classification behavior of feedforward networks an analysis is given of the

empiricist vs. rationalist debate on the possibility or impossibility of induction. The analysis aims to show

that forms of induction are possible but not without certain given forms of structure and representation.

The analysis is then extended to cover the role of representation in pattern recognition, and the nature of

the underlying forms of processing, aiming to show that models of cognition derive from a specific relation

between dynamics and computation. These examples illustrate that an interaction between modeling and the

discussion on foundational issues could be beneficial for both and could open new avenues in the philosophical

and foundational debate not available in previous times.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Foundational issues related to pattern recognition and learning

have been topics of debate since the beginning of philosophy. But

with the development of the computer, they have also turned into

topics of scientific research.

The transition from philosophy to science is not unique for pattern

recognition and learning. Similar transitions have occurred in astron-

omy, physics and other sciences. Yet, compared to these sciences,

foundational issues related to pattern recognition still remain to be

debated in a philosophical way as well. This could be because they

concern the nature of human cognition. An example is the debate

between rationalism, and the related notion of nativism, and empiri-

cism. The debate can be traced back to antiquity (Plato) but is still a

controversial issue today (e.g., [19]).

Here I aim to argue and illustrate that the scientific approach to

pattern recognition can provide new information to influence the
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hilosophical debate on foundational issues. In turn, this could inform

he scientific approach to pattern recognition as well.

As an example, consider the role of induction in epistemology

nd philosophy of science. Induction can be seen as a key notion in

he history of empiricism, ranging from Bacon in the 16th century

o (logical) positivism, behaviorism and (part of) connectionism in

he 20th and 21st century. The basic tenet of empiricism, as exem-

lified in epistemology and philosophy of science, is that we acquire

nowledge exclusively through experience. Using induction, we can

eneralize our experience to arrive at law-like regularizations and

ategorizations. In turn, these can be used to explain our experiences

e.g., as belonging to a given category) or to predict new experiences.

owever, although induction provides categorizations and law-like

egularities, these are entirely based on experience according to em-

iricism. No innate forms of knowledge would be needed.

According to rationalism this view on induction is untenable. An

rgument against it is given by the Goodman paradox (e.g., [4]). A

imple example of this paradox was given by Hempel [4]. Consider

set of observations relating two variables. Assume that they can

e plotted as a set of points in a two dimensional space, with one

ariable on the x-axis and the other on the y-axis, and that the points

an be linked by a linear line. The question is whether this linear line

s an induction provided solely on the basis of the set of points itself.

he argument of the Goodman paradox is that this cannot be the case,
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Fig. 1. A feedforward network as a function approximator.
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ecause the linear line linking the points is just one of the choices that

ould be made. Another choice, for example, would be a sinusoidal

urve linking the points in an oscillatory manner. The choice between

hese two (and other) options cannot be based on the data alone.

nstead, it derives from a prejudice that precedes the induction (for

xample, the prejudice to choose the more ‘simple’ curve).

In other words, induction is impossible without some set of preju-

ices that precede it. This view underlies the reintroduction of ratio-

alism (and with it nativism) in cognitive science in the 20th century,

s exemplified by the notion that the structure of human language

s innate (e.g., [3]). The nativism in modern cognitive science op-

osed the empiricism of behaviorism. In turn, however, the nativism

n cognitive science resulted in an empiricist reaction based on con-

ectionism. For example, in their book Rethinking Innateness Elman

t al. [6] aim to show that cognitive processing as found in language

an emerge from general purpose learning mechanisms instead of

omain specific innate cognitive structures.

In his critique of Rethinking Innateness (RI), Fodor [7] argued that

I does not oppose all forms of innateness. That is, the notion that

ognition results from an interaction between endogenous (innate)

nd exogenous information is not in dispute. What is in dispute is the

ature of the endogenous information. RI would accept innateness

f a learning mechanism but not the innateness of representational

ontent. Given the need for prejudices in induction as outlined above,

hese prejudices could then result from an innate leaning mechanism,

ut would not consist of forms of innate representational content.

As argued above, the scientific investigation of pattern recogni-

ion could provide new tools to investigate foundational issues as

ell. One such tool could be the (mathematical or computational)

nalysis of learning and processing in connectionist (or neural) net-

orks. Networks have been extensively used for pattern recognition.

pecific examples are feedforward networks. Fortunately, a mathe-

atical analysis of the classification behavior of these networks ex-

sts. This analysis could shed more light on the need for prejudices in

nduction and the nature and role of these prejudices.

Furthermore, the analysis of the pattern classification behavior of

etworks could also shed a light on foundational issues related to the

nderlying forms of processing and representation, which have also

een debated in the course of history and in recent times.

In the sections below, network analysis is used to discuss foun-

ational issues related to learning, processing and representation,

eginning with an analysis of classification and induction with feed-

orward networks.

. Feedforward networks as universal approximators

In mathematical terms a feedforward network implements a func-

ion between an input vector space (the ‘domain’ of the function) and

n output vector space (the ‘range’ of the function). Hornik et al. [11]

ublished an important theorem about feedforward networks. They

howed that feedforward networks are ‘universal approximators’ for

wide class of functions. This means that for any function in this class

ne can find a feedforward network that approximates that function

ithin any desired level of accuracy.

The fact that feedforward networks are universal approximators

as sometimes been interpreted to mean that feedforward networks

re equivalent to Turing machines. If so, one could calculate a function

ith a Turing machine and then approximate it with a feedforward

etwork. However, the assumed equivalence between feedforward

etworks and Turing machines is not correct, because it ignores an

mportant qualification in the theorem of Hornik et al. [11]. In par-

icular, the universal approximator ability of feedforward networks

s limited by the theorem to so-called ‘compacta’, that is, to closed

nd bounded subsets (intervals) of the input domain of the function.

his limitation provides information about the induction abilities of
eedforward networks. f
The ability of feedforward networks to approximate functions,

nd the limitations of this approximation, can be illustrated with a

eedforward network that approximates a continuous function f(x)

f a single variable x. An example of such a function is presented in

ig. 1, together with a feedforward network that could be used in the

pproximation. The network succeeds to approximate the function

(x) if the network produces a value in its output neuron that is close

o the value of f(x) when the variable x is presented to its input neuron.

he mathematical background of the theorem of Hornik et al. [11]

hows how this can work.

The proof by Hornik et al. that feedforward networks are uni-

ersal approximators is based on the Stone–Weierstrass theorem,

hich is itself a generalization of a theorem originally discovered

y Weierstrass in the 19th century (e.g., see [23]). The Weierstrass

heorem states that a continuous function f(x) can be approximated

‘uniformly’) on an interval [a, b] of its input domain by a series of

olynomials. Thus, there is a (indefinite) series of the form c0x0 +
1x1 + c2x2 + c3x3 + . . . that approximates f(x) for all values of x

ithin [a, b]. The more terms are added to the series, the better the

pproximation will be. The limitation of the approximation to a finite

nd closed interval [a, b] is the basis for the fact that feedforward

etworks can approximate functions only on limited subsets of the

omain.

The reason for the limitation of an approximation is found in the

oefficients c0, c1, c2, c3, etc., of the polynomial terms. The approxima-

ion of a given function requires a specific set of coefficients, unique

or that function. To obtain these coefficients, or connection weights

n the case of a feedforward network, information is needed about

he approximated function. For instance, in the case of the backprop-

gation learning algorithm, function values are used as the desired

utput of the network, and the connection weights of the network

re modified until the actual output of the network matches the de-

ired output. Only a finite set of desired output values can be used in

his way. The upper and lower limits of this set determine the interval

n which the network can approximate the function.

Furthermore, the Weierstrass theorem demands that the function

s known sufficiently (‘globally’) over the entire interval on which

he function is approximated [2]. Hence, using scattered information

bout the approximated function on a given interval is in general

ot enough. Fig. 2 (left) illustrates this with the case in which the

etwork in Fig. 1 attempts to approximate the function f(x) on a large

nterval, after learning only a few function values (at x1, x2, x3, x4 and

5) to determine the connection weights. With these function values,

here are wide gaps within the interval on which the network has no

nformation it could use to approximate f(x). Fig. 2 (right) illustrates

hat the network could just as well use the learned function values to

pproximate a different function like g(x), because this function has

he same function values at x1, x2, x3, x4 and x5. Because numerous

unctions like g(x) exist, the chance that the network will approximate

(x) in the gaps between x1, x2, x3, x4 and x5 is zero.
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Fig. 2. Different functions can be learned with the same sparse set of the variable x

(x1 , x2 , x3 , x4 and x5).

Fig. 3. Left: The feedforward network can approximate f(x) in the interval x2 to x4

based on a sufficient set of learning values in this interval. Right: A function h(x) that

equals f(x) for x2 to x4, but differs from f(x) outside this interval.

Fig. 4. Catastrophic interference with feedforward networks.
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Thus, for the approximation to succeed, a sufficient set of function

values within the interval has to be known, so that the remaining

values can be approximated by interpolation between the known

values. Fig. 3 (left) illustrates this for the function f(x). When the

network learns to approximate f(x) with a sufficient set of function

values in the interval x2 to x4, it can approximate f(x) for the remaining

values within this interval by means of linear interpolation. It is clear

that the approximation will be more accurate when more function

values within this interval are used for learning. In this manner, the

network is a universal approximator.

However, it is also clear that the approximation of f(x) is limited to

the interval x2 to x4. Fig. 3 (right) illustrates this fact with the (dashed)

function h(x). This function is equal to f(x) within the interval x2 to x4,

but differs from f(x) outside this interval. Again, there are numerous

functions that are equal to f(x) within interval x2 to x4, but which

are different from f(x) outside that interval. The network cannot dis-

tinguish between f(x) and these functions when only function values

within the interval x2 to x4 are used to learn the function f(x), so it

will fail to approximate f(x) outside this interval.

The restriction of the Weierstrass theorem (a function can be ap-

proximated only on a given interval) also limits the learning behav-

ior of feedforward networks. For instance, a phenomenon known as

catastrophic interference occurs when a feedforward network tries

to learn new information. The attempt to do so eliminates the ability

of the network to produce the previously learned information (e.g.,

[16]).

Fig. 4 illustrates the occurrence of catastrophic interference for the

network in Fig. 1. Suppose the network first learns to approximate

f(x) within the interval x2 to x3 before it learns to approximate this

function in the rest of the interval (x3 to x4). This kind of learning is

quite natural in cognition. We learn incrementally, in a step by step

manner. As a result, the network can approximate f(x) within the
nterval x2 to x3, but not yet in the interval x3 to x4. In that interval,

he network could just as well approximate the function g(x) or any

ther function different from f(x).

Then, the network learns to approximate f(x) in the interval x3 to

4. However, as a consequence of learning, the connection weights

n the network are ‘tuned’ to produce the function values used for

earning in the interval x3 to x4. At that moment, all previous ‘tuning’ of

onnection weights is lost. So, the network will no longer approximate

(x) in the previous interval x2 to x3, because it could now just as well

pproximate g(x) in this interval, or any other function different from

(x). The only way for the network to approximate f(x) in the interval

2 to x4 is to learn this interval in its entirety (as in Fig. 3), or to relearn

(x) in the interval x2 to x3 when it learns to approximate f(x) in the

nterval x3 to x4.

.1. Feedforward networks and induction

The way feedforward networks can learn to approximate a func-

ion (or categorize their inputs) illustrates the interaction between

ndogenous (innate) and exogenous information. To approximate the

unction, function values need to be given to the network. Further-

ore, they have to be sufficient number of them for the approxima-

ion to succeed. Other function values can be induced by extrapolation

etween the learned values. But successful extrapolation beyond the

unction values given is difficult due to the number of alternatives

vailable.

The prejudices that guide the learning behavior clearly consist of

he learning mechanisms that allow the network to learn the given

unction values by adjusting its connection weights. These learning

echanisms and the structure of the network need to be given (al-

hough a part of the network structure might perhaps arise in the

earning process itself). So there is an innateness of a learning mech-

nism as accepted by RI.

However, there are also forms of innateness of representational

ontent. This is clear from the mathematical requirements for the ap-

roximation by the network, such as the compactness and density of

he function values on which the approximation can succeed. It also

onsists of the use of squashing functions with which each node needs

o transform its input into an output [11]. These squashing functions

ransform their (potentially unbounded) input space to a limited out-

ut space. In this way, they discard or reduce information, which is

ecessary for the approximation (or classification) to succeed.

But the network is also capable of learning new classifications,

ased on the input given, and to successfully induce new function

alues when the input information is sufficiently large. This behavior

ontrasts the most radical version of rationalism, as perhaps found

ith (e.g., [7]), which seems to argue that new categorizations (e.g.,

ew concepts) cannot be learned but have to be innate.

.2. Hierarchical networks and classification

The feedforward or hierarchical networks illustrated in Figs. 1–4 il-

ustrate a simple case of pattern recognition. But they can be extended

o more complex examples. First, it is straightforward to extend them

o multidimensional forms of pattern classification. In that case, more

nput and output nodes are needed. But the learning behavior extends

o these added dimensions in a straightforward manner (the theorem

f [11], is in fact stated for multidimensional networks).

Another extension is found in relating feedforward networks to

attern classification in the human (and primate) cortex. Recognition

f familiar patterns occurs fast, suggesting a feedforward process,

ased on a large set of hierarchical layers, running from the retina to

eurons in the inferotemporal cortex and beyond (e.g., [5]).

Serre et al. [25] implemented aspects of pattern recognition in

model based on the visual cortex. The model shares many of the

eatures as found with the network illustrated in Figs. 1–4. Added
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eatures are the use of Gabor filters to provide input representations

line orientations) and the H-max operation, which eliminates all

nput activation except the largest one.

In machine learning, hierarchical models such as deep learning

etworks (e.g., [10]) are among the most sophisticated pattern learn-

ng methods to date. Here restricted Boltzmann machines (RBMs)

re used to pre-train the network, i.e., to give it initial connection

eights so that the network does not get stuck in local minima when

rror backpropagation is applied. In the RBMs the representations that

he input and output layers can have are given and the connection

eights and the distribution of representations in the output layer

re then changed so that the energy of the learned pattern is reduced

ompared to the energy of undesired patterns.

In the examples of hierarchical networks given here the learning

ethods are given and, so it seems, also forms of representational

ontent. This raises the question of whether it is possible to make a

istinction between these two issues. That is, is it possible to have

learning mechanism that does not require certain forms of repre-

entation? Consider again a squashing function. In the case of a feed-

orward classification it is needed to somehow reduce the amount of

nformation (i.e., classification results from information reduction).

ut the way in which that is done also determines the way you store

nformation, and thus it would seem the representational content the

odel can have. For example, there are squashing functions that sim-

ly reduce the incoming information (activation) into two classes,

.g. 0 and 1. This clearly affects the representations that a system

ould have. The representations as used in the RBMs discussed above

lso provide a direct link between a learning mechanism and given

epresentational content. One cannot function without the other.

. Representation and computation

The behavior of the network in Fig. 1 illustrates other founda-

ional issues about cognitive science, including pattern recognition,

hat have been debated intensively. It seems that the network learns

o represent the function it approximates (within the compact sub-

et in which it learns the function). And it seems that the network

mplements a computational program (algorithm) to do so. The latter

ssumption is strengthened by the observation that training networks

o classify functions is executed by a computer program and simu-

ated on a computer.

The idea that cognition depends on forms of computation is a key

otion within cognitive science (e.g., [17]) and one of the corner stones

f the rationalistic view in cognitive science (e.g., [9]). However, this

iew is not without dispute. Searle [24], for example, argued that all

ental processes are brain processes, which are nonrepresentational

nd non-computable by nature. The question arises what these non-

epresentational and non-computable processes would be and how

hey can be used for pattern recognition. Given its importance for cog-

ition (both human and artificial), it would be important to see how

attern recognition could be achieved without representation and

omputation. Or, alternatively, what would be missing in represen-

ation and computation to achieve pattern recognition. Concerning

he latter, even Fodor [8] argues that computation is incomplete to

ccount for human cognition and pattern recognition in particular.

An alternative to representation and computation could be found

n dynamical systems. The views on the relation between dynam-

cs and cognition vary between two extremes. For classical cognitive

cience or psychology, cognition is based on representation and com-

utation, which are not affected by dynamics. At best, dynamics is

elated to the way in which cognitive processes are implemented, but

his is unimportant for understanding cognition (e.g., [9]).

In contrast, in the dynamical approach to cognition (e.g., [21])

omputation and representation are not important, if not mislead-

ng, for understanding cognition. Instead, in this view, every cog-

itive process is based on a dynamical process in which classical
omputation and representation do not play a role. This could also be

he basis for the mental processes as intended by Searle, because they

ould depend on brain processes, which might operate as dynamical

ystems.

To investigate issue, I will discuss the relation between computa-

ion and dynamics is discussed from a network perspective.

.1. Computation and dynamics

The study of dynamics started with the mathematical description

f the motion of a planet around the sun. In this case, two bodies

ttract each other and the motion of both is influenced by this attrac-

ion. The focus on motion reflects the importance of time in dynamics.

n general, dynamics describes how a system of interacting elements

volves in time (e.g., [13]). From this perspective, a neural network

and the brain) is a dynamical system as well. This raises the question

f how the dynamics of neural networks affects cognition.

Classical cognitive science has a straightforward answer to this

uestion. In their discussion of connectionism, Fodor and Pylyshyn

9] argued that, at best, neural networks could provide a description

f the way in which cognitive processes are implemented in the brain.

ut, in their view [9, p. 65]:

. . . the implementation, and all properties associated with the

particular realization of the algorithm that the theorist happens to

use in a particular case, is irrelevant to the psychological theory;

only the algorithm and the representations on which it operates

are intended as a psychological hypothesis.

The independence of cognition from implementation is a key no-

ion in classical cognitive psychology (e.g., see [14,20]). Indeed, some

eural modelers aim to show explicitly that they do not just provide

n implementation theory of classical cognition (symbol manipula-

ion) because they do not use explicit conceptual representations in

ompositional structures (such as symbols in classical compositional

tructures, e.g., [26]).

It is important to note that Fodor and Pylyshyn do not deny that

here is also an issue of implementation. They assert only that this

evel has no consequences for the level of cognition, that is, the reg-

larities of the latter are not determined by the first. This is related

o the distinction between the computational, algorithmic and im-

lementational level as proposed by Marr [15]. This distinction has

requently been cited to argue that psychology should not be con-

erned with implementation (e.g., [12]). It has also been used, for

xample, to argue against connectionism as being merely an imple-

entation theory (e.g., [1]). However, Marr himself in fact made a

istinction between type I and type II theories. For type I theories the

istinction between levels as he described holds, but it does not hold

or type II theories (see [30]).

So, the assumption of classical cognition is that theories of cogni-

ion are type I theories in Marr’s sense. Because cognition depends on

omputations (algorithms) and representations, the kind of machine

n which an algorithm runs is irrelevant. Any machine with sufficient

omputing power will do, including machines as slow as the Turing

achine. Its slowness has no effect on cognition according Fodor and

ylyshyn [9, p. 55], because:

. . . the absolute speed of a process is a property par excellence of

its implementation.

But in many real-life situations the process of selecting the lo-

ation of an identified object has to occur within a given time limit.

raffic comes to mind as an example in modern times, but the interac-

ions with prey and predators in ancient times provide equally good

xamples. In each of these cases, there is a dynamics of cognition that

s dictated by the dynamics of the outside world. A prey will be long

one before a cognitive agent equipped with a genuine Turing ma-

hine has identified its location, so the agent would die of starvation.
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Fig. 5. Dynamical systems and functions. In (a), a dynamical system follows a trajectory

in state space. In (b), functions that map between states in state space. In (c), equiv-

alence between functions and trajectory states. In (d), a flow of a dynamical system

(group of functions, with parameter t).
Or, it would have been eaten long before it could have identified the

location of a predator.

These examples indicate that computations (algorithms) and rep-

resentations are incomplete as a basis for cognition. Here, it is im-

portant to realize that there is no precise mathematical definition

of the notion ‘algorithm’. This results from the fact that there is no

mathematically precise definition of the notion of an ‘effective proce-

dure’. But there is a precise definition of ‘recursive’ (or computable)

functions (e.g., see [22]). So, if you want to know if two algorithms

or effective procedures (e.g., the Turing machine vs. Lambda calcu-

lus) are equivalent, you compare the (set of) recursive functions they

compute.

Thus, if Fodor and Pylyshyn argue that the architecture of cog-

nition is comparable to that of a Turing machine of von Neumann

architecture, they are in fact referring to the set of functions these

architectures can compute. This is the only sensible comparison that

can be made between such distinct architectures. To say that imple-

mentation is not relevant is in fact saying that the function computed

(e.g., the function that distinguishes all correct sentences of a natu-

ral language from the incorrect ones) is not affected by the level of

implementation. The fact that you can have different algorithms for

the same function in fact corroborates this view: if algorithms can be

different but have the same effect, then the implementation of one of

them will not be relevant either.

However, for cognition the “machine” that implements an algo-

rithm is relevant, because the absolute speed with which an algorithm

is executed has to match the dynamics dictated by the environment.

In turn, this requirement could select the kind of processes that can

be executed on this machine. After all, although an algorithm can be

implemented on different machines, the converse is not necessarily

true. Not every machine can implemented any given algorithm. In-

stead, the machine determines the nature of the algorithms that it

can implement. So, the requirement that the cortex has to execute

cognitive processes fast enough to meet the dynamics of the outside

world could influence the kind of processes that it can execute.

In this way, evolution shaped the nature of cognition. First and for

all, evolution selected the execution of an algorithm. It selected those

“machines” that could identify preys and predators fast enough, be-

cause a cognitive agent that identified the location of a prey or preda-

tor too slow could not survive. In turn, these “machines” selected

the kind of algorithms they could produce. The feedforward network

in Fig. 1 provides an example. Feedforward networks are among the

fastest operating networks, which can also learn to classify objects.

3.2. Functions and flow

The relation between computation and dynamics, and its effect

on cognition, can be described in more formal (mathematical) terms.

Computation theory is a branch of mathematics that, informally, stud-

ies which mathematical functions can be generated by a “procedure”

(or algorithm), and how this can be done (e.g., [22]). The details do

not matter here, but it is highly relevant to note that computation

theory deals with mathematical functions. This is in fact the basis of

Fodor and Pylyshyn’s assertion that implementation is irrelevant for

cognition (see above).

In general, a mathematical function is a collection or list of pairs.

The first member of each pair is the input of the function, and the

second member is its output. For some functions, it is possible to give

a rule that describes the list of all function pairs, such as the rule

f(x) = x + 1. A function is computable if a procedure can be given,

such as the Turing machine, that produces the correct output of the

function when an input is given. Computation theory has shown that

the set of computable functions is a genuine subset of the set of all

mathematical functions.

So, a procedure or algorithm computes a function if it gives the

correct output for a given input. But which output is correct is
etermined by the function description (i.e., its list of input–output

airs or, occasionally, its function rule). This immediately shows why

mplementation factors such as speed of execution are irrelevant:

hey are not included in the function description. The algorithm that

omputes f(x) = x + 1 has to produce 5 for the input 4, regardless of

ow long it takes. If it produces 6 or 3 for that input, it fails to compute

he function.

Therefore, Fodor and Pylyshyn’s [9] claim that implementation is

rrelevant for cognition is equivalent to the claim that every cogni-

ive problem that a cognitive agent has to solve can be described

ntirely in terms of computable functions. Indeed, this equivalence is

mplicit in the phrase “only the algorithm and the representations on

hich it operates are intended as a psychological hypothesis”, quoted

bove.

However, a strong argument can be made for the claim that not ev-

ry cognitive problem can be described entirely in terms of functions,

ecause a function is nothing more than a static list of input–output

airs. Consider the classification problem of deciding whether an an-

mal is a prey or a predator. This problem clearly has a functional

spect to it. The input is the encountered animal, and the output is

he classification “prey” or “predator”. But our ancestors would not

ave survived their harsh environment if they had handled this prob-

em only as a function. The dynamics of the outside world, which

s beyond our control, makes the difference. The decision “prey” or

predator” has to be both rapid and safe, and being safe could entail

hat you could even make a decision that is functionally incorrect

but not random). Cortical dynamical systems that interact in real

ime with the environment have to, and can, make such decisions.

Furthermore, the interaction with the environment is an ongoing

rocess. Prey or a predator could be moving while the classification

rocess is executed. Dynamical systems provide an account for cog-

itive processes in a time depended manner, needed to understand

he interaction with the environment.

Yet, the functional aspect of a cognitive process, and its link with

omputable functions, is not lost. Fig. 5 illustrates the relation be-

ween dynamical systems and mathematical functions. The evolution

n time of a dynamical system can be depicted in a state space (or

hase space). In general, a dynamical system evolves along a trajec-

ory in its state space, beginning at some initial state. The trajectory

n Fig. 5a begins in state x0 and moves to states x1, x2, x3 and xt. The

ubscript t in xt refers to the time it takes to go from x0 to xt along the

rajectory.

Fig. 5b shows that a function g(x) can be defined that maps the

tate x0 to the state g(x0) in state space. Other functions like h(x), p(x)

nd q(x) map x0 to the states h(x0), p(x0) and q(x0) respectively.
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Fig. 6. Illustration of a “chaotic attractor” in the three-dimensional state space of

a dynamical system. All initial states (e.g., xi, xj) of the dynamical system result in

trajectories that evolve towards the attractor. But within the attractor (e.g., x1 , x2), the

dynamical system is unpredictable.

o

N

a

t

p

s

s

a

t

i

r

t

w

e

n

t

t

a

a

T

p

(

t

i

c

(

o

s

t

l

i

r

c

t

a

i

t

e

l

e

w

w

r

Fig. 5c shows that the functions f1(x), f2(x), f3(x) and ft(x) can be

efined such that f1(x0) = x1, f2(x0) = x2, f3(x0) = x3, and ft(x0) = xt,

hat is, they are functions that map the initial state x0 to the states x1,

2, x3 and xt along the trajectory, as illustrated in Fig. 5d. The super-

cript labels refer to the time parameter t that governs the evolution

f the dynamical system. In general, ft(xi) = xi + t, which means that

i is mapped to xi + t in time t for any xi and xi + t along the trajectory.

The time parameter t entails that there is a strong relation between

he functions f1(x), f2(x), f3(x) and ft(x). For example, f3(x0) maps x0 to

3 in 3 s. But we could also start in x2 and apply f1(x2), which maps x2

o x3 in 1 s. Because f2(x0) = x2, we get:

3(x0) = f 1(f 2(x0)) or f 1+2(x0) = f 1(f 2(x0))

The equivalence f1+2(x0) = f1(f2(x0)), or ft+s(x) = ft(fs(x)) in general,

hows that the effect of the functions is additive. The function ft+s

chieves the same result as the functions fs and ft applied in sequence.

his property means that the functions f1(x), f2(x), f3(x) and ft(x) form

mathematical group with parameter t, known as the flow of the

ynamical system (e.g., [13]).

The flow of a dynamical system can be used to describe the rela-

ion between dynamics and computation. Suppose a cognitive agent

ses the dynamical system in Fig. 5 to classify an animal as prey or

redator. The presence of the animal prepares the dynamical system

n the state x0 and its classification as prey or predator occurs at time t,

hen the dynamical system is in the state xt. The classification of the

nimal as prey or predator can be seen as the solution of a functional

roblem, with state x0 as the input and state xt as the output. The dy-

amical system has solved this classification by executing the function
t(x0) = xt.

The classification of the animal as prey or predator could also be

chieved by the function g(x) in Fig. 5b, assuming that g(x0) = xt.

his classification function g(x), and the other functions h(x), p(x) and

(x) in Fig. 5b, could be computable functions. If so, these functions

re computed in a computer simulation of the dynamical system, so

(x0) = xt is the computer simulation of ft(x0) = xt.

According to Fodor and Pylyshyn [9], the algorithm and represen-

ations that produce g(x) account for the cognitive ability to classify

n animal as prey or predator, and ft(x) is just an implementation

f g(x). But this ignores the importance of the dynamic interaction

ith the environment reflected in the parameter t of ft(x). Not every

mplementation of g(x) succeeds in producing g(x0) = xt in time t. An

mplementation that fails to do so, cannot sustain a cognitive agent

n its interaction with the environment. Therefore, to account for the

ognitive ability to classify an animal as prey or predator in the in-

eraction with the environment, the complete description of ft(x) is

eeded, and not just its resemblance to g(x).

.3. Dynamics and computation

Perhaps any relation between ft(x) and g(x) is irrelevant for under-

tanding cognition. This, in short, is the view of dynamical approach

o cognition (e.g., [21]), and perhaps that of Searle [24]. The prob-

em with this view is that there are numerous dynamical systems

hat have no cognitive abilities whatsoever. The solar system, for ex-

mple, or the coffee in a cup of coffee (or even the cup itself) are

ynamical systems without cognitive abilities. How can we distin-

uish between these dynamical systems and the ones that do have

ognitive abilities, such as pattern recognition? It seems that the only

ay to do this is to consider the resemblance between ft(x) and g(x).

or example, the fact that g(x) is (or has to be) a classification function

rovides constraints for the dynamical system that produces ft(x).

Fig. 6 illustrates this point with the “chaotic attractor” of a three

imensional (deterministic) dynamical system (modeled after the

ell-known Lorenz attractor, e.g., [27]). A region in the state space of

dynamical system is an attractor if trajectories in the state space

ove towards that region. The fact that a dynamical system has
ne or more attractors means that part of its behavior is predictable.

o matter where it starts in its state space, it will evolve towards an

ttractor.

In this case, all initial states, such as xi and xj, produce trajec-

ories that move towards the attractor illustrated in Fig. 6. But all

redictability is lost within the attractor, even though the dynamical

ystem is deterministic. The loss of predictability is due to an extreme

ensitivity to even the smallest variations. Suppose, for example, that

trajectory exist within the attractor from x1 to x2. Because the sys-

em is deterministic, it will produce the same trajectory whenever it

s in the state x1. But even a very small deviation from this state can

esult in a trajectory that does not move towards x2, or any state close

o it. The same is true for trajectories between initial states and states

ithin the attractor. Suppose there is a trajectory from xi to x1. Again,

ven a very small deviation from xi can result in a trajectory that does

ot go to x1 (although it does move into the attractor).

Now suppose a cognitive agent wants to use this dynamical sys-

em to classify an animal as a prey or predator. We could assume

hat when the animal is a prey, the dynamical system begins in xi

nd moves toward x1 within the attractor, and when the animal is

predator, it begins in xj and moves toward x2 within the attractor.

he states x1 and x2 are thus the classification states for prey and

redator, respectively, and they could be used to initiate a response

e.g., catching the prey or running away from the predator).

However, the classification behavior of this dynamical system is

otally unreliable. The next time it encounters an animal, it can classify

t as a prey, for example, only if it starts exactly in the state xi. But the

hance that a dynamical system can start again in exactly the same

real-valued) state is zero. Small deviations from xi will inevitably

ccur (e.g., due to Brownian motion). At best, it will start in a state

omewhere near xi, which, in this case, can easily result in a trajectory

hat does not move to or near x1.

The inevitability of small variations shows that cognitive processes

ike classification cannot depend on mappings between single states

n the state space of a dynamical system. It can succeed only if a

egion around an initial state like xi is mapped to a region around a

lassification state like x1. Only in this way is there a sufficient chance

hat the behavior of the dynamical system is replicable. Without that,

cognitive system cannot produce purposive behavior or learn from

ts experiences.

Again, a cognitive agent using the chaotic attractor for classifica-

ion serves to illustrate this point. Assume that the first time the agent

ncounters a predator, the state space changes from xj to x2, and the

atter state is used as a trigger to run away. The next time the agent

ncounters the same predator, though, it will not start at xj but some-

here near that state. For these cases, there is no guarantee that it

ill end up at x2 in its state space or close to it. But without a reliable

elation between an initial state and an end state, a cognitive agent
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cannot rely on an end state as a trigger for an action. Furthermore,

it cannot learn either, and the experience of any encounter with the

predator is lost.

If a cognitive agent uses the entire chaotic attractor as a classifica-

tion state, the dynamical system produces reliable behavior. But then

the agent does not make meaningful distinctions in its state space,

because all initial states move towards the same attractor.

A more interesting case occurs when the cognitive agent uses each

of the two “wings” of the attractor as different classification states.

It cannot use them for a reliable classification of prey or predator,

because the dynamical system moves unpredictably from one wing

to the other (so the behavior of the agent would change unpredictably

from catching or fleeing if it used the wings as classification states).

But the cognitive agent could use each wing to make a decision. For

example, “yes” if the trajectory of the dynamical system is in the

left wing at a given moment, and “no” if it is in the right wing. The

dynamical system will be in one of the two wings at a given moment

(after its initial behavior), but it is unpredictable in which of the two.

Thus, the cognitive agent would use the wings of the attractor as a

random generator, to decide between “yes” and “no” in a probabilistic

manner.

3.4. Cognitive dynamics

The example of the chaotic attractor shows that the nature of

cognition imposes constraints on the nature of dynamical systems

that can be used in cognitive processes. To be reliable, the behavior

of a dynamical system cannot depend on single states but has to

depend on regions in state space. To produce meaningful behavior,

the dynamical system cannot map all initial states to the same end

state, but instead has to make distinctions between regions in its state

space. These constraints entail that the dynamical system cannot be

a conservative (closed) system, but has to be open and dissipative.

In a conservative dynamical system, the volume of the state space

does not change during its evolution. Examples are the energy-

conserving systems of classical mechanics, known as Hamiltonian

systems (e.g., [13]). Penrose [18] used the energy-conserving prop-

erty of these systems as an argument for the claim that cognition

depends on quantum physics, instead of computation based on clas-

sical physics.

An important characteristic of energy-conserving systems is

described by the theorem of Liouville, which states that the volume

of any region in state space remains constant during the evolution

of the system. This characteristic can result in periodic behavior, but

more generally it results in the behavior illustrated in Fig. 7a. Here, the

state space evolution of an energy-conserving system starts with the

initial state given by a region around x0. Due to Liouville’s theorem,
Fig. 7. Dynamical systems and evolution in state space: In (a), the evolution of an

energy-conserving (closed) dynamical system. A region around an initial state x0 in

the state space does not decrease in volume, but spreads over the state space when

time increases. In (b), the evolution of a dissipative (open) dynamical system. A region

around an initial state x0 in the state space decreases in volume, and evolves towards

an attractor state when time increases. The system can make meaningful distinctions

in its state space when other initial regions like x1 evolve to other attractors.

F

a

t

c

c

o

he volume of this region remains constant, but it spreads out over

he state space. Eventually, the trajectories emerging from the initial

egion will return close to the states were they began (e.g., [27]).

The volume preserving property of energy-conserving systems

akes them unsuited for cognitive processes. Either they exhibit

epetitive behavior, or they cannot make reliable distinctions in their

tate space. For example, assume that a cognitive agent uses an

nergy-conserving system for classifying an animal as prey or preda-

or. When the animal is a prey, the dynamical system starts in one

nitial region in state space, and when the animal is a predator, it starts

n another. The volumes of both initial regions remain conserved dur-

ng the evolution of the system, but they become intermingled in a

ay that prevents a reliable distinction between the classification

tates for prey and predator.

In a dissipative dynamical system, as illustrated in Fig. 7b, the vol-

me of an initial region in state space decreases as the system evolves

n time. In general, most trajectories in a dissipative system evolve

oward an attractor (e.g., [27]), and the volume of the attractor is

uch smaller than the volume of its initial states (i.e., the basin of the

ttractor). When the system has two or more attractors, it can make

eaningful distinctions in its state space, in which different internal

egions evolve toward different reliable end states (e.g., classification

tates in a classification task).

Dissipative dynamical systems with more than one attractor are

ighly suited for cognitive processes. For example, a cognitive agent

an use a dissipative dynamical system to classify an animal as prey

r predator, because it can divide the state space into two attractor

asins, to make a reliable distinction between the classification states

or prey and predator.

.5. Dynamics and networks

A dynamical system can dissipate energy when it is in open con-

act with an environment. It uses the environment to “dump” the

ecreasing volume of its state space as it evolves in time (like heat

hat radiates to open space in a cloudless night). In contrast, a conser-

ative dynamical system is a closed system that does not exchange

nergy (state space activation) with an environment.

Fig. 8a illustrates an (almost) closed dynamical system consisting

f interacting (white hexagonal) cells. Most cells are enclosed by other

ells, except the cells at the outside, which are also in contact with the

utside environment. The center cell x can use only its surrounding

ells to dump any of its state space volume, but these cells in turn

lso use cell x to dump their state space volume. Only the cells at

he outside can use the outside environment to dump some of their

tate space volume. Eventually, some of the state space volume of

he enclosed cells (such as x) trickles down to these outside cells, and
ig. 8. Closed and open dynamical systems (of white hexagonal cells). In (a), most cells

re enclosed by other cells. Only the cells at the border of the system are in contact with

he outside environment (black circle). As a result, the dynamical system is basically

losed. In (b), the white cells form an interconnected subsystem. Each enclosed white

ell is now surrounded by grey cells (the internal environment). The dynamical system

f white cells is now maximally open.
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ows into the outside environment as well, but this will take a while

o occur. So, in the short run, the state space of cell x and any other

nclosed cell is practically conserved, as in Fig. 7a. In a large system

f this kind, where the enclosed cells dominate, the entire system is

ractically a closed dynamical system.

In Fig. 8b the situation is very different. Here, the white cells form

n interconnected subsystem in between the grey hexagonal cells.

ach enclosed white cell is now surrounded by grey cells (the inter-

al environment). So each enclosed white cell, such as the center cell

, can use the grey cells to dump their state space volume. As a re-

ult, each white cell is an open dynamical system, as in Fig. 7b. Of

ourse, the system as a whole (white and grey cells combined) is of

he same kind as the one in Fig. 8a. But now the white cells form an

nterconnected subgroup, which itself is maximally open. In this way,

he functionality of this group is not affected by the closed nature of

he system as a whole (provided the overall system can dump enough

f its state space to the outside environment).

It is clear that the system of white cells in Fig. 8b form a network. It

eems they would have to be a network, because each white cell has

o be open and, at the same time, be in contact with other white cells

o form a functional system. A white cell can achieve the first by its

ontact with the internal environment (i.e., its contact with the grey

ells to dump its excess state space volume), and the latter by the use

f its connections. Viewed in this way, a neural network is a maximally

pen dynamical system. In the brain, neurons are in contact with the

nternal environment of the brain (e.g., the fluids and support cells

hat surround them), which they can use to dissipate activation. At

he same time, they are in contact with each other through their

onnections, which determines the functionality of the network.

The hierarchical networks discussed above illustrate the impor-

ance of dissipation as well. For example, consider the use of squash-

ng functions in the classification network in Fig. 1. When a neuron

ses a squashing function, it receives more activation than it passes

n to other neurons. Therefore, the neuron has to dissipate the excess

f activation. In the closed system of Fig. 8a, the white cell x can use

nly other white cells to dissipates activation, which in turn use cell

to dissipate their activation. But in the network structure of Fig. 8b,

he white cell x receives activation from the other white cells only,

nd it can easily use its surrounding internal environment (the grey

ells here), to dissipate activation. So, the white cells in Fig. 8b can

perate with squashing functions, due to the network structure to

hich they belong.

Other examples of dissipation are the reduction of dimensions in

eep learning networks (e.g., [10]) and the use of the H-max operation,

hich eliminates all input activation expect the largest one, in the

odel of the visual cortex of Serre et al. [25].

. Overview and conclusion

The fact that a neural network can dissipate its activation and at

he same time operate as a functional system relates to a number of

ssues concerning the foundation of pattern recognition and cognition

n general.

For example, Penrose’s [18] argument that the brain cannot be

in part) computational because of the Liouville problem is incorrect.

etworks in the brain are not closed dynamical systems. In fact, they

re maximally open due to the fact that each neuron is both con-

ected to a network and can interact with its local (non-network)

nvironment. Viewed in this way, the brain consists of two organs

eshed into one: the brain as a network (white cells in Fig. 8b) and

he environment supporting each neuron (the grey cells in Fig. 8b).

Also, Fodor and Pylyshyn’s [9] argument that the level of imple-

entation is irrelevant is highly disputable. If the brain has to resort

o a network structure to combine functionality with activation dissi-

ation then the network structure may be crucial for understanding

ognition. Also, because cognition (and pattern recognition) do not
ust concern problems that can be solved entirely by calculating (im-

lementing) classification functions. Instead, a classification function

ill be part of a dynamical system (flow) in which time is an im-

ortant parameter. In turn, the time parameter imposes important

onstraints on the implementation (as acknowledged by Fodor and

ylyshyn). These implementational constraints could then impose

onstraints on the network architecture and thus its function. The

eedforward network in Fig. 1 illustrates this point: feedforward net-

orks are among the fastest operating networks, which makes them

ighly suitable for particular forms pattern recognition and learning,

s illustrated in Figs. 3 and 4.

In a similar vein, the notion that cognition and thus pattern recog-

ition is not representational (e.g., [21,24]) is highly disputable. The

issipative behavior of neurons, illustrated in Fig. 8b, seems to invite

epresentational aspects of network behavior, in which the activation

f a neuron is determined by network structure of which it is a part.

n example is the use of squashing functions in Hornik et al.’s [11]

pproximation theorem.

When neurons operate in the manner of squashing functions they

epresent their input space in a reduced output space, thereby af-

ecting the behavior of the overall network. As analyzed above, this

ffects the learning and inductive behavior of the network. Networks

re capable of induction but they do need a given basic structure and

orms of representation (e.g., as given by squashing functions). Fur-

hermore, networks can implement computational functions as long

s these functions are part of the flow that determines the behavior

f the networks, as illustrated in Fig. 5.

The dissipative nature of networks could have consequences for

he nature of neural network representation in language and high-

evel cognition as well (e.g., [28,31]), which in turn affects the learning

bilities of these networks [29].

The fact that a number of issues about the foundation of pattern

ecognition and cognition in general can be discussed in terms of ba-

ic features of models such as feedforward networks and networks

s dissipative dynamical systems justifies the hope that other foun-

ational issues could also be discussed in this way (e.g., using more

laborate models). This interaction between modeling and the dis-

ussion on foundational issues could be beneficial for both and could

pen new avenues in the philosophical and foundational debate on

attern recognition and cognition in general not available in previous

imes.
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