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Abstract

Conventional curve skeletonization algorithms using the principle of Blum’s transform, often, 

produce unwanted spurious branches due to boundary irregularities, digital effects, and other 

artifacts. This paper presents a new robust and efficient curve skeletonization algorithm for three-

dimensional (3-D) elongated fuzzy objects using a minimum cost path approach, which avoids 

spurious branches without requiring post-pruning. Starting from a root voxel, the method 

iteratively expands the skeleton by adding new branches in each iteration that connects the farthest 

quench voxel to the current skeleton using a minimum cost path. The path-cost function is 

formulated using a novel measure of local significance factor defined by the fuzzy distance 

transform field, which forces the path to stick to the centerline of an object. The algorithm 

terminates when dilated skeletal branches fill the entire object volume or the current farthest 

quench voxel fails to generate a meaningful skeletal branch. Accuracy of the algorithm has been 

evaluated using computer-generated phantoms with known skeletons. Performance of the method 

in terms of false and missing skeletal branches, as defined by human experts, has been examined 

using in vivo CT imaging of human intrathoracic airways. Results from both experiments have 

established the superiority of the new method as compared to the existing methods in terms of 

accuracy as well as robustness in detecting true and false skeletal branches. The new algorithm 

makes a significant reduction in computation complexity by enabling detection of multiple new 

skeletal branches in one iteration. Specifically, this algorithm reduces the number of iterations 

from the number of terminal tree branches to the worst case performance of tree depth. In fact, 

experimental results suggest that, on an average, the order of computation complexity is reduced to 

the logarithm of the number of terminal branches of a tree-like object.
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1. INTRODUCTION

Skeletonization provides a simple and compact representation of an object while capturing 

its major topologic and geometric information (Blum, 1967; Lam et al., 1992; Siddiqi and 

Pizer, 2008; Saha et al., submitted). The notion of skeletonization was initiated by Blum’s 

pioneering work on grassfire transform (Blum, 1967; Blum and Nagel, 1978) and has been 

applied to many image processing and computer vision applications including object 

description, retrieval, manipulation, matching, registration, tracking, recognition, 

compression etc. Following Blum’s grassfire propagation the target object is assumed to be a 

grass-field that is simultaneously lit at its entire boundary. The fire burns the grass-field and 

propagates inside the object at a uniform speed and the skeleton is formed by quench points, 

where independent fire fronts collide (Leymarie and Levine, 1992; Sanniti di Baja, 1994; 

Kimia et al., 1995; Kimmel et al., 1995; Siddiqi et al., 2002; Giblin and Kimia, 2004; 

Siddiqi and Pizer, 2008). Different computational approaches for skeletonization are 

available in literature, some of which are widely different in terms of their principles (Tsao 

and Fu, 1981; Arcelli and Sanniti di Baja, 1985; Leymarie and Levine, 1992; Lee et al., 

1994; Saha and Chaudhuri, 1994; Sanniti di Baja, 1994; Kimia et al., 1995; Kimmel et al., 

1995; Ogniewicz and Kübler, 1995; Saha et al., 1997; Palágyi and Kuba, 1998; Palágyi and 

Kuba, 1999; Siddiqi et al., 2002; Giblin and Kimia, 2004; Siddiqi and Pizer, 2008; Arcelli et 

al., 2011; Németh et al., 2011). Several researchers have used continuous approaches to 

compute skeletons (Leymarie and Levine, 1992; Kimia et al., 1995; Kimmel et al., 1995; 

Ogniewicz and Kübler, 1995; Siddiqi et al., 2002; Giblin and Kimia, 2004; Hassouna and 

Farag, 2009) while others have used purely digital methods (Tsao and Fu, 1981; Lee et al., 

1994; Saha and Chaudhuri, 1994; Sanniti di Baja, 1994; Saha et al., 1997; Palágyi and Kuba, 

1998; Palágyi and Kuba, 1999; Németh et al., 2011). Discussion on different principles of 

skeletonization algorithms has been reported by Siddiqi and Pizer, 2008, and Saha et al., 

submitted.

Digital skeletonization algorithms simulate Blum’s grass-fire propagation using iterative 

erosion (Tsao and Fu, 1981; Lam et al., 1992; Lee et al., 1994; Saha and Chaudhuri, 1996; 

Palágyi and Kuba, 1999; Németh et al., 2011) or geometric analysis (Arcelli and Sanniti di 

Baja, 1985; Sanniti di Baja, 1994; Pudney, 1998; Borgefors et al., 1999; Bitter et al., 2001; 

Arcelli et al., 2011) on digital distance transform (DT) field (Borgefors, 1984, 1986). In 

three-dimensions (3-D), a Blum’s skeleton is a union of one- and two-dimensional 

structures, which is referred to as a surface skeleton. However, many 3-D objects consist 

only of one-dimensional (1-D) elongated structures, e.g., vascular or airway trees, for which 

the target skeleton is a tree of 1-D branches; such skeletons are referred to as curve 
skeletons. There are several dedicated skeletonization algorithms, called curve 
skeletonization, which directly compute curve skeletons from 3-D objects (Sonka et al., 

1994; Bitter et al., 2001; Greenspan et al., 2001; Wink et al., 2004; Hassouna et al., 2005; 

Soltanian-Zadeh et al., 2005; Serino et al., 2010) These algorithms have been broadly 

applied in animation (da Fontoura Costa and Cesar Jr, 2000; Wade and Parent, 2002), 

decomposition of objects (Serino et al., 2014), shape matching (Brennecke and Isenberg, 

2004; Cornea et al., 2007), colonoscopy (He et al., 2001; Wan et al., 2002) and 

bronchoscopy (Mori et al., 2000; Kiraly et al., 2004), stenosis detection (Sonka et al., 1995; 
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Greenspan et al., 2001; Chen et al., 2002; Sorantin et al., 2002; Schaap et al., 2009; Xu et 

al., 2012), pulmonary imaging (Tschirren et al., 2005; Jin et al., 2014a), micro-architectural 

analysis of trabecular bone (Saha et al., 2010; Chen et al., 2014) etc. This paper presents a 

new curve skeletonization algorithm for 3-D fuzzy digital objects using a minimum cost path 

approach.

Curve skeletonization approaches may be further classified into two major categories, 

namely, erosion based (Lee et al., 1994; Palágyi and Kuba, 1998; Pudney, 1998; Palágyi and 

Kuba, 1999; Palágyi et al., 2006) and minimum cost path based approaches. Hassouna and 

Farag, 2009, presented a different framework to compute the curve skeleton of volumetric 

objects using level sets and gradient vector flow. The erosion-based curve skeletonization 

algorithms keep peeling boundary voxels, while preserving object topology and its elongated 

structures. Pudney, 1998, used DT-based erosion to directly compute the curve skeleton 

where only curve-end points are preserved to capture elongated structure in a 3-D object. 

Also, there are a few erosion- or DT-based skeletonization algorithms which compute curve 

skeletons in two steps (Saha et al., 1997; Arcelli et al., 2011) – computation of surface-

skeleton from a 3-D object and then computation of curve skeleton from the surface 

skeleton. However, the two-steps algorithms are computation less efficient as compared to 

dedicated algorithms which directly computes curve skeletons from 3-D objects. A major 

challenge with erosion-based algorithms is the generation of spurious skeletal branches 

caused by irregularities in object boundaries, image noise, and other digital artifacts. 

Although, researchers have suggested post pruning algorithms to simplify skeletons (Attali 

et al., 1997; Saha et al., 2010; Arcelli et al., 2011; Jin and Saha, 2013), often times, the 

resulting skeletons are still left with some spurious branches. This is because these pruning 

decisions are primarily based on local features and the global significance of a branch are 

not fully assessed using local features. Recently, a few curve skeletonization algorithms 

(Serino et al., 2010) attempted to define global significance of skeletal branches in order to 

improve the performance of skeletal pruning steps. In contrast, the minimum cost path 

approach offers a different skeletonization approach, wherein a branch is chosen as a global 

optimum. Therefore, the global significance of a branch is naturally utilized to distinguish a 

noisy branch from a true branch improving its robustness in the presence of noisy 

perturbations on an object.

Peyré et al., 2010, presented a thorough survey on minimum cost path methods and their 

applications. Minimal cost path techniques have been extensively used for centerline 

extraction of tubular structures in medical imaging (Cohen, 2001; Deschamps and Cohen, 

2001; Wan et al., 2002; Wink et al., 2002; Staal et al., 2004; Cohen and Deschamps, 2007). 

These techniques involve deriving a cost metric (Cohen and Kimmel, 1997) from the image 

in a way such that minimal paths correspond to the centerline of a tubular structure. Li and 

Yezzi, 2007 developed a novel approach to simultaneously extract centerlines as well as 

boundary surfaces of 3-D tubular objects, e.g., vessels in MR angiography or CT images of 

coronary arteries, using a minimal path detection algorithm in 4-D, where the fourth 

dimension represents the local vessel diameter. Wong and Chung, 2007 presented another 

algorithm where they, first, traced the vessel axis on a probabilistic map from a gray-scale 3-

D angiogram and, subsequently, delineated the vessel boundary as a minimum cost path on a 

weighted and directed acyclic graph derived from cross-sectional images along the vessel 
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axis. However, such methods connects specified end points to a source point but are not 

designed for computation of 3-D curve skeletons. Bitter et al., 2001, presented an algorithm 

to compute a complete curve skeleton of a 3-D object using the minimum cost path 

approach. However, there are several major drawbacks and limitations and of their method, 

which restrict the use of minimum cost path as a popular curve skeletonization approach. 

These drawbacks and limitations of the previous method together with their solutions are 

discussed in the following.

In this paper, a comprehensive and practical solution is presented for direct computation of 

curve skeletons from 3-D fuzzy digital objects using a minimum cost path approach. Central 

challenges for curve skeletonization using a minimum cost path approach are – (1) assurance 

of medialness for individual skeletal branches, (2) assessment of branch significance to 

distinguish a true branch from a noisy one and to determine the termination condition, and 

(3) computational efficiency. Beside that the new algorithm is generalized for fuzzy objects, 

it makes major contributions to overcome each of these challenges. To assure medialness of 

skeletal branches, Bitter et al., 2001, suggested a penalized distance function that uses 

several ad-hoc and scale-sensitive parameters. However, as demonstrated in this paper, their 

method inevitably fails to stick to the medial axis, especially at sharp turns or large scale 

regions. Also, their parameters are scale-sensitive, which need to be tuned for individual 

objects depending on their scales. These limitations of their cost function are further 

exaggerated for objects containing multi-scale structures, e.g., airway or vascular trees. To 

solve this problem, we introduce the application of centers of maximal balls (CMBs) 

(Sanniti di Baja, 1994) to define path cost that is local scale-adaptive and avoids use of 

parameters. It can be shown that, for a compact object in R3, a minimum cost path using the 

new approach always sticks to the Blum’s skeleton. Moreover, in the previous approach a 

skeletal branch is extended up to an object boundary which contradicts Blum’s principle at a 

rounded surface whereby the branch of a Blum’s skeleton ends to a CMB prior to reaching 

an object boundary. The new method overcomes this difficulty by selecting the farthest 

CMB instead of object boundary points while adding a new skeletal branch. In regards to the 

second challenge, a local scale component is introduced while deciding the next most-

significant skeletal branch, which makes a major improvement in discriminating among 

spurious and true branches. Finally, to reduce computational demand, a new algorithm is 

presented that allows simultaneous addition of multiple independent skeletal branches 

reducing the computational complexity from the order of the number of terminal branches to 

the worst-case performance of the order of tree-depth.

2. Methods and algorithms

Basic principle of the overall method is described in Section 2.1. Three major steps in the 

algorithm, namely, skeletal branch detection, object volume marking, and termination 

criterion, are described in Sections 2.2, 2.3, and 2.4, respectively. Improvements in 

computation performance using the new algorithm is discussed in Section 2.5. A preliminary 

version of our work was presented in a conference paper (Jin et al., 2014b).
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2.1. Basic Principle

Conventional curve skeletonization algorithms are designed on the principle of Blum’s 

grassfire transform implemented using voxel erosions, which is subjected to constraints for 

preservation of object topology and local “elongatedness”. Generally, voxel erosion is 

controlled by local properties, limiting the use of larger contextual information while 

selecting the end point of a skeletal branch during the erosion process. Therefore, such 

methods often suffer from an intrinsic challenge while handling noisy structures or boundary 

irregularities, e.g., the small protrusion, denoted as pnoise in Fig. 1. The new method works 

for 2-D or 3-D tree-like objects (e.g., vascular or airway trees), which are simply-connected 

without tunnels or cavities (Saha et al., 1994; Saha and Chaudhuri, 1996). The method starts 

with a root voxel, say o, as the initial seed skeleton, which is iteratively grown by finding the 

farthest CMB and then connecting it to the current skeleton with a new branch. The iterative 

expansion of the skeleton continues until no new meaningful branch can be found. During 

the first iteration, the method finds the farthest CMB p1 from the current skeleton o. Next, 

the skeleton is expanded by adding a new skeletal branch joining p1 to the current skeleton. 

This step is solved by finding a minimum cost path from o to p1 (see Fig. 1a). Here, it is 

important that the cost function should be chosen such that the minimum cost path runs 

along the centerline of the object and a high cost is applied when it attempts to deviate from 

the centerline. After the skeletal branch op1 is found, the representative object volume is 

filled using a local scale-adaptive dilation along the new branch and marked as shown in Fig. 

1b. In the next iteration, three skeletal branches are added where each branch connects the 

farthest CMB in one of the three sub-trees T1, T2, and T3 in the unmarked region. Then the 

marked object volume is augmented using dilation along the three new skeletal branches. 

This process continues until no new meaningful branch can be found. Fig. 2 presents a color-

coded illustration of the marked object volume corresponding to the branches located at 

different iterations.

An important feature of the new method is that the meaningfulness of an individual skeletal 

branch is determined by its global context. Therefore, the method is superior in stopping 

noisy branches. Also, the minimum cost path approach improves the smoothness of skeletal 

branches. Finally, depending upon the application, the initial root point may be 

automatically detected, e.g., (1) the point with the largest distance transform value, (2) the 

deepest points on topmost plane in the airway tree etc. Major steps of the algorithm are 

outlined in the following.

Begin Algorithm: compute-curve-skeleton

Input: the original object volume O

Output: curve skeleton S

Initialize a root voxel o as the current skeleton S and the current marked object volume Omarked

While new branches are found

 Detect disconnected sub-trees T1, T2, T3, ··· in the unmarked object volume O − Omarked

 For each sub-tree Ti

  Find the CMB voxel vi ∈ Ti that is farthest from Omarked
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  If the potential branch from vi to Omarked is significant

   Add a new skeletal branch Bi joining vi to the current skeleton S using a minimum cost path

   Augment S = S ∪ Bi

   Compute local scale-adaptive dilatation Di along Bi

   Augment Omarked = Omarked ∪ Di

End Algorithm: compute-curve-skeleton

In this paper, Z3 is used to denote a cubic grid where Z is the set of integers. An element p ∈ 

Z3 of the grid is referred to as a voxel. A fuzzy digital object  = {(p, (p)) | p ∈ Z3} is a 

fuzzy subset of Z3, where : Z3 → [0,1] is the membership function. The support O of  is 

the set of voxels with non-zero membership values, i.e., O = {p | p ∈ Z3 ∧ (p) ≠ 0}. A 

voxel inside the support is referred to as an object voxel. Let (p), where p ∈ O, denote 

the fuzzy distance transform (Saha et al., 2002) at an object voxel p.

Sanniti di Baja, 1994, introduced the seminal notion of center of maximal ball (CMB) and 

counselled their use as quench voxels in a binary image. Here, we use fuzzy centers of 

maximal balls (fCMBs) as quench voxels in a fuzzy digital object. An object voxel p ∈ O is 

a fuzzy center of maximal ball (fCMB) in  if the following inequality holds for every 26-

neighbor q of p

(1)

Saha and Wehrli, 2003, introduced the above definition of fCMB which was further studied 

by Svensson, 2008. Also, it may be noted that the definition of fCMB is equivalent to the 

CMB (Sanniti di Baja, 1994) for binary digital objects.

For fuzzy objects, quench voxels are sensitive to noise generating a highly redundant set. 

Therefore, it is imperative to use a local significance factor (LSF) (Jin and Saha, 2013), a 

measure of collision impact by independent fire-fronts, to distinguish among strong and 

weak quench voxels. LSF of an object voxel p ∈ O in a fuzzy digital object  is defined as:

(2)

where f+(x) returns the value of x if x > 0 and zero otherwise; and N*(p) is the excluded 26-

neighborhood of p. It can be shown that LSF at a quench voxel lies in the interval of (0,1] 

and it takes the value of ‘0’ value at non- quench voxels. A quench voxel with LSF value 

greater than 0.5 will be called a strong quench voxel.

2.2. Skeletal Branch Detection

During an iteration of the new algorithm, multiple meaningful skeletal branches are added to 

the current skeleton where each branch comes from a connected sub-tree Ti in the unmarked 

object volume O − Omarked. Let  ⊂ O be the set of all strong quench voxels in the fuzzy 

digital object . To locate the branch-end voxel in each sub-tree Ti, the geodesic distance 

(GD) from Omarked is computed for each voxel in  ∩ Ti. A path π = 〈 p0, p1, ···, pl−1〉 is an 
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ordered sequence of voxels where every two successive voxels pi−1, pi ∈ Z3 | i = 1, ···, l − 1, 

are 26-adjacent. The length of a path π is defined as

(3)

The geodesic distance or GD of a voxel p ∈  ∩ Ti from Omarked is computed as:

(4)

where Πp is the set of all geodesic paths from p to Omarked confined to O. The branch-end 
voxel in Ti is selected as farthest (in the geodesic sense) strong quench voxel vi as follows:

(5)

It may be noted that, unlike the algorithm by Bitter et al., 2001, the above equation ensures 

that a skeletal branch ends to quench voxel and thus agrees with the Blum’s principle of 

skeletonization.

To ensure medialness of the skeletal branch, a minimum path cost condition is imposed and 

the LSF measure is used to define the path-cost. First, the step-cost between two 26-adjacent 

voxels p, q ∈ Z3 is defined as:

(6)

where the parameter ε is a small number used to overcome numerical computational 

difficulties. In this paper, a constant value of ‘0.01’ is used for ε. The cost Cost(π) of a path 

π = 〈p0, p1, ···, pl−1〉 is computed by adding individual step-cost along the path, i.e.,

(7)

It can be shown that the new path cost function ensures that the minimum cost path between 

two skeletal points lies on Blum’s skeleton; see the minimum cost path (green) between two 

points in each of the two shapes in Fig. 3. It is encouraging to note how the new geodesic 

preserves the sharp corner in the first shape while the minimum cost path function by Bitter 

et al. fails. In the second shape, the corner cutting by Bitter et al.’s path is obvious while the 

new geodesic shows a smooth traversal along the centerline of the object. The final task is to 

connect the selected quench voxel vi to the current skeleton S using the minimum cost path. 

In other words, the path Bi connecting vi to S is computed as:

(8)
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where ΠviS is the set of all paths between vi and S confined to O.

2.3. Object Volume Marking

The final step during an iteration is to mark the object volume represented by a newly added 

skeletal branch. After finding the minimum cost path, local volume marking is applied along 

the new skeletal branch Bi. Specifically, a local scale-adaptive dilation is applied to mark the 

object region along Bi. The local dilation scale scale(p) at a given voxel p on Bi is defined as 

twice its FDT value. Efficient computation of local scale-adaptive dilation is achieved along 

the principle of the following algorithm.

Begin Algorithm: compute-local-scale-adaptive-dilation

Input: support O of a fuzzy object

  a skeletal branch Bi

  local dilation scale map scale: Bi → R+

Output: Dilated object volume OBi

∀p ∈ Bi, initialize the local dilation scale DS(p) = scale(p)

∀p ∈ O − Bi, initialize dilation scale DS(p) = −max

While the dilation scale map DS is changed

 ∀p ∈ O − Bi, set DS(p) = maxq∈N*(p) DS(q) − |p − q|

Set the output OBi = {p | p ∈ O ∧ DS(p) ≥ 0}

Augment the marked object volume Omarked = Omarked ∪ OB

End Algorithm: compute-local-scale-adaptive-dilation

2.4. Termination Criterion

As described earlier, the algorithm iteratively adds skeletal branches and it terminates when 

no more significant skeletal branch can be found. Specifically, the termination is caused by 

two different situations – (1) the marked volume Omarked covers the entire object, or (2) none 

of the strong quench voxel in the unmarked region O − Omarked generates a significant 

branch. The first criterion characterizes the situation when the entire object is represented 

with skeleton branches and no further branch is needed. The second situation occurs when 

there are small protrusions left in the unmarked region, however, none of those protrusions 

warrants a meaningful skeletal branch.

The significance of a branch Bi joining an end voxel vi ∈  ∩ Ti to the skeleton S is 

computed by adding LSF values along the path inside the unmarked region, i.e.,

(9)

A local scale-adaptive significance threshold is used to select a skeletal branch. Let pv ∈ S 
be the voxel where the branch Bi joining an strong quench voxel v meets the current skeleton 

S. The scale-adaptive significance threshold for the selection of the new branch Bi is set as 3 

+ 0.5 × FDT(pv).
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Three important features of the above termination criterion need to be highlighted. First, the 

significance of a new branch is computed from the current marked object volume instead of 

the current skeleton. Second, a measure of branch significance is used instead of simple 

path-length, which elegantly subtracts the portion of a path merely contributing to 

topological connectivity with little or no significance to object shape. Finally, the new 

termination criterion uses a scale adaptive threshold for significance. At large-scale object 

regions, it is possible to visualize a situation where a branch is long enough while failing to 

become significant under the new criterion. Under such a situation, a large portion of the 

target branch falls inside the marked object volume resulting in a low significance measure. 

A scale-adaptive threshold of significance further ensures that such false branch at large 

scale regions are arrested. Final results of skeletonization for a CT-based human 

intrathoracic airway tree are shown in Fig. 4b. As it appears visually, the algorithm 

successfully traces all true branches without creating any false branches as compared to the 

results using Bitter et al.’s method (Fig. 4a) which creates several false branches while 

missing quite a few obvious ones (marked with red circles).

2.5. Computational Complexity

The computational bottleneck of the minimum cost path approach of skeletonization is that 

it requires re-computation of path-cost map over the entire object volume after each 

iteration. In previous methods (Bitter et al., 2001; Jin et al., 2014b), only one branch is 

added in each iteration. Therefore, the computational complexity is determined by the 

number of terminal branches N in the skeleton. The new algorithm makes a major 

improvement in computational complexity. As illustrated in Fig. 1, after adding the skeletal 

branch op1 and finding the marked object volume along op1, the unmarked volume generates 

three disconnected sub-trees T1, T2, and T3 (Fig. 1b). These three sub-trees represent the 

object volume for which skeletal branches are yet to be detected.

An important observation is that, since these sub-trees are disconnected, their representative 

skeletal branches are independent. Therefore, new skeletal branches can be simultaneously 

computed in T1, T2, and T3. In other words, in the next iteration, three branches can be 

simultaneously added where each branch connects to the farthest CMB within each sub-tree. 

After adding the three branches, the marked volume is augmented using local scale-adaptive 

dilation along the three new branches. This process continues until dilated skeletal branches 

mark the entire object volume or all meaningful branches are found. For the example of Fig. 

1, algorithm terminates in four iterations while it has nine terminal branches.

This simple yet powerful observation reduces the computational complexity of the algorithm 

from the order of number of terminal branches to worst case performance of the order of 

tree-depth. For a tree with N nodes, the average depth of unbalanced bifurcating tree is 

 (Flajolet and Odlyzko, 1982). Thus, our average computation complexity is better 

than  as compared to O(N) using previous algorithms. For a complete bifurcating 

tree, the number of iteration by our method is O(logN). For example, the airway tree in Fig. 

2 contains 118 terminal branches and the new algorithm adds twelve skeletal branches after 

two iterations (Fig. 2a) and completes the skeletonization process in only 6 iterations (Fig. 
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2b). See Section 3.4 for more experimental results demonstrating the improvement of 

computational efficiency of the new method.

3. Experimental Results

Figures 2–5 qualitatively illustrate the performance of the new method. For example, Fig. 2 

illustrates the improvement by the method in terms of computation complexity where the 

skeleton of a tree-like object with a large number of branches is completed in a few 

iterations. Fig. 3 shows the superiority of the new cost function as compared to the one by 

Bitter et al. in tracing the center line of the target object. Fig. 4 qualitatively demonstrates 

the performance of the new method in handling true and noisy branches as compared to 

Bitter et al.’s algorithm using minimum cost path. Fig. 5 shows the robustness of the new 

algorithm on a variety of shapes available online, many with complex 3-D geometry. For all 

these figures, the method generates a skeletal branch for each visible feature while arresting 

noisy branches.

In the rest of this section, we present quantitative results of three experiments evaluating the 

method’s performance in terms of accuracy, false branch detection, and computational 

efficiency as compared to two leading methods (Lee et al., 1994; Palágyi et al., 2006). The 

method by Palágyi et al. was selected because it was designed for tubular tree objects and an 

optimized implementation for airways was obtained from the authors. The recommended 

value of ‘1’ was used for the threshold parameter ‘t’ as mentioned in Palágyi et al., 2006. 

Another highly cited method by Lee et al., 1994, available through ITK: The NLM Insight 

Segmentation and Registration Toolkit, http://www.itk.org was used for comparison. The 

second method represents a decision-tree based approach for curve skeletonization. The 

branch performance and computation efficiency of the new method was also compared with 

Bitter et al.’s method.

3.1. Data and Phantom Generation

The performance of the method was examined on tubular tree phantoms generated from 

human airway and coronary artery CT images. CT images of human airway and coronary 

artery were used for quantitative experiments. In vivo human airway CT images were 

acquired from a previous study, whereby subjects were scanned at a fixed lung volume (total 

lung capacity: TLC) using a volume-controlled breath-hold maneuver. Airway images were 

acquired on a Siemens Sensation 64 multi-row detector CT scanner using the following 

parameters: 120 kV, 100 effective mAs, pitch factor: 1.0, nominal collimation: 64×0.6mm, 

image matrix: 512×512, 0.55×0.55 mm in-plane resolution, and 0.6 mm slice thickness.

Airway phantom images with known skeletons were generated from five CT images as 

described below. The following steps were applied on each CT image – (1) segmentation of 

human airway lumen from using a region growing algorithm (Saha et al., 2000), (2) curve 

skeletonization (Saha et al., 1997) and computation of airway lumen local thickness (Liu et 

al., 2014), (3) pruning of curve skeleton beyond the 5th anatomic level of branching, (4) up-

sampling of the curve skeleton and local thickness map by 2×2×2 voxels, (5) fitting of a B-

spline to each individual skeletal branch, (6) smoothing of the thickness values along each 

skeletal branch, (7) reconstruction of a fuzzy object for the airway tree using local thickness-
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adaptive dilation along skeletal branches at 5 × 5 × 5 sub-voxel resolution, (8) addition of 

granular noisy protrusions and dents on the airway tree boundary, (9) down-sampling of 

each airway tree object and its skeleton at 3×3×3 voxels, and (10) filling of any small 

cavities or tunnels (Saha and Chaudhuri, 1996) artificially created while adding noisy 

protrusions and dents or down-sampling. For the step of adding noisy protrusions and dents, 

1% of the airway boundary voxels are randomly selected as locations for protrusions or 

dents. The granular protrusion or dent were generated using local-scale adaptive blobs 

whose radius was randomly chosen from three different ranges depending upon the noise 

level. Specifically, 30±10%, 50±10% and 70±10% of the local scale were used for the three 

levels of noise. See Fig. 6 for the airway tree phantoms at different levels of noise.

Also, eight online (http://coronary.bigr.nl/) coronary artery datasets with known centerlines 

from the Rotterdam coronary centerline evaluation project (Schaap et al., 2009) were used. 

Steps 7 to 10 were applied to each coronary dataset to produce four test phantom images at 

four different noise levels. Besides these phantom data sets ten original human airway tree 

data sets derived from in vivo CT imaging were used for evaluating the performance of 

different algorithms in terms of true/false branch and computational efficiency. Finally, the 

new algorithm was directly applied on these fuzzy objects while a threshold of 0.5 and 

filling of small cavities and tunnels were applied prior to using other methods which are 

essentially designed for binary objects.

3.2. Accuracy

Twenty airway (5 images × 4 noise levels) and thirty two coronary artery (8 images × 4 

noise levels) phantoms at different levels of noise were used to examine the accuracy of 

different methods. Results of application of curve skeletonization by different methods on an 

airway phantom data at different levels of noise are shown in Fig. 6. To quantitatively assess 

the performance of different methods, an error was defined to measure the difference 

between true and computed skeletons. As mentioned in Section 3.1, each branch in the true 

skeleton was represented using a B-spline. The true skeleton was expressed as a set of 

densely sampled points of the true skeletal branches; let ST denote the set of NT number of 

sample points on a true skeleton. Let SC denote the set of NC number voxels in the computed 

skeleton by a given method. Skeletonization error was computed as follows:

Mean and standard deviation of errors by three skeletonization algorithms (Lee et al., 

Palágyi et al. and the new method) for airway and coronary phantom images are presented in 

Fig. 7. For both airway and coronary phantoms, the average error and standard deviation 

using our algorithm are less than those by Lee et al. and Palágyi et al. at all noise levels and 

a paired t-test confirmed that these differences are statistically significant (p ≪ 0.05). Also, 

it is observed from the figure that the average error plus its standard deviation using our 

method is less than one voxel even at the highest noise level for both airway and coronary 

phantoms. As discussed by Saha and Wehrli, 2004, the average digitization error in a 
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skeleton is close to 0.38 voxel. Therefore, after deducting the digitization error, the 

performance of the new method is promising.

In general, observed mean skeleton errors for coronary phantoms were higher than airway 

phantoms. A possible reason behind this observation is that the average thickness of 

coronary phantoms was greater than airway phantoms in voxel unit. At the noise free level, 

neither the algorithm by Lee et al. nor by Palágyi et al. produced visible false branches (see 

Table 1), however, the skeleton errors were significantly larger than the new method. A 

possible explanation behind this observed difference at noise free level is that the skeleton 

produced by the new method is spatially closer to the original centerline as compared to the 

other two methods.

3.3. False and Missing Branches

A qualitative example illustrating the difference among three skeletonization methods at 

various noise levels has been shown in Fig. 6. The new method successfully stopped noisy 

branches at all noisy granulates on the airway boundary. Although the algorithm by Palágyi 

et al. did not produce any false branch for no noise phantoms, it failed to do so for noisy 

phantoms. The algorithm by Lee et al. produced false branches even for no noise phantoms.

A quantitative experiment was carried out by two mutually-blinded experts examine the 

performance of different algorithms in terms of false and missing branches. Each expert 

independently labelled the false and missing branches in each airway skeleton by visually 

comparing it with the matching volume tree. The results of this experiment for airway 

phantoms at different noise levels are summarized in Table 1. It is worth noting that the 

quantitative results of Table 1 is consistent with the observation of Fig. 6. The performance 

of the new method in terms of false skeletal branches is always superior to the other two 

methods and the difference is further exacerbated at higher noise levels.

Besides the airway phantoms, ten original segmented human airway trees without down-

sampling or addition of external noise were used and analyzed. The labelling of false and 

missing branches for these original airway trees was confined up to the fifth generation of 

airway branches because the confidence of labelling a false or missing branch beyond the 

fifth generation was low due to limited resolution even by the experts. The results are 

summarized in Table 2. Altogether, the new method generated five false branches among 

which three false branches were generated in one data set. After a careful look of the 

specific image data, a segmentation leakage was found at a peripheral airway branch in the 

right upper lobe and three false branches were generated around that leakage; see Fig. 8. On 

the other hand, the other two methods generated 65 and 69 false branches. Thus, both 

qualitative illustrations as well as results from quantitative experiments demonstrate the 

superiority of the new method in stopping false branches while missing no true branch.

3.4. Efficiency

Computational efficiency of our method was compared with Lee et al., Palágyi et al., and 

Bitter et al.’s methods. For this experiment, ten original CT-derived human airway tree 

(average image size: 368×236×495 voxels) without down-sampling, smoothing, or external 

noise were used. First, let us examine the relation between the computation complexity of 
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our method and different tree-properties as discussed in Section 2.5. The average number of 

terminal branches observed in the tem airway trees used for this experiment was 121.7 and 

the average number of iterations required by our algorithm was 7.1, which is close to log2 N 
= log2 121.7 = 6.93 and better than the observed average tree-depth of 11.6 which is close to 

.

The observed average computation time by different methods for these 10 airway trees are 

reported in Table 3. All the algorithms are implemented in C++ and have run on a PC with a 

2.0GHz Intel CPU. Although, our algorithm is slower than Palágyi et al.’s algorithm 

(Palágyi et al., 2006), the computation time is comparable on the order of seconds, and it is 

significantly faster than the other two methods. Especially, the improvement in 

computational complexity as compared to Bitter et al.’s algorithm, which falls under the 

same category of the new method, is encouraging. This improvement is primarily 

contributed by enabling multiple skeletal branch detection in one iteration as introduced in 

this paper.

4. Conclusion

A new algorithm of computing curve skeleton based on minimum cost path for three-

dimensional tree-like objects has been presented and its performance has been thoroughly 

evaluated. The new method uses an initial root seed voxel to grow the skeleton, which may 

be computed using an automated algorithm. A novel path-cost function has been designed 

using a measure of local significance factor, which forces new branches to adhere to the 

centerline of an object. The method uses global contextual information while adding a new 

branch, which contributes additional power to stop false or noisy branches. Quantitative 

evaluative experiments on realistic phantoms with known centerlines have demonstrated that 

the new method is more accurate than conventional existing methods. The other experiment 

using airway tree data has shown that the new method significantly reduces the number of 

noisy or false branches as compared to two conventional methods. The new method also 

reduced the order of computational complexity from the number of terminal branches in a 

tree to the worst case performance of tree-depth. Experimental results demonstrated that, on 

an average, the computation complexity is reduced to O(log N), where N is the number of 

terminal tree branches.
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Highlights

• A comprehensive 3-D curve skeletonization algorithm using minimum cost path

• A non-parametric local significance factor for fuzzy centers of maximal balls

• A path cost function ensuring skeletal branches along object centerlines

• The new method outperforms existing ones with respect to accuracy and noisy 

branch

• Computation complexity reduced from the number of terminal branches to tree-

depth
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Fig. 1. 
Schematic illustration of the new curve skeletonization algorithm. (a) The algorithm starts 

with the root point o as the initial skeleton and finds the farthest CMB p1. Next, p1 is 

connected to the skeleton with the branch op1 computed as a minimum cost path. (b) The 

object volume corresponding to the current skeleton is marked (gray region) and the three 

skeletal branches are added where each branch connects the farthest CMB in one of the three 

sub-trees T1, T2, and T2 in the unmarked object region. Note that the noisy protrusion pnoise 

does not create any noisy branch even after all meaningful branches are added to the 

skeleton.
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Fig. 2. 
Results at different iteration of the new curve skeletonization algorithm. (a) The marked 

object volume on a CT-derived human intrathoracic airway tree corresponding to the skeletal 

branches computed after two iterations. (b) Same as (a) but at the terminal iteration.
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Fig. 3. 
Illustration of geodesics using the new path-cost function. In the left figure, the new 

geodesic (green) preserves the sharp corner of the shape while the path (red) by Bitter et al. 

fails. In the right example, the new geodesic smoothly follows the centerline of the object 

while Bitter et al.’s path makes several corner cutting.
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Fig. 4. 
Comparison of skeletal branch performance between Bitter et al.’s algorithm (a) and the new 

one (b) on a CT-derived human airway tree. The missing branches are marked with red 

circles. (a) Bitter et al.’s algorithm generates several noisy skeletal branches while already 

missing quite a few true branches. (b) Our method neither generates a noisy branch nor 

misses a visually obvious branch.
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Fig. 5. 
Results of application of the new curve skeletonization algorithm on different 3-D volume 

objects available online. The object volume is displayed using partial transparency and 

computed skeletons are shown in green. As observed from these results, the new method 

does not generate any noisy branch while producing branches for all major geometric 

features in these objects.
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Fig. 6. 
Curve skeletonization results by different methods on airway phantom images at different 

levels of noise and down-sampling. Columns from left to right represent phantom images at 

no noise and low, medium, and high levels of noise. Top, middle, and bottom rows present 

curve skeletonization results using the methods by Lee et al., Palágyi et al. and the new 

method, respectively. It is observed from these figures that both Lee et al. and Palágyi et al.’s 

method produce several false branches at low, medium and high noise levels, while the new 

method produces no visible false branch. All methods have captured all meaningful 

branches.
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Fig. 7. 
Skeletonization errors by different methods on computerized phantoms at different noise 

levels – none, low, medium, and high. Blue, gold, and green bars represent skeleton errors 

by three different methods – Lee et al., Palágyi et al., and the new method. The solid bars 

represent the errors for airway phantoms while the bars with the slanted pattern show the 

errors for coronary phantoms.
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Fig. 8. 
Illustration of the airway tree where the new method generated three false branches. In this 

case, a large segmentation leakage occurs on the airway peripheral branch, which causes the 

generation of three false branches by the new algorithm.
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Table 1

Average false branches by three curve skeletonization methods on five airway phantoms at different levels of 

noise. None of the three algorithms missed any airway branches up to the 5th anatomic generation of tree.

Noise Lee et al. Palágyi et al. our method

None 0.8 0 0

Low 4.4 3.8 0

Medium 9.2 9.8 0

High 12.8 14.6 0
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Table 2

Comparison of false branch performance on ten original CT-derived human airway trees without down-

sampling or addition of external noise.

#false branch Lee et al. Palágyi et al. our method

Average 6.5 6.9 0.5

Std. dev. 4.4 4.1 1.1

Maximum 14 15 3
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Table 3

Average computation time by different algorithms on 10 human airway trees (average image size: 

368×236×495).

Lee et al. Bitter et al. Palágyi et al. our method

15.4 mins 21.1 mins 6 secs 82 secs
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