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Abstract

Researches in granular modeling produced a variety of mathematical models, such as intervals,
(higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-
called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect
in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical
settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests
that an appropriate quantification of the uncertainty expressed by the information granule model could
be used to define an invariant property, to be exploited in practical situations of information granulation.
In this perspective, we postulate that a procedure of information granulation is effective if the uncer-
tainty conveyed by the synthesized information granule is in a monotonically increasing relation with the
uncertainty of the input data. In this paper, we present a data granulation framework that elaborates
over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of
systems and data, it is possible to apply such principles regardless of the input data type and the specific
mathematical setting adopted for the information granules. The proposed framework is conceived (i) to
offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and
quantitatively judge over different data granulation procedures. To provide a suitable case study, we
introduce a new data granulation technique based on the minimum sum of distances, which is designed
to generate type-2 fuzzy sets. The automatic membership function elicitation is completely based on
the dissimilarity values of the input data, which makes this approach widely applicable. We analyze the
procedure by performing different experiments on two distinct data types: feature vectors and labeled
graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2
fuzzy set models.
Index terms— Data granulation; Granular modeling and computing; Principles of uncertainty; Uncer-
tainty measure; Type-2 fuzzy set.

1 Introduction

Granulation of information [11, 16, 36, 41, 43] emerges as an essential data analysis paradigm. Information
used or acquired to describe an abstract/physical/social process is usually expressed in terms of data (exper-
imental evidence). Therefore, granulation of information usually translates to data granulation. Granulation
of data can be roughly described as the action of aggregating semantically and functionally similar elements
of the available experimental evidence. This is performed to achieve a higher-level data description, which
is implemented in terms of information granules (IGs) [32]. IGs are sound data aggregates that are formally
described by a suitable mathematical model. Many mathematical settings have been proposed so far in
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the related literature, such as intervals–hyperboxes, (higher order) fuzzy sets, rough sets, and shadowed
sets [36]. The synthesized IGs can be used for interpretability purposes [26, 27] or they can be used as a
computational component of a suitable intelligent system [1, 3, 10, 23–25, 32, 33, 35, 50]. In any case, the
problem of designing effective and justifiable data granulation procedures (GPs) is of paramount importance
[6, 7, 12, 29–31, 40, 42].

The principle of justifiable granularity (PJG) is a well-established guideline for the synthesis of IGs
[34, 37, 38]. The PJG states that granulation should be performed by finding the “optimal” compromise
among two conflicting requirements: specificity and generality. In other terms, an IG modeling input data
should be designed such that it retains only the essential information (it should be specific, conveying a
specific semantic content) but, at the same time, it should cover a reasonable amount of information. Since
the PJG is conceived to provide an adaptive mechanism to the information granulation problem, it is not
designed to directly offer a built-in mechanism to objectively evaluate the quality of the granulation itself.
To this end, it is necessary to rely on external performance measures to quantify and judge over the quality
of an IG.

The uncertainty is a peculiar property of virtually every human action that involves reasoning, decision
making, and perception [44, 48]. Modeling the uncertainty of the input data is an essential mission in data
granulation. In fact, any IG model is designed to handle and hence express the uncertainty through an
appropriate formalism. How the uncertainty is embedded into the IG model depends, of course, on the
specific mathematical setting used for the IG. However, while the numerical quantification of the uncertainty
pertaining a specific situation may change as we change the mathematical setting of the IG, the level of
uncertainty should remain the same. In these terms, the principles of uncertainty [14, 15] offer a compelling
guideline to implement and evaluate practical data granulation techniques.

In this paper, we elaborate a conceptual data granulation framework over the principles of uncertainty.
A preliminary version of the herein exposed ideas appeared in [19]. Here we further elaborate over this
preliminary work by providing a more extensive discussion of the framework, offering new experiments that
demonstrate the different facets underlying such ideas. In the proposed framework we idealize the uncertainty
as an “invariant” property, to be preserved as much as possible during the granulation of the input data.
As a consequence, we are able to objectively quantify the effectiveness of the granulation, regardless of the
input data representation and the adopted IG model. This interpretation allows also to quantitatively judge
on a common groundwork different data granulation techniques operating on the same data. We provide
a demonstration of these ideas by discussing a data granulation technique that generates type-2 fuzzy sets
(T2FSs).

This is paper is structured as follows. Sec. 2 introduces the principles of uncertainty. Throughout Sec.
3 we introduce the proposed conceptual framework for data granulation. In Sec. 4 we present a procedure
to generate T2FSs by means of the minimum sum of distances (MinSOD) technique. In Sec. 5 we discuss
the experiments and related results. Sec. 6 concludes the paper. We provide two appendices: A introduces
to the context of T2FSs, while B the MinSOD.

2 The Principles of Uncertainty

The principles of uncertainty have been introduced by [14] two decades ago, with the aim of providing high-
level guidelines to the development of well-justified methods for problem solving in presence of uncertainty.
Such principles elaborate over the ubiquitous concepts of uncertainty and information. It is intuitive to
understand that uncertainty and information are intimately related: the reduction of uncertainty is caused
by gaining new information, and vice versa.

Three principles have been introduced (quotes are taken from [14]):

1. Principle of minimum uncertainty: “It facilitates the selection of meaningful alternatives from solution
sets obtained by solving problems in which some of the initial information is inevitably reduced in the
solutions to various degrees. By this principle, we should accept only those solutions in a given solution
set for which the information reduction is as small as possible.”;
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2. Principle of maximum uncertainty: “This is reasoning in which conclusions are not entailed in the
given premises. Using common sense, the principle may be expressed by the following requirement: in
any ampliative inference, use all information available but make sure that no additional information is
unwittingly added.”;

3. Principle of uncertainty invariance: “The principle requires that the amount of uncertainty (and infor-
mation) be preserved when a representation of uncertainty in one mathematical theory is transformed
into its couterpart in another theory.”.

A combination of the first and third principle provides a compelling guideline for the purpose of data
granulation. In fact, granulation of information implies mapping some input data (experimental evidence)
originating from a certain input domain, say X , to a domain of IGs, say Y. We argue that, when performing
such a mapping, the uncertainty, regardless of the adopted formal mathematical framework, should be
considered as an invariant property to be preserved as much as possible.

3 Data Granulation with the Principles of Uncertainty

In this section, we introduce the proposed data granulation framework. Fig. 1 illustrates the data granulation
process. A procedure of data granulation can be formalized as a mapping, φ(·), among two domains: input
domain, X , and the output domain, Y. X is the domain of the input data, whereas Y is a domain of IGs
(e.g., a domain of hyperboxes, fuzzy sets, shadowed sets, rough sets and so on). In practice, φ(·) is a formal

procedure for mapping a finite input dataset S ∈ P<∞(X ) with an output IG, say Ã ∈ Y, i.e., Ã = φ(S).
Please note that we used a special mapping, P<∞(·), in the input domain to allow discussing about S in terms
of “element” of the input domain; in the following P<∞(X ) is assumed to return all n-subsets of X , with n

finite. Note that Y, as well as Ã, should be denoted by making explicit reference to X and S, respectively,
since IGs depend on the input. However, if no confusion is possible, we will avoid such specifications.

Figure 1: Data granulation as a mapping, φ : P<∞(X )→ Y.

There are a number of important questions that should be answered: “Is the mapping φ(·) well-justified?
Moreover, how do we asses objectively the quality of the mapping?”; “Are there invariant properties that
must be preserved in the transformation from S to Ã?”; “Can we numerically quantify those properties?”;
“Given two GPs, are we able to affirm that one performs a better granulation than the other by considering
the same experimental conditions?”. Reasoning over those questions provides important motivations for the
design and formal evaluation of information GPs.

IGs are semantically sound constructs that are synthesized to convey higher-level information with respect
to (w.r.t) the data from which they are generated [32]. All models used in information granulation [36] are
designed to realize a “simplification” of the input data. The simplification consists in aggregating data that
are considered indistinguishable (also termed indiscernible) and functionally/semantically related. IGs are
hence designed also to handle the uncertainty caused by this simplification. How the uncertainty is handled
by the IG model depends on the specific mathematical setting used to describe the IG [15]. However, it is a
reasonable assumption that, regardless of the specific mathematical setting, two IGs with different models,
but synthesized from the same input data, should convey a comparable uncertainty, i.e., they should agree
at least on the “level of uncertainty”. The same concept holds for the uncertainty measured in the input
with the one measured in the resulting output IG.
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In the following, we formalize a conceptual framework to design and evaluate specific implementations
of the mapping φ(·). We refer to the proposed framework as the Principle of Uncertainty Level Preservation
(PULP). Usually, X is a domain of non-granulated data, such as Rd vectors, sequences of objects, or graphs.
However, X can be conceived also as a domain of IGs. In this case, since the role of φ(·) is to provide an
abstraction, Y must be a domain of higher-level IGs w.r.t. those of X . In the following, however, we will
consider mappings from input domains of non-granulated data types only.

3.1 Minimization of the Input–Output Uncertainty Difference

First and most important component of PULP is a measure to calculate the uncertainty. Let Ĥ : P<∞(X )→
R+ and Ȟ : Y → R+ be, respectively, the uncertainty measures for the input and output domain. Experi-
mental evidence is usually collected in the form of a finite dataset, S, containing n = |S| patterns/samples
proper of the input domain, X . To provide a better description of the properties of the data in S, usually it
is idealized an underlying data generating process, P , which actually generates instances of S. This abstract
process can be characterized by a deterministic analytical model known in closed-form, a non-deterministic
model that is assumed to provide a suitable description of P , or an unknown model. In the last case, which
is the most common one, the only useful information that is available is the finite dataset, i.e., S. For all
practical purposes, the dataset S is usually assumed to be representative of all important statistics of the
underlying process P . Therefore, in the following we center our discussion on S.

Let Ĥ(S) and Ȟ(φ(S)) be, respectively, the uncertainty calculated for the input dataset and the syn-
thesized IG. According to the guidelines conceptualized in PULP, we define the granulation error (GE)
as

δ = ‖Ĥ(S)− ψ(Ȟ(φ(S)))‖, (1)

where ‖·‖ is a norm and ψ : R+ → R+ is a monotonically increasing function that it is used to map the
different formalizations of the uncertainty (see Fig. 2 for an illustration). ψ(·) must be monotone increasing
since, reasonably, if the input uncertainty increases, then the output uncertainty must increase as well,
although the increments could be of a different extent. Eq. 1 provides a formal way to affirm that φ(·) is
characterized by a GE equal to δ, which is important also to compare different procedures operating on the
same data. Clearly, the lower the error the better the procedure.

Figure 2: Function ψ(·) that provides a bridge among the input and output quantifications of the uncertainty.

From the theoretical viewpoint, the best GP, given S, is the one that minimizes the GE,

φ(·)∗ = arg min
φ(·)∈Φ

‖Ĥ(S)− ψ(Ȟ(φ(S)))‖2, (2)

where Φ is the set of all GPs suitable for the task at hand. However, closed-form expressions for either φ(·)
and ψ(·) are necessary to evaluate either (1) and (2). Moreover, a definition for the search space, Φ, is also
necessary in the case of Eq. 2.

In practice, GPs are usually implemented as algorithms that most of times depend on some parameters,
say p. This is explicitly formalized by writing φ(·; p). Therefore, to evaluate the quality of the mapping
provided by a specific GP, we propose to deal with following optimization problem:

δ∗ = min
p
‖Ĥ(S)− ψ(Ȟ(φ(S; p)))‖2. (3)

The optimal solution to (3) yields the minimum GE, δ∗, achievable for φ(·). Also δ∗ can be used to
objectively judge over the quality of the granulation provided by φ(·).

4



The definition of the function ψ(·) is an important problem to be addressed. Such a function plays the
role of the transformation among the different formalisms used to handle the uncertainty in the input (data)
and output (granule) domains. Defining ψ(·) in closed-form might be difficult, although it could be possible
in specific cases (see Sec. 5.1 for an example). If this is the case, and also φ(·) is available in closed-form,
Eq. 3 can be solved directly. Optimization strategies to deal with (3) depend on many factors, such as the
nature of the uncertainty measures (Ĥ(·) and ˇH(·)), and most importantly the specific implementation of
φ(·). Providing general guidelines to the design of the specific optimization strategy is beyond the scope of
this paper.

A universally valid method to obtain ψ(·) from a given problem instance, is via a suitable best-fitting
algorithm. This can be performed, for instance, by analyzing m i.i.d. dataset instances, Si, i = 1, 2, ...,m,
sampled from the same underlying data generating process. The approximation of ψ(·), say f(·), is hence
determined by fitting m pairs of numbers obtained by the respective evaluations of Ĥ(S) and Ȟ(φ(S; p)).
The approximation would be characterized by a fitting error, ε ≥ 0, which depends on m and on the non-
linearity of the underlying relation among the formalizations of the input/output uncertainty. ε can be
used in place of δ∗ when the analytical definition of ψ(·) is not available. Notably, the GE induced by the
best-fitting error is defined as

ε = ‖Ĥ(S)− f∗(Ȟ(φ(S)))‖, (4)

where f∗(·) is the optimal best-fitting function, which is derived by searching for the parameters p of φ(·)
that generate m samplings yielding the minimum fitting error.

3.2 Brief Qualitative Discussion on the Proposed Framework

The main contribution of PULP is a built-in formal criterion that is exploitable to judge over results of data
granulation. This is possible via the analysis of a quantity, GE, which is defined as the difference among the
uncertainty measured in the input with the one calculated in the resulting output IG. In fact, the uncertainty
in PULP is intended as an invariant property, to be preserved as much as possible during the granulation.

This particular aspect, which offers also a diagnostic tool of practical importance, is not included in the
PJG. In fact, the PJG provides a guideline to design GPs by considering the two conflicting requirements
of specificity (essentiality) and coverage – an IG should be synthesized by finding a problem-dependent
compromise among suitable implementations of those two factors. Judging over the quality of the granulation
is thus possible only indirectly, via human interpretation, by calculating some quality index, or by considering
the synthesized IG as the input/component of another system (e.g., by using the IG in a classification system,
evaluating thus the quality of the granulation as the accuracy of the classification).

If the input data contain outliers, a procedure designed by following the guidelines offered PULP would
reflect also the contribution provided by those specific “degenerate” patterns; if not previously removed. In
fact, the mapping is evaluated according to the capability of preserving the input uncertainty in the output
IG model. On the other hand, a procedure implemented according to the PJG, would determine an essential
subset of input patterns, synthesizing an IG without considering those degenerate data.

Determining which approach offers a better solution, however, is something that depends on the context
of application and on the ultimate needs of the user – PULP is not proposed as a “replacement” for the
PJG.

4 A Type-2 Fuzzy Set Membership Functions Elicitation Method
based on the MinSOD

In this section we present a practical implementation of the mapping φ(·) that is based on the MinSOD (see

Sec. B). The idea is to equip the MinSOD with the capability of generating an IG Ã from S, modeled as
a T2FS (an introduction is provided in A). In the following, we refer to such a MinSOD as T2-MinSOD.
Algorithm 1 delivers the relative pseudo-code. Given a dataset S and a dissimilarity measure d : X×X → R+,
the T2-MinSOD can be described as a pair (ν, µÃ(·)), where ν ∈ S is the MinSOD representative and µÃ(·)
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is the fuzzy membership function characterizing Ã. Focusing on the IT2FS case, the membership degree of
each x ∈ S is an interval µÃ(x) = [LMFÃ(x),UMFÃ(x)] in [0, 1], bounded by LMF and UMF.

The element ν can be understood a suitable representative of S (a prototype). In fact, when X = R, ν
corresponds to the median of the input dataset (see Claim 1). We exploit this fact in a more general setting,
that is, when X is a user-defined data domain. This allows us to interpret ν, regardless of the nature of X ,
as a well-justified representative of S. Accordingly, the evaluation of the UMF at ν should be one, denoting
full membership. Analogously, UMF for all other elements in S \ {ν} should be defined by considering
the dissimilarity value w.r.t. ν. This choice is motivated by the fact that we are trying to represent the
uncertainty of S by relying only on the dissimilarity values among its elements. The UMF is hence defined
as a function of the dissimilarity w.r.t. ν:

UMFÃ(x) = u(d(x, ν)). (5)

u(·) is a monotonically non-increasing function of the argument yielding values in [0, 1]. Candidate
functions for (5) are the Gaussian, rational quadratic kernel, or a linear functional in [0, 1], like M − d(x, y),
where M is the maximum value assumed by d(·, ·).

To form an interval membership function, we need to generate also the LMF. The interval width in an
IT2FS quantifies the uncertainty in describing the membership degree of an input element: the wider the
interval, the higher the uncertainty. LMF is determined as follows,

LMFÃ(x) = max{UMF(x)− l(D(x, ·)), 0}. (6)

LMF is formed by considering the difference among the UMF and a function, l(·), of the dissimilarity
w.r.t. the whole dataset – note that D(x, ·) denotes the set of dissimilarity values of all elements in S
w.r.t. x. l(·) could be implemented such that to capture the extent of the intra-granule dissimilarity values
distribution (e.g., via the average or standard deviation etc.). In this way, the uncertainty expressed by
T2-MinSOD increases along with the diversity of the input patterns.

Algorithm 1 T2-MinSOD algorithm.
Input: Dataset S, a dissimilarity measure d(·, ·), functions u(·) and l(·)
Output: A T2-MinSOD, (ν, µÃ(·))
1: According to Eq. 14, determine ν on S using d(·, ·)
2: Generate the interval-membership function, µÃ(·), in the following loop
3: for each x in S do
4: Compute UMFÃ(x) using u(·) with Eq. 5
5: Compute LMFÃ(x) using l(·) with Eq. 6
6: end for
7: return (ν, µÃ(·))

T2-MinSOD could be exploited in many practical ways. For example, by using it (i) as an IG, thus
providing a solution to analyze (and interpret) the uncertainty of S, and (ii) as a computational component
of a suitable intelligent system, which operates through data aggregation (e.g., a clustering-based procedure).
The T2-MinSOD does not just construct an IT2FS membership function, since in fact it allows also to easily
defuzzify the granule by considering the representative ν ∈ S.

5 Experiments

In Sec. 5.1, we discuss an example in which the input–output uncertainty mapping is solvable analytically.
Successively, we provide experiments considering T2-MinSOD operating in two different input domains: (i)
Euclidean space and (ii) a domain of labeled graphs. The first experiment (5.2) provides us also the possibility
to visualize the results. In Sec. 5.3 we demonstrate that the T2-MinSOD is capable of generating IT2FS
models that preserve the input uncertainty with reasonable GEs. The second experiment (5.4) is performed
considering several datasets of labeled graphs. Finally, we discuss an experiment where T2-MinSOD is used
in the clustering context (5.5).
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Results are presented by implementing u(·) in Eq. 5 as a Gaussian kernel – dependent on the width –
and l(·) of Eq. 6 as the average. We generate IGs modeled as IT2FSs. We rely on uncertainty measures
based on entropy (see Refs. [46, 47] for detailed discussions on related measures of uncertainty for IT2FSs).
In particular, the uncertainty of the generated IT2FSs is computed by evaluating the (normalized) fuzzy
entropy formulation given by [5],

Ȟ(Ã) =

 1

|S|

|S|∑
i=1

µÃ(xi)− µÃ(xi)

 ∈ [0, 1]. (7)

Analogously, we will characterize the uncertainty of the input by a suitable entropy measure.

5.1 A Problem Solvable Analytically

Let S = {x1, x2, ..., xn} be a dataset of n elements sampled from a Gaussian data generating process (also
called source). In this case, we calculate the (Shannon) entropy in closed-form [8]:

Ĥ(S) = 1/2 ln(2πeσ2), (8)

where σ is the variance that completely characterizes the source (the higher the variance, the higher the
entropy). For the purpose of this example, let us assume σ ∈ [0, 1]. Note that Eq. 8 actually holds for a

dataset S as n → ∞. Now, let us define φ(·) as a mapping that takes S and generates an IT2FS, Ã, with

µÃ(xi) = [0, σ],∀xi ∈ S. Therefore, by evaluating (7) on Ã, we have Ȟ(φ(S)) = σ. The definition of the

function ψ(·) to map the uncertainty is straightforward. In fact, ψ(Ȟ(φ(S))) = ψ(σ) = 1/2 ln(2πeσ2) =
Ĥ(S). As a consequence, we can evaluate Eq. 1 directly, obtaining δ = 0, as n → ∞. It is worth noting
that, according to Eq. 2, such a GP φ(·) is optimal.

5.2 Tests on Real-valued Vectors

To grasp the concept in a data-driven scenario, in Fig. 3 we show a sample of 100 patterns distributed
according to a 1-dimensional Gaussian distribution with zero mean and σ = 0.2. In Fig. 3(a) we show the
width (as a red spike) of the interval membership calculated by T2-MinSOD that characterizes each input
pattern. As desired, patterns closer to the center of the distribution have a shorter interval width. In Fig.
3(b) we show a representation of the generated IT2FS. It is possible to clearly recognize the Gaussian shape
for both LMF and UMF. Notably, the interval-valued memberships are distributed as expected: the inner
parts closer to the center are characterized by a ticker interval that, considering both endpoints, it is also
closer to one.

Fig. 4 shows a dataset distributed according to a 2-dimensional Gaussian distribution, with zero mean
and spherical covariance matrix controlled by σ = 0.2. Fig. 4(a) shows the obtained configuration of the
100 sampled patterns – the green pattern is the computed MinSOD element. Fig. 4(b) shows the LMF and
UMF of the generated IT2FS. It is worth noting that, in this case, input patterns have no trivial ordering,
which justifies the visualization (4(b)) of the generated IT2FS.

5.3 Preservation of Input–Output Uncertainty

Here we calculate, in terms of GE, the quality of the granulation performed by the proposed T2-MinSOD.
We perform the test by generating the dataset S using a unidimensional Gaussian source (see Eq. 8 for the
entropy expression) and a unidimensional exponential source. The (Shannon) entropy of the exponential
distribution is given by

Ĥ(S) = 1− ln(λ), (9)

where λ > 0 is the scale parameter. From Eq. 9, it is clear that the entropy decreases as λ increases. For
closed-form entropy formulas of other well-known distributions we refer the reader to [52].
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Figure 3: Widths of the interval memberships assigned to the input 1-dimensional patterns (3(a)) and a
representation of the generated IT2FS (3(b)).
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Figure 4: Example of the IT2FS generation over 100 patterns extracted from a 2-dimensional Gaussian
distribution.

First, we performed a batch of 10 experiments by changing the variance, σ, of the Gaussian source in an
suitable range. Notably, σ is progressively selected in [0.1, 0.55], with an increment step of 0.05. Fig. 5(a)
depicts the results of the linear best-fitting (in the figure denoted as a function f(·)) among the obtained 10
pairs of source and output entropy values. The high coefficient of determination (R2 ' 0.98) denotes a very
good relation among the input–output uncertainty; in this case, a linear model is sufficient to map the input–
output uncertainty. The optimization (4) to search for the optimal best-fit (dependent only on the width of
the Gaussian implementing Eq. 5) is performed with a linear search on the [0.01, 5] range with a step-size of
0.01. Testing of the optimal best-fitting is performed on a new dataset instance generated with σ = 0.325;
the test is repeated 10 times by using different random initializations. We found that ε ' 0.02±0.005, which
can be considered as a good result, demonstrating thus that the T2-MinSOD is capable of preserving the
input uncertainty in the output IG model with a reasonable GE.

We repeated the experiment with an exponential source (9), by varying λ in [1.5, 2.4] with an increment
step of 0.1. The linear best-fit is once again sufficient (R2 ' 0.88) to model the input–output relation among
the entropic characterizations of the uncertainty – see Fig. 5(b).
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Figure 5: Best fittings calculated by considering Gaussian (5(a)) and exponential (5(b)) sources.

5.4 Tests on Labeled Graphs

We demonstrate the modeling capability of the T2-MinSOD when operating in the labeled graphs domain.
We consider both synthetic labeled graphs [3, 20, 21] and the letter dataset of the IAM repository [39]; those
datasets are originally conceived for benchmarking graph classifiers. In the first case, we consider four out
of the 15 original datasets – datasets contain graphs constructed as Markov chains of decreasing similarity,
i.e., related classification problems are intended with decreasing difficulty. In the latter case we consider the
letter dataset with two level of distortions: low (Letter-L) and high (Letter-H) – this dataset contains graphs
representing digitalized letters drawn over the 2D plane. The dissimilarity measure (14) is implemented as
the graph coverage graph matching algorithm [17].

Fig. 6 shows the interval widths calculated for the four synthetic datasets of graphs (denoted as DS-G-2,
DS-G-6, DS-G-10, and DS-G-14, where DS-G-2 induces a harder classification problems than DS-G-6 and so
on). As expected, the entropy (7) calculated from the IT2FS models is in agreement with the nature of the
datasets. More difficult (in terms of recognition) datasets have higher entropy than easier datasets; harder
datasets are usually characterized by a less regular pattern organization in the input space. A similar results
holds for Letter-L and Letter-H, shown, respectively, in Figs. 7(a) and 7(b). The IT2FS model of the easier
dataset (Letter-L) denotes less entropy.

5.5 T2-MinSOD in Data Clustering

In this section we use the T2-MinSOD to model clusters of data generated with the well-known k -means
algorithm [4, 13]. We process the Iris dataset taken from the UCI repository [2]. The Iris dataset contains
150 patterns equally distributed in three classes, named “Iris-setosa”, “Iris-versicolor”, and “Iris-virginica”.
From the analysis of first two components of the PCA shown in Fig. 8, it is possible to understand that
patterns of the “Iris-setosa” class (in red) are well-separated from the others, while those of the other two
classes show little overlap (according to the PCA space). This fact suggests us that the uncertainty of a
suitable IG modeling patterns belonging to the “Iris-setosa” class should be lower than those calculated from
IGs describing the other two classes.

To test this hypothesis, we executed the k -means algorithm directly in the input space (no pre-processing
of data) setting k = 3, generating thus three IGs modeled by means of the T2-MinSOD. Fig. 9 shows the
widths of generated interval memberships. It is important to note that the first cluster (9(a)) consists of 50
patterns, all belonging to the “Iris-setosa” class. The entropy of the related IT2FS model is ' 0.67. The
other two clusters (shown in Figs. 9(b) and 9(c)) contain an unbalanced number of patterns: respectively 38
and 62. As fuzzy entropy calculations show, the uncertainty of those two IT2FS models is greater than the
one of the first cluster, which agrees with the (visual) information provided by the PCA. This result suggests

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

In
te

rv
a

l 
m

e
m

b
e

rs
h

ip
 w

id
th

Input pattern id

width

(a) DS-G-2. IT2FS entropy=0.232693.
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(b) DS-G-6. IT2FS entropy=0.21941.
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(c) DS-G-10. IT2FS entropy=0.203789.
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(d) DS-G-14. IT2FS entropy=0.187489.

Figure 6: Widths and related entropy of the generated interval membership functions (synthetic graphs).
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(a) Letter-L. IT2FS entropy=0.553205.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700

In
te

rv
a

l 
m

e
m

b
e

rs
h

ip
 w

id
th

Input pattern id

width

(b) Letter-H. IT2FS entropy=0.628804.

Figure 7: Widths and related entropy of the generated interval membership functions (IAM letter datasets).

that the IT2FS models generated by means of T2-MinSOD convey also useful and reliable higher-level
information, to be exploited for interpretability purposes.

6 Conclusions and Future Directions

The process of data granulation can be abstracted as a mapping among some input domain and a suitable
domain of information granules. In this paper, we have presented a conceptual framework to help designing
and evaluating data granulation procedures. The framework, called PULP, is based on the principles of
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(a) First cluster. IT2FS entropy=0.670161.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

In
te

rv
a

l 
m

e
m

b
e

rs
h

ip
 w

id
th

Input pattern id

width

(b) Second cluster. IT2FS en-
tropy=0.794648.
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(c) Third cluster. IT2FS entropy=0.885963.

Figure 9: Widths and related entropy of the generated interval membership functions for the clusters calcu-
lated by k-means over the Iris dataset.

uncertainty introduced by Klir. The main idea is to consider the uncertainty of the input data as an
invariant property, to be preserved as much as possible in the model of the output IG. The difference among
the input and output uncertainty has been defined as the granulation error. Such a quantity has been used
to (i) objectively judge over the quality of the granulation and (ii) to provide a common groundwork to
compare different granulation procedures operating over the same data.

To put this idea in practice, we introduced a data granulation technique based on the MinSOD. The
procedure, called T2-MinSOD, is able to generate an interval-valued membership function by relying on the
information of the input data dissimilarity values only. We analyzed this procedure by considering different
input data types and experimental settings. Results show that T2-MinSOD is interpretable and it is able to
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preserve the uncertainty of the input with reasonable granulation errors.
Performing data granulation by considering the uncertainty as an invariant property to be preserved

during the granulation process allows to apply this conceptual framework regardless 1) of the specific input
data representation formalism and 2) the mathematical setting used to define information granules.

Future works include the theoretical consolidation of PULP. For instance, it may be interesting to study
if the mapping φ(·) is bijective. This formal property may suggest important facts in terms of IG inter-
pretability. In addition, we will study the so-called “denagranulation” by exploiting the invertibility of φ(·).
Finally, we will use PULP for the purpose of benchmarking different data granulation procedures operating
over the same data.

A Brief Review of Type-2 Fuzzy Sets

A T2FS Ã defined on the universe of discourse X is represented as

Ã ={(x, µÃ(x)) | x ∈ X , (10)

µÃ(x) = {(u, gx(u)) | u ∈ Jx ⊆ [0, 1], gx(u) ∈ [0, 1]}}.

We refer to µÃ(x) as the fuzzy membership value of x. Moreover, in Eq. 10 Jx represents the primary
membership values of x, and gx(u) is named secondary grade [28, 51].

A T2FS in which gx(u) = 1 holds ∀u ∈ Jx, reduces to the so-called interval type-2 fuzzy set (IT2FS) [22].
Please note that an IT2FS is a more general case of what is known in the literature as interval-valued fuzzy
set [45, 49], where Jx in (10) is constrained to be a subinterval of [0, 1]. In this paper, µÃ(·) is referred to
as interval membership function, since Jx is always a subinterval of [0, 1]. An IT2FS is fully characterized
by the so-called Footprint Of Uncertainty (FOU), which is defined as:

FOU(Ã) =
⋃
x∈X

[
µÃ(x), µÃ(x)

]
. (11)

Note that in (11) µÃ(x) and µÃ(x) denote the upper and lower endpoints of Jx, respectively. FOU (11)
can be characterized by two T1FSs, which are respectively called Upper Membership Function (UMF) and
Lower membership Function (LMF),

UMFÃ = FOU(Ã) =
{

(x, µÃ(x)) | x ∈ X
}
, (12)

LMFÃ = FOU(Ã) =
{

(x, µÃ(x)) | x ∈ X
}
. (13)

B The MinSOD Representative

Let S ⊂ X , n = |S|, be a finite input set, and let d : X ×X → R+ be a suitable dissimilarity measure [18, 21].
The MinSOD [9] representative element ν ∈ S is the element of S that minimizes the sum of distances:

ν = arg min
xi∈S

∑
xj∈S

d(xi, xj). (14)

The prototype ν computed according to Eq. 14 can be though as an “approximation” of the centroid in
vector spaces. However, being based on a dissimilarity measure, it can be used to model datasets proper of
non-geometric input domains, such as those of graphs and sequences [21].

In addition to the representative element, i.e., ν, several indicators can be defined. For instance, measures
of compactness and size can be easily conceived; the compactness could be conceived as a statistics (e.g.,
average, standard deviation, etc.) of the dissimilarity values among (a subset of) the elements in S and ν.

The following claim conveys a useful result from the interpretability viewpoint of the MinSOD.
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Claim 1. The MinSOD element ν ∈ S = {x1, x2, ..., xn} ⊂ R, computed as shown in Eq. 14 by setting
d(xi, xj) = |xi − xj |, corresponds to the median element of S.

Proof. Let xi be the median of S. We prove the claim by contradiction, that is, by assuming ν = xk, with
xk 6= xi. Let us shorten the dissimilarity as d(xi, xj) = dij . Let us assume that the elements of S are ordered
in ascending order; without loss of generality, we assume also that xk is located at the right-hand side of xi.
This is possible since xi is the median element. Since xk is the MinSOD element, the following inequality
must hold:

n∑
j=1

dkj ≤
n∑
j=1

dij . (15)

By using the fact that

n∑
j=1

dij =

n∑
j=1

dkj −
k∑

h=i+1

dih, (16)

we can rewrite the inequality (15) as

n∑
j=1

dkj ≤
n∑
j=1

dkj −
k∑

h=i+1

dih. (17)

By simple manipulations we obtain:

n∑
j=1

dkj −
n∑
j=1

dkj +

k∑
h=i+1

dih ≤ 0⇒
k∑

h=i+1

dih ≤ 0, (18)

which is impossible, since at least dik > 0 must hold.
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