arXiv:1410.2786v1 [cs.LG] 10 Oct 2014

New SVD based initialization strategy for Non-negative NaFactorization

Hanli Qiao

Via Carlo Alberto 10, 10123 Torino, Italy
Department of Mathematics “G. Peano”, University of Torino

Abstract

There are two problems need to be dealt with for Non-negMigtix Factorization (NMF): choose a suitable rank
of the factorization and provide a good initialization madhfor NMF algorithms. This paper aims to solve these
two problems using Singular Value Decomposition (SVD). Adtfive extract the number of main components as the
rank, actually this method is inspired from [1, 2]. Second,uge the singular value and its vectors to initialize NMF
algorithm. In 2008, Boutsidis and Gollopoulos [3] providée method titled NNDSVD to enhance initialization of
NMF algorithms. They extracted the positive section angeetve singular triplet information of the unit matrices
{CY)%_; which were obtained from singular vector pairs. This sgpteims to use positive section to cope with
negative elements of the singular vectors, but in experisnese found that even replacing negative elements by
their absolute values could get better results than NNDSN&nce, we give another method based SVD to fulfil
initialization for NMF algorithms (SVD-NMF). Numerical g@eriments on two face databases ORL and YALE: [4, 5]
show that our method is better than NNDSVD.
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1. Introduction

In 1999, Lee and Seung published a paper with the title Lagrttie parts of objects by Non-negative Matrix
Factorization (NMF)|[6]. They analyzed how NMF could leahe tparts of objects for facial images and semantic
topics. The non-negativity of NMF only permit the additivencbination of multiple basis images to present a face.
It's compatible with the intuitive notion of combining parto form a whole. Two dierent multiple algorithms for
NMF were analyzed in_[7]. The main idea of NMF is the use of lamk matrices to approximate large dimension
data so that reduce the dimension. NMF can also be appliedaiood other areas: Ding and his colleagues have
deeply researched in data clustering and Combinatoriah@yztion (seel[8,19, 10, 11]). In paper [12], Oja and
Yuan proposed Projective Non-negative Matrix Factoraa{PNMF) for image compression and feature extraction,
whereas NMF can be applied to face detection [13].

NMF framework can be described as follows: given an origival-negative matriZ € R™", find W € RTP
andH € RP", such that:

Z~WH,

whereW is called basis matrix{ is called coéficient matrix ando is the rank of the factorization. Note that it is an
important index to determine the size of these two low rankrices. To reduce the dimension &f we wantp is
small. On the other hand, for the accuracy of the approxonathe largep is, the more accurate the approximation
will be. Almost all of the researchers sptas diferent numbers for the first step. Hence we need to find a method
to choosep, which is much smaller than miim, n}. Generally, it should satisfy the basic ruta ¢ n)p < mn[7]. In
Subsectiofi 2]1, we will introduce a method based on SVD tosbp that is called Choosing Rule. Here, we give a
brief introduction of SVD.

Given a matrixM € F™" which can be a real or complex matrix, there exists a fazation of the form M=
UXV*, whereU is anmx munitary matrix oveif, ¥ is anm x n diagonal matrix with non-negative real numbers on
the diagonal, and the x n unitary matrixV* denotes the conjugate transpose ofrthen unitary matrixV. Such a
factorization is called a SVD d¥1.
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The diagonal entries & are known as the singular valuesMf which are in descending order. In many cases,
the top 10%, even less of the singular values account for @& of all singular values. This means that we can
usep, which account for over 90% information of all singular veduto be as the rank of the factorizatignshould
satisfy the basic rule

(m+n)p<mn (1)

In papersi[6,.7], Lee and Seung gave us two cost functionsderite NMF problem. One of them ifW, H) :=
%HZ - WH||§ and it can be viewed as the following bound optimization eob Given non-negative matrix, find
W andH which solve

minf(W.H), W>0, H>0 )

They used multiplicative update rules and additive updakesrto solve this problem. We call them MM and AD
algorithm respectively. But in MM and AD algorithms, rapkis set by researchers arbitrarily at the beginning of
the algorithms, and the initialization valuég™" andH;™" are chosen randomly. NMF cantker from slow conver-
gence, then the whole computational process can becomeempehnsive. Hence we should find good initialization
method to make algorithms be morgeztive. Currently there are some literatures which progh$erent methods
to improve the initialization step of NMF algorithms (segl13,115] 16| 17]). Papers [14],]15] use Spherical K-Means
clustering to produce a structured initialization for NM$ithough this method isféective, it increases the compu-
tational complexity. In paper [16], authors compared siiatization procedures on their Alternating Least Sgsare
(ALS) algorithms, whereas paper [17] applies populatioseaalgorithm to NMF. They used five population based
algorithms to compute optimal starting points for singlevsaf W and single columns dfl. This kind of method
obviously makes the computation at cost more expensive. SN\Dfrom paperi[3], of all these initialization methods
which we mentioned, is the best offectiveness and low computational cost. But, when NNDSVDOsdeith the
negative elements of the singular vector, they form the namik matrix through singular triplets & then extracting
positive section and respective singular triplet inforimraand using them to initializg/ andH. Through a large
number of experiments, we find that even we set the negattviegof left and right singular vectors are the absolute
values, then we use NNDSVD but only once SVD to initiaN¥gH, the results are better than initial NNDSVD. This
outcome inspires us to find another rule to improve the iigadon. We start with SVD and then use singular vectors
and values to initialis®V, H. We call this method SVD-NMF. In SVD-NMF, we only use SVD once

As Boutsidis and Gallopoulos referred in [3], good initialiion strategy should satisfy the following conditions:
(i) one that leads to rapid error reduction and faster cayesgee; (ii) one that leads to overall error at convergence. |
particular, we point out SVD-NMF has good property undesthvo conditions.

We arrange this paper as follows. Secfibn 2 gives two maitecs, the first one is the Choosing rule to compute
the rank of the factorization and the second one is thatduite the method SVD-NMF. In Secti@h 3, numerical
experiments show thefectiveness of SVD-NMF for two kinds of NMF algorithms.

2. SVD-NMF for theinitialization of NMF

As we mentioned in Sectidd 1, the raplof factorization can be calculated by SVD-NMF. For NMF prerl,
SVD can be expressed as the follows. For any matrixRT™", there exists a factorization with the following form:

Z=UxV, 3

where then x n unitary matrixV" denotes the transpose of the n unitary matrixV and

[z O
5= ( o 0 ) (4)
HereX, = diag(o1, 02, ..., 07), and the diagonal entries are sorted in descending otdetri > 0 > ... > o7 > 0,
oi, i1 = 1,2,...r being the singular values with= rank(Z). Generally, the sum af; (wheni is small) accounts for

most of all singular values. For NMF, we need to find matridés R andH € RP" and now we will use this
behaviour to choosp, which is the rank of factorization for NMF.
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2.1. Choosing rule

From formulal[(B), we get the diagonal matgix At first, we make the sum of all non-zero diagonal entriesfor
that issum,; = o1 + 02 + ... + 0%, and then we choose the number of singular values which ateéar 90% of all
non-zero diagonal entries, thatismy, = o1 + ... + 0 SO we obtain the Choosing rule:

sump/sum; <90% and sump.1/sum, > 90% (5)

This is meaningful because the non-zero entries afe the square root of non-negative eigenvalues of matix
then we can get that< min{m, n}, wherem, n are the number of rows and columns of ma#ixrespectively. After
extracting 90% energy by the rulg (5), we can obaka r. Here we give the MATLAB code of Choosing Rule:

function [u s v pl=ChoosingR(Z)
[u,s,v] = svd(Z);

suml= sum(s);

sum2=sum(suml) ;

extract=0;

p=0;

dsum=0;

while(extract/sum2<0.90)
p=p+ 1

dsum=dsum+s(p,p);
extract=dsum;

end

end

Table[1 gives us two groups of rapifor different image matrices using Choosing Rule. These ten imagieed
from ORL [4] and YALE [5] database, respectively. ORL faceatmse has 10 fierent images of each of 40 distinct
subjects and the size of each image ix342. YALE face database contains 165 gray-scale imagesiafihbduals.
There are 11 images per subject and the pixels of each imad®éx 100. We chose 5 images of the first subject on
ORL database and another 5 images on YALE database. We c#msé®th ofp; and p, satisfy the basic rulé{1),
actually in most caseg satisfies the basic rulgl(1) under Choosing Rule (5).

Table 1: Rankp of factorization for diferent facial images. The first row is 5 images for the firstectopn ORL database and the second row is
the same as first row on YALE database

pp 35 26 35 34 37
p. 45 47 46 42 45

2.2. SVD based initialization: SVD-NMF

In this paperp in numerical experiments are chosen by Choosing Rule (5ghi introduced in Subsectign 2.1.
As we mentioned good initialization can make convergenstedfiad get low cost of computational process. NNDSVD
uses singular triplets of SVD twice to initialize matricd8*? andHP" for NMF. Our new method SVD-NMF only
uses SVD once to obtain the singular triplet&f".

For analyzing the Bound Optimization problen (2), we neekidetYoung Theorem [18]

Lemmal. Let Ve R™" be a singular value decomposition

V = PxQ', X =diag(c1,o0,...,00) € R™,



whereo; > o3 > ... = o, = 0 are the singular values of V and @R™MandQe R™" are orthogonal matrices. Then
for 1 <r < n, the matrix

B, = Pdiag(o1, 02, ..., 07,0, ..., 0)Q" (6)
N——
n-r

is a global minimizer of the optimization problem
min{ [V - B2 |BeR™", rank(B) <r} (7)
with the corresponding minimum vaIEEZHlo-Z. Moreover, ifo, > o1, then B is the unique global minimizer.

From Lemma 1 we can easily use non-negative maifi® to convert matrixV, then we can get that if there
exists a matrixB; that has the forni{6), the bound optimization problEin (2)faashthe global minimizeB;. We can
compute the SVD of non-negative matd®*" and we obtain the singular triplets af*": Um™m Smn ™" Therefore
we want to find a unique matri®, such that:B, = Udiag(c1, o, ..., 07, 0, ..., 0)VT. We can easily verify that:

n-r

B, = Udiag(os, 072, ... 71,0, ...V =U'LVT = B} (8)
n-r
where
Uz U2 Uip
, U1 U22 Uzp
u=( . . 9)
Umi  Um2 Ump
and
o1 O 0 0
) 0 o - 0 -+ 0
¥= . . . N B (10)
0 0 -+ op -+ 0

U" € R™P andx’ € RP". Then the matrXB, is the solution of the bound optimization problelh (2). We irestantly
obtain thatWH = B’p which is the solution of{{2) that we want to obtain. Howevkg entries of singular vectors of
SVD can be negative, we cannot directly use matrices (9)E@A4 initializeW andH. We set the negative elements
of matrix U" as the absolute values of themselves, then wglggtwherel.| indicates that all entries ad” are their
absolute values. And we make all the negative entri@s\éf as their absolute values. Then we get mg&ix'"|.

We get the initialization formulas i/, H:

Wo = [U|, Ho = [ZVT]|

thenWgHo ~ B,. We use MATLAB to compile SVD-NMF to fulfil the initializatio of NMF algorithms. It is the
following code:

m = size(A,1);

[u s v p] = ChoosingR(A);
W= abs(u(:,1:p));

H = abs(s(1:p,:)*v’);

From this code we can see that SVD-NMF only computes the Entyiplets of original matrix once, hence it is
very simple and it can be used the initialization step forldMF algorithms. Moreover we can get more stable results
of factorization after applying SVD-NMF. For analysing auethod SVD-NMF, we combine the initialization step
with the algorithms: MM and local non-negative matrix fattation (LNMF) (seel[19]). We must note that LNMF
is based on another object function KullbackLeibler diegrgeD ( Z || WH) in [6, 7]

In the papern]7], the rules of MM algorithm can be expressetti@$ollowing form:
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H « H. x (WTA)./(WTWH))
W — W s ((AHT)./(WHH"))

and the updated iterative rules of LNMF in paper [19] has dilefing form:

H «— H. « (WT % (A/(WH)))
W — W ((AHT)./(WHH"))

We also can apply SVD-NMF to other well known NMF algorithregch as PNMF in paper [13]. In this paper we
do not do that. In next Sectidn 3, we will give some numeriealitts to show error, the number of iteration and the
factorization rank for SVD-NMF, NNDSVD and RnadomNMF, whichoose ranlp randomly. And the error in this
paper we used as the following form:

IZ-WHile
(7412

3. Numerical experiments

In this section, we will show numerical results on two fadatabases: ORL and YALE which are already intro-
duced in Subsectidn 2.1 and two images that are included iflMMB database. One is football.jpg and another one
is kids.tif. The former image has 256320 pixels, while the latter image has 32800 pixels.

3.1. Numerical results for MM algorithm

Table[2 and Tablg]l3 show the errors after using three metraydglf algorithm: SVD-NMF, NNDSVD and
RandomNMF. There are 5 images of the first subject on ORL fata#bése and YALE database, respectively, and the
number of iterations is 100. We can see that among the thrédeoaeSVD-NMF always has the smallest error. This
means that SVD-NMF can reach the convergent direction gitegations than other two methods. We must note that
the results of RandomNMF can not be stable. Because thelirdiion of matrice$V andH are chosen randomly,
the results can be filerent at every experiments. Sometimes NNDSVD is worse tland&nNMF.

Table 2: The Errors of five image matrices of the first subjecO®L face database by MM algorithms, the number of iteratisri00.

p 35 26 35 34 37
SVD-NMF || 0.1015| 0.0931| 0.1039| 0.1061| 0.1041
NNDSVD | 0.1149| 0.0965| 0.1132| 0.1084| 0.1203
RandomNMF| 0.1215| 0.1098| 0.1207| 0.1173| 0.1178

Table 3: The Errors of five image matrices of the first subjecYALE face database by MM algorithms, the number of iterai®100.

p 45 47 46 42 45
SVD-NMF || 0.1329| 0.1440| 0.1500| 0.1399| 0.1309
NNDSVD | 0.1319| 0.1466| 0.1617| 0.1460| 0.1349
RandomNMF|| 0.1360( 0.1419( 0.1529( 0.1430| 0.1345

Table[4 andb show the errors of the same image matrices aa{Zalold B. We set iteration number equal to 300.
In this case, we can see that SVD-NMF still preserves go@indgving small errors. But there are some exceptions:
the second and fourth object in Table 4 and the last objedialfe[%. This means that in some cases, NNDSVD has
faster convergence than SVD-NMF, but thé&elience between them is very small. In most cases, SVD-NMF has
smaller error and faster convergence than NNDSVD in MM atgor for NMF.
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Table 4: Errors of 5 image matrices of the first subject on O&tdefdatabase by MM algorithms, the number of iteration is 300

p 35 26 35 34 37
SVD-NMF || 0.0801| 0.0756| 0.0819| 0.0870| 0.0853
NNDSVD | 0.0899| 0.0749| 0.0888| 0.0868| 0.0951
RandomNMF|| 0.0948| 0.0712|| 0.0945|| 0.0900| 0.0918

Table 5: Errors of 5 image matrices of the first subject on YAa&e database by MM algorithms, the number of iteration & 30

p 45 47 46 42 45
SVD-NMF || 0.1075| 0.1234| 0.1293| 0.1210| 0.1116
NNDSVD | 0.1123| 0.1248| 0.1404| 0.1219| 0.1100
RandomNMF| 0.1104| 0.1259| 0.1317| 0.1219| 0.1116

Figure[1 gives us the reconstruction images using the faetin of SVD-NMF, NNDSVD and RandomNMF
for the ten image matrices on ORL and YALE face databaseentispely, as we mentioned before. In this case, the
iteration number is 100. Because faces on YALE databasemétie diferent expressions: happy, sad, normal, sleepy
or wink than that of ORL database, therefore the reconstesctits of YALE are a little bit of worse than that of ORL.

It deduces that it is more filicult to fulfil face recognition on YALE database than ORL.

Now we use two cases to compare thifatences at dlierent iterations of SYD-NMF, NNDSVD and Random-
NMF for MM algorithm. The first case is to factorize image foall.ipg using these methods. We compute the rank
p of factorization is 78. And the second data if from image Kiflsvhich the factorization rank is 140. FiguréP
still shows that SVD-NMF has faster convergence than amétemethods in MM algorithm for NMF.

3.2. Numerical results for LNMF algorithm

In this section, we will evaluate the properties of SVD-NNNRIDSVD and RandomNMF methods for LNMF
algorithm. Tableg16 arid 7 show the errors of 5 image matrimesdcond subject on ORL and YALE face database,
respectively at 100 iterations. There is the same situatiom Table§]2 anld 3, that is in most cases SVD-NMF has
smaller errors and faster convergence than other methdtis. 390 iterations, Tablés 8 ahH 9 give us the same results.
From these four tables, we know that SVD-NMF always presefast convergence for LNMF on the second subject
image matrices of ORL face database and, in some cases, NND&¥faster convergence on YALE database when
the number of iterations is relatively large.

Table 6: Errors of 5 image matrices of the second subject ob fage database by LNMF algorithms, the number of iteratieri00.

p 51 52 52 52 51
SVD-NMF || 0.3955| 0.3888| 0.3884| 0.3905| 0.3980
NNDSVD | 0.3947| 0.3947| 0.3913| 0.3897| 0.4009
RandomNMF|| 0.4160( 0.4084( 0.4030( 0.4050| 0.4228

Figure3 is the reconstruction of the second subjects on QRILYALE face database. Each subject has 5 images
with different expressions, light or other factors. These recortdtnages in Figurgl3 have those more details than
that of in Figuré_lL. This holds because LNMF can impose thalladormation of the whole face. Images have
significant contrasting in (b) of Figuté 3 because the firgtgmis &ected by lightness whereas others do not have it.

As we introduced in Sectidd 1, NMF has a lot of applicationsoinitialization will bring good factorization,
then NMF can be applied well for many fields. SVD-NMF as a nevttroé to impose initialization step of NMF is
proposed in this paper. It has some goodness: i) it can bly easibined with other NMF algorithms to enhance the
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Figure 1: The reconstruction of two face databases. Theadwsusing SVD-NMF, second row using NNDSVD and the last romgd$andom-
NMF for MM algorithm.
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Figure 2: The reconstruction of two face databases.

Table 7: Errors of 5 image matrices of the second subject drEvface database by LNMF algorithms, the number of iteraisoh00.

p 42 35 31 35 34
SVD-NMF || 0.3934][ 0.4075] 0.4424] 0.4140] 0.4381
NNDSVD || 0.4005| 0.4064 || 0.4471| 0.4164] 0.4438

RandomNMF|| 0.4054 0.4139| 0.4472|| 0.4190] 0.4436

initialization; ii) the computational cost is cheap be@w® only compute the singular triplets once; iii) it is caaale

fast convergence; iv) it is simple and can be satisfied eaBily we still need some other strategy to deal with the
negative entries of singular triplets. When we made expees, we found that if we change the negative elements we
can get better or worse results. Hence, how to implementdbative entries rather than replace them by the absolute
values is the next step that we should do.
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Figure 3: The reconstruction of two face databases and 8tediv using SVD-NMF, second row using NNDSVD and the last usmg Random-
NMF for LNMF algorithm.
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