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Abstract

There are two problems need to be dealt with for Non-negativeMatrix Factorization (NMF): choose a suitable rank
of the factorization and provide a good initialization method for NMF algorithms. This paper aims to solve these
two problems using Singular Value Decomposition (SVD). At first we extract the number of main components as the
rank, actually this method is inspired from [1, 2]. Second, we use the singular value and its vectors to initialize NMF
algorithm. In 2008, Boutsidis and Gollopoulos [3] providedthe method titled NNDSVD to enhance initialization of
NMF algorithms. They extracted the positive section and respective singular triplet information of the unit matrices
{C( j)}kj=1 which were obtained from singular vector pairs. This strategy aims to use positive section to cope with
negative elements of the singular vectors, but in experiments we found that even replacing negative elements by
their absolute values could get better results than NNDSVD.Hence, we give another method based SVD to fulfil
initialization for NMF algorithms (SVD-NMF). Numerical experiments on two face databases ORL and YALE [4, 5]
show that our method is better than NNDSVD.
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1. Introduction

In 1999, Lee and Seung published a paper with the title Learning the parts of objects by Non-negative Matrix
Factorization (NMF) [6]. They analyzed how NMF could learn the parts of objects for facial images and semantic
topics. The non-negativity of NMF only permit the additive combination of multiple basis images to present a face.
It’s compatible with the intuitive notion of combining parts to form a whole. Two different multiple algorithms for
NMF were analyzed in [7]. The main idea of NMF is the use of low rank matrices to approximate large dimension
data so that reduce the dimension. NMF can also be applied to alot of other areas: Ding and his colleagues have
deeply researched in data clustering and Combinatorial Optimization (see [8, 9, 10, 11]). In paper [12], Oja and
Yuan proposed Projective Non-negative Matrix Factorization (PNMF) for image compression and feature extraction,
whereas NMF can be applied to face detection [13].

NMF framework can be described as follows: given an originalnon-negative matrixZ ∈ R
m×n
+

, find W ∈ R
m×p
+

andH ∈ Rp×n
+ , such that:

Z ≈WH,

whereW is called basis matrix,H is called coefficient matrix andp is the rank of the factorization. Note that it is an
important index to determine the size of these two low rank matrices. To reduce the dimension ofZ, we wantp is
small. On the other hand, for the accuracy of the approximation, the largerp is, the more accurate the approximation
will be. Almost all of the researchers setp as different numbers for the first step. Hence we need to find a method
to choosep, which is much smaller than min{m, n}. Generally, it should satisfy the basic rule (m+ n)p < mn [7]. In
Subsection 2.1, we will introduce a method based on SVD to choosep that is called Choosing Rule. Here, we give a
brief introduction of SVD.

Given a matrixM ∈ F
m×n, which can be a real or complex matrix, there exists a factorization of the form M=

UΣV∗, whereU is anm×m unitary matrix overF, Σ is anm× n diagonal matrix with non-negative real numbers on
the diagonal, and then × n unitary matrixV∗ denotes the conjugate transpose of then× n unitary matrixV. Such a
factorization is called a SVD ofM.

http://arxiv.org/abs/1410.2786v1


The diagonal entries ofΣ are known as the singular values ofM, which are in descending order. In many cases,
the top 10%, even less of the singular values account for over90% of all singular values. This means that we can
usep, which account for over 90% information of all singular values to be as the rank of the factorization.p should
satisfy the basic rule

(m+ n)p < mn (1)

In papers [6, 7], Lee and Seung gave us two cost functions to describe NMF problem. One of them isf (W,H) :=
1
2‖Z −WH‖2F and it can be viewed as the following bound optimization problem: Given non-negative matrixZ, find
W andH which solve

min f(W,H), W ≥ 0, H ≥ 0 (2)

They used multiplicative update rules and additive update rules to solve this problem. We call them MM and AD
algorithm respectively. But in MM and AD algorithms, rankp is set by researchers arbitrarily at the beginning of
the algorithms, and the initialization valuesWm×p

0 andHp×n
0 are chosen randomly. NMF can suffer from slow conver-

gence, then the whole computational process can become muchexpensive. Hence we should find good initialization
method to make algorithms be more effective. Currently there are some literatures which proposedifferent methods
to improve the initialization step of NMF algorithms (see [3, 14, 15, 16, 17]). Papers [14],[15] use Spherical K-Means
clustering to produce a structured initialization for NMF.Although this method is effective, it increases the compu-
tational complexity. In paper [16], authors compared six initialization procedures on their Alternating Least Squares
(ALS) algorithms, whereas paper [17] applies population based algorithm to NMF. They used five population based
algorithms to compute optimal starting points for single rows of W and single columns ofH. This kind of method
obviously makes the computation at cost more expensive. NNDSVD from paper [3], of all these initialization methods
which we mentioned, is the best of effectiveness and low computational cost. But, when NNDSVD deals with the
negative elements of the singular vector, they form the unitrank matrix through singular triplets ofZ, then extracting
positive section and respective singular triplet information and using them to initializeW andH. Through a large
number of experiments, we find that even we set the negative entries of left and right singular vectors are the absolute
values, then we use NNDSVD but only once SVD to initializeW, H, the results are better than initial NNDSVD. This
outcome inspires us to find another rule to improve the initialization. We start with SVD and then use singular vectors
and values to initialiseW, H. We call this method SVD-NMF. In SVD-NMF, we only use SVD once.

As Boutsidis and Gallopoulos referred in [3], good initialization strategy should satisfy the following conditions:
(i) one that leads to rapid error reduction and faster convergence; (ii) one that leads to overall error at convergence. In
particular, we point out SVD-NMF has good property under these two conditions.

We arrange this paper as follows. Section 2 gives two main contents, the first one is the Choosing rule to compute
the rank of the factorization and the second one is that introduce the method SVD-NMF. In Section 3, numerical
experiments show the effectiveness of SVD-NMF for two kinds of NMF algorithms.

2. SVD-NMF for the initialization of NMF

As we mentioned in Section 1, the rankp of factorization can be calculated by SVD-NMF. For NMF problem,
SVD can be expressed as the follows. For any matrixZ ∈ Rm×n

+
, there exists a factorization with the following form:

Z = UΣV
′

, (3)

where then× n unitary matrixV
′

denotes the transpose of then× n unitary matrixV and

Σ =

(

Σ1 0
0 0

)

(4)

HereΣ1 = diag(σ1, σ2, ..., σr), and the diagonal entries are sorted in descending order, i.e. σ1 ≥ σ2 ≥ ... ≥ σr > 0,
σi , i = 1, 2, ...r being the singular values withr = rank(Z). Generally, the sum ofσi (wheni is small) accounts for
most of all singular values. For NMF, we need to find matricesW ∈ R

m×p
+ andH ∈ R

p×n
+ and now we will use this

behaviour to choosep, which is the rank of factorization for NMF.
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2.1. Choosing rule

From formula (3), we get the diagonal matrixΣ. At first, we make the sum of all non-zero diagonal entries forΣ,
that issumr = σ1 + σ2 + ... + σr , and then we choose the number of singular values which accounts for 90% of all
non-zero diagonal entries, that issump = σ1 + ... + σp so we obtain the Choosing rule:

sump/sumr < 90% and sump+1/sumr ≥ 90%, (5)

This is meaningful because the non-zero entries ofΣ are the square root of non-negative eigenvalues of matrixZZ∗,
then we can get thatr ≤ min{m, n}, wherem, n are the number of rows and columns of matrixZ, respectively. After
extracting 90% energy by the rule (5), we can obtainp≪ r. Here we give the MATLAB code of Choosing Rule:

function [u s v p]=ChoosingR(Z)

[u,s,v] = svd(Z);

sum1= sum(s);

sum2=sum(sum1);

extract=0;

p = 0;

dsum=0;

while(extract/sum2<0.90)

p = p + 1;

dsum=dsum+s(p,p);

extract=dsum;

end

end

Table 1 gives us two groups of rankp for different image matrices using Choosing Rule. These ten images derive
from ORL [4] and YALE [5] database, respectively. ORL face database has 10 different images of each of 40 distinct
subjects and the size of each image is 92×112. YALE face database contains 165 gray-scale images of 15individuals.
There are 11 images per subject and the pixels of each image are 100× 100. We chose 5 images of the first subject on
ORL database and another 5 images on YALE database. We can seethat both ofp1 andp2 satisfy the basic rule (1),
actually in most cases,p satisfies the basic rule (1) under Choosing Rule (5).

Table 1: Rankp of factorization for different facial images. The first row is 5 images for the first subject on ORL database and the second row is
the same as first row on YALE database

p1 35 26 35 34 37
p2 45 47 46 42 45

2.2. SVD based initialization: SVD-NMF

In this paper,p in numerical experiments are chosen by Choosing Rule (5), which is introduced in Subsection 2.1.
As we mentioned good initialization can make convergence fast and get low cost of computational process. NNDSVD
uses singular triplets of SVD twice to initialize matricesWm,p andHp,n for NMF. Our new method SVD-NMF only
uses SVD once to obtain the singular triplets ofZm,n.

For analyzing the Bound Optimization problem (2), we need EckartYoung Theorem [18]

Lemma 1. Let V ∈ Rm×n be a singular value decomposition

V = PΣQT , Σ = diag(σ1, σ2, ..., σn) ∈ Rm,n,
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whereσ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 are the singular values of V and P∈ Rm,mandQ∈ Rn,n are orthogonal matrices. Then
for 1 ≤ r ≤ n, the matrix

Br = Pdiag(σ1, σ2, ..., σr , 0, ..., 0
︸ ︷︷ ︸

n−r

)QT (6)

is a global minimizer of the optimization problem

min{ ‖V − B‖2F |B ∈ Rm,n
, rank(B) ≤ r} (7)

with the corresponding minimum valueΣn
i=r+1σ

2. Moreover, ifσr > σr+1, then Br is the unique global minimizer.

From Lemma 1 we can easily use non-negative matrixZm,n to convert matrixV, then we can get that if there
exists a matrixBr that has the form (6), the bound optimization problem (2) canfind the global minimizerBr . We can
compute the SVD of non-negative matrixZm,n and we obtain the singular triplets ofZm,n: Um,m,Sm,n,Vn,n. Therefore
we want to find a unique matrixBr such that:Br = Udiag(σ1, σ2, ..., σr , 0, ..., 0

︸ ︷︷ ︸

n−r

)VT . We can easily verify that:

Br = Udiag(σ1, σ2, ..., σr , 0, ..., 0
︸ ︷︷ ︸

n−r

)VT
= U

′

Σ
′

VT
= B

′

p (8)

where

U
′

=





u11 u12 · · · u1p

u21 u22 · · · u2p
...

...
. . .

...

um1 um2 · · · ump





(9)

and

Σ
′

=





σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · σp · · · 0





, (10)

U
′

∈ Rm,p andΣ
′

∈ Rp,n. Then the matrixB
′

p is the solution of the bound optimization problem (2). We caninstantly
obtain thatWH = B

′

p which is the solution of (2) that we want to obtain. However, the entries of singular vectors of
SVD can be negative, we cannot directly use matrices (9) and (10) to initializeW andH. We set the negative elements
of matrix U

′

as the absolute values of themselves, then we get|U
′

|, where|.| indicates that all entries ofU
′

are their
absolute values. And we make all the negative entries ofΣ

′

VT as their absolute values. Then we get matrix|Σ
′

VT |.
We get the initialization formulas ofW, H:

W0 = |U
′

|, H0 = |Σ
′

VT |

thenW0H0 ≈ B
′

r . We use MATLAB to compile SVD-NMF to fulfil the initialization of NMF algorithms. It is the
following code:

m = size(A,1);

[u s v p] = ChoosingR(A);

W = abs(u(:,1:p));

H = abs(s(1:p,:)*v’);

From this code we can see that SVD-NMF only computes the singular triplets of original matrix once, hence it is
very simple and it can be used the initialization step for anyNMF algorithms. Moreover we can get more stable results
of factorization after applying SVD-NMF. For analysing ourmethod SVD-NMF, we combine the initialization step
with the algorithms: MM and local non-negative matrix factorization (LNMF) (see [19]). We must note that LNMF
is based on another object function KullbackLeibler divergenceD ( Z ‖ WH ) in [6, 7].

In the paper [7], the rules of MM algorithm can be expressed asthe following form:
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H ← H. ∗ ((WTA)./(WTWH))
W←W. ∗ ((AHT)./(WHHT))

and the updated iterative rules of LNMF in paper [19] has the following form:

H ←
√

H. ∗ (WT ∗ (A./(WH)))
W←W. ∗ ((AHT)./(WHHT))

We also can apply SVD-NMF to other well known NMF algorithms,such as PNMF in paper [13]. In this paper we
do not do that. In next Section 3, we will give some numerical results to show error, the number of iteration and the
factorization rank for SVD-NMF, NNDSVD and RnadomNMF, which choose rankp randomly. And the error in this
paper we used as the following form:

‖Z−WH‖F
‖Z‖F

3. Numerical experiments

In this section, we will show numerical results on two facialdatabases: ORL and YALE which are already intro-
duced in Subsection 2.1 and two images that are included in MATLAB database. One is football.jpg and another one
is kids.tif. The former image has 256× 320 pixels, while the latter image has 318× 400 pixels.

3.1. Numerical results for MM algorithm

Table 2 and Table 3 show the errors after using three methods for MM algorithm: SVD-NMF, NNDSVD and
RandomNMF. There are 5 images of the first subject on ORL face database and YALE database, respectively, and the
number of iterations is 100. We can see that among the three methods SVD-NMF always has the smallest error. This
means that SVD-NMF can reach the convergent direction in less iterations than other two methods. We must note that
the results of RandomNMF can not be stable. Because the initialization of matricesW andH are chosen randomly,
the results can be different at every experiments. Sometimes NNDSVD is worse than RandomNMF.

Table 2: The Errors of five image matrices of the first subject on ORL face database by MM algorithms, the number of iterations is 100.

p 35 26 35 34 37
SVD-NMF 0.1015 0.0931 0.1039 0.1061 0.1041
NNDSVD 0.1149 0.0965 0.1132 0.1084 0.1203

RandomNMF 0.1215 0.1098 0.1207 0.1173 0.1178

Table 3: The Errors of five image matrices of the first subject on YALE face database by MM algorithms, the number of iteration is 100.

p 45 47 46 42 45
SVD-NMF 0.1329 0.1440 0.1500 0.1399 0.1309
NNDSVD 0.1319 0.1466 0.1617 0.1460 0.1349

RandomNMF 0.1360 0.1419 0.1529 0.1430 0.1345

Table 4 and 5 show the errors of the same image matrices as Table 2 and 3. We set iteration number equal to 300.
In this case, we can see that SVD-NMF still preserves goodness in having small errors. But there are some exceptions:
the second and fourth object in Table 4 and the last objects inTable 5. This means that in some cases, NNDSVD has
faster convergence than SVD-NMF, but the difference between them is very small. In most cases, SVD-NMF has
smaller error and faster convergence than NNDSVD in MM algorithm for NMF.
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Table 4: Errors of 5 image matrices of the first subject on ORL face database by MM algorithms, the number of iteration is 300.

p 35 26 35 34 37
SVD-NMF 0.0801 0.0756 0.0819 0.0870 0.0853
NNDSVD 0.0899 0.0749 0.0888 0.0868 0.0951

RandomNMF 0.0948 0.0712 0.0945 0.0900 0.0918

Table 5: Errors of 5 image matrices of the first subject on YALEface database by MM algorithms, the number of iteration is 300.

p 45 47 46 42 45
SVD-NMF 0.1075 0.1234 0.1293 0.1210 0.1116
NNDSVD 0.1123 0.1248 0.1404 0.1219 0.1100

RandomNMF 0.1104 0.1259 0.1317 0.1219 0.1116

Figure 1 gives us the reconstruction images using the factorization of SVD-NMF, NNDSVD and RandomNMF
for the ten image matrices on ORL and YALE face database, respectively, as we mentioned before. In this case, the
iteration number is 100. Because faces on YALE database withmore different expressions: happy, sad, normal, sleepy
or wink than that of ORL database, therefore the reconstructresults of YALE are a little bit of worse than that of ORL.
It deduces that it is more difficult to fulfil face recognition on YALE database than ORL.

Now we use two cases to compare the differences at different iterations of SVD-NMF, NNDSVD and Random-
NMF for MM algorithm. The first case is to factorize image football.ipg using these methods. We compute the rank
p of factorization is 78. And the second data if from image kids.tif, which the factorization rankp is 140. Figure 2
still shows that SVD-NMF has faster convergence than another two methods in MM algorithm for NMF.

3.2. Numerical results for LNMF algorithm

In this section, we will evaluate the properties of SVD-NMF,NNDSVD and RandomNMF methods for LNMF
algorithm. Tables 6 and 7 show the errors of 5 image matrices for second subject on ORL and YALE face database,
respectively at 100 iterations. There is the same situationas in Tables 2 and 3, that is in most cases SVD-NMF has
smaller errors and faster convergence than other methods. After 300 iterations, Tables 8 and 9 give us the same results.
From these four tables, we know that SVD-NMF always preserves fast convergence for LNMF on the second subject
image matrices of ORL face database and, in some cases, NNDSVD has faster convergence on YALE database when
the number of iterations is relatively large.

Table 6: Errors of 5 image matrices of the second subject on ORL face database by LNMF algorithms, the number of iterationsis 100.

p 51 52 52 52 51
SVD-NMF 0.3955 0.3888 0.3884 0.3905 0.3980
NNDSVD 0.3947 0.3947 0.3913 0.3897 0.4009

RandomNMF 0.4160 0.4084 0.4030 0.4050 0.4228

Figure 3 is the reconstruction of the second subjects on ORL and YALE face database. Each subject has 5 images
with different expressions, light or other factors. These reconstruct images in Figure 3 have those more details than
that of in Figure 1. This holds because LNMF can impose the local information of the whole face. Images have
significant contrasting in (b) of Figure 3 because the first image is affected by lightness whereas others do not have it.

As we introduced in Section 1, NMF has a lot of applications. Good initialization will bring good factorization,
then NMF can be applied well for many fields. SVD-NMF as a new method to impose initialization step of NMF is
proposed in this paper. It has some goodness: i) it can be easily combined with other NMF algorithms to enhance the

6



(a) ORL

(b) YALE

Figure 1: The reconstruction of two face databases. The firstrow using SVD-NMF, second row using NNDSVD and the last row using Random-
NMF for MM algorithm.
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Figure 2: The reconstruction of two face databases.

Table 7: Errors of 5 image matrices of the second subject on YALE face database by LNMF algorithms, the number of iterationis 100.

p 42 35 31 35 34
SVD-NMF 0.3934 0.4075 0.4424 0.4140 0.4381
NNDSVD 0.4005 0.4064 0.4471 0.4164 0.4438

RandomNMF 0.4054 0.4139 0.4472 0.4190 0.4436

initialization; ii) the computational cost is cheap because we only compute the singular triplets once; iii) it is can reach
fast convergence; iv) it is simple and can be satisfied easily. But we still need some other strategy to deal with the
negative entries of singular triplets. When we made experiences, we found that if we change the negative elements we
can get better or worse results. Hence, how to implement the negative entries rather than replace them by the absolute
values is the next step that we should do.
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(a) ORL

(b) YALE

Figure 3: The reconstruction of two face databases and the first row using SVD-NMF, second row using NNDSVD and the last rowusing Random-
NMF for LNMF algorithm.
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