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Object detection is a fundamental task of computer vision that is utilized as a core part in
a number of industrial and scientific applications, for example, in robotics, where objects
need to be correctly detected and localized prior to being grasped and manipulated.
Existing object detectors vary in (i) the amount of supervision they need for training,
(ii) the type of a learning method adopted (generative or discriminative) and (iii) the
amount of spatial information used in the object model (model-free, using no spatial
information in the object model, or model-based, with the explicit spatial model of an
object). Although some existing methods report good performance in the detection of
certain objects, the results tend to be application specific and no universal method has
been found that clearly outperforms all others in all areas.

This work proposes a novel generative part-based object detector. The generative learn-
ing procedure of the developed method allows learning from positive examples only.
The detector is based on finding semantically meaningful parts of the object (i.e. a
part detector) that can provide additional information to object location, for example,
pose. The object class model, i.e. the appearance of the object parts and their spatial
variance, constellation, is explicitly modelled in a fully probabilistic manner. The ap-
pearance is based on bio-inspired complex-valued Gabor features that are transformed to
part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed
novel randomized GMM enables learning from only a few training examples. The prob-
abilistic spatial model of the part configurations is constructed with a mixture of 2D
Gaussians. The appearance of the parts of the object is learned in an object canonical
space that removes geometric variations from the part appearance model. Robustness
to pose variations is achieved by object pose quantization, which is more efficient than
previously used scale and orientation shifts in the Gabor feature space. Performance of
the resulting generative object detector is characterized by high recall with low precision,
i.e. the generative detector produces large number of false positive detections. Thus a
discriminative classifier is used to prune false positive candidate detections produced by
the generative detector improving its precision while keeping high recall. Using only a



small number of positive examples, the developed object detector performs comparably
to state-of-the-art discriminative methods.

Keywords: generative learning, part detector, part-based object class detector, Gabor
features, Gaussian mixture model, hybrid generative-discriminative detec-
tor



SYMBOLS AND ABBREVIATIONS

BoW Bag of Words

CNN Convolutional Neural Network

D Discriminative

DF Deep Features

DNN Deep Neural Network

DPM Deformable Part-Based Model

DOD Discriminative Object Detector
DoG Difference of Gaussians

EER Equal Error Rate

EM Expectation Maximization

G Generative

GEM Greedy Expectation Maximization
GMM Gaussian Mixture Model

GOD Generative Object Detector

G-DOD Discriminative Object Detector in generative mode
HOG Histogram of Oriented Gradients

P Interest Point

LBP Local Binary Pattern

pdf Probability Density Function

RGB Red Green Blue color space

ROC Receiver Operating Characteristic
SIFT Scale Invariant Feature Transform
WHO Whitened Histogram of Orientations
a vector

A matrix

AH conjugate (Hermitian) transpose of A
I(z,y) intensity image

D(z,y,0)  Difference of Gaussians

I; integral image

s(x,y) cumulative row sum

P crossing point between adjacent Gabor filters

k scaling factor for Gabor filter frequencies in a bank
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¥(z,y)
U (u,v)
r(z,y, f,0)
N(z, p, %)

Gabor filter sharpness along the major axis

Gabor filter sharpness along the minor axis

number of filters with different frequencies in a bank
number of filters with different orientations in a bank
highest central frequency of a Gabor filter in a bank
orientation of a Gabor filter

Gabor filter in a spatial domain

Gabor filter in a frequency domain

Gabor response for I(x,y)

multidimensional Gaussian distribution

feature matrix of Gabor responses

multiresolution Gabor feature vector

joint probability of random variables  and y

conditional probability of random variables = given y



CONTENTS

1 Introduction 11
1.1 Motivation . . . . . . . . . e e e e e e e 11
1.2 Author’s Contribution . . . . . . . . . . . .. . ... 13
1.3 Outline of the Thesis . . . . . . . . . . . . . ... ... . ... ... ... 14

2 Literature Review 17
2.1 Object Detection Pipeline . . . . . ... ... ... . ... 0. 17
2.2 Challenges of Object Detection . . . . . . ... ... ... .. ... ... 19
2.3 Object Detection Datasets . . . . . . . . .. . ... ... ... ... ... 23
2.4 Features for Object Detection . . . . . . . .. ... ... ... ... .... 25

2.4.1 Global Features . . . . . . . . . . . . . . . ... 26
2.4.2 Local Features . . . . . . . . ... .. ... ... ... 26
2.5 Object Representation . . . . . ... .. ... ... . 31
2.5.1 Model-free vs. Model-based . . . . . ... ... ... . ....... 31
2.5.2  Generative vs. Discriminative . . . . . . . ... .. ... ... ... 32
253 Examples . . . .. ..o 33
2.6 Summary . . ... e e e 36

3 Gabor Local Part Detector 38

3.1 Gabor Features . . . . . . . . . . . ... 38
3.1.1 Multi-resolution Gabor Features . . . .. .. ... .. ....... 39
3.1.2 Gabor Feature Properties . . . . . . .. .. ... ... ... .. 41
3.1.3 Parameter Selection . . . . . ... .. ... ... ... 42

3.2 Spatial Alignment . . . ... ... oL 43

3.3 Appearance Model for Object Parts . . . . . .. ... ... ... ..... 45
3.3.1 Gaussian Mixture Model (GMM) . . . . ... ... ... .. .... 45
3.3.2 Randomized GMM . . . . . . . .. ... ... 46

3.4 Experiments. . . . . . . .. 49
3.4.1 Data and Parameter Settings . . . . .. ... ... ... ... ... 49
3.4.2 Performance Evaluation . . . .. .. ... .. ... ......... 49
3.4.3 Visual Class Landmarks (Caltech/ImageNet) Detection . . . . . . 50
3.4.4 BiolD Facial Landmarks Detection . . . . . ... ... ... .... 54

3.5 SUMMATY . . . . . e 55

4 Part-Based Gabor Object Detector 57
4.1 Object Pose Clustering . . . . . . . . . . . . . .. ... 58
4.2 Constellation Model . . . . . . . ... .. ... 59
4.3 Object Detection by Search . . . . . ... ... ... ... ... ... 60
4.4 Detection Score Formulation. . . . . . .. .. ... .. ... ... ..... 61
4.5 Experiments. . . . . . . ... e 62

4.5.1 Data . . . . .. e 62
4.5.2 Performance Measures . . . . . . . . . . . . ... ... ... 63
4.5.3 Caltech-4 Object Classification . . . . . .. .. .. ... ... ... 64

4.5.4 Caltech-101 with Manually Annotated Landmarks . . . . ... .. 65



4.5.5 Caltech-101 with Automatically Generated Landmarks . . . . . . .
4.5.6 ImageNet Object Class Detection . . . . . . . ... ... ... ...
4.5.7 Making the DPM [55] Fail . . . . . . ... ... ... ... ....
4.6 Summary . . ... ..o e

5 Advanced Processing for Object Detection
5.1 Hybrid Generative-Discriminative Method . . . . . . . .. . ... ... ..
5.1.1 Discriminative Learning . . . . . . . .. .. ... ... L.
5.1.2  Generative-Discriminative Hybrid . . . . . .. ... ... ... ..
5.1.3 Experiments . . . . . . .. ...
5.2 Supervised Class Color Normalization . . . ... ... ... .. ......
5.2.1 Estimation of Canonical Object Color Space . . . ... ... ...
5.2.2 Experiments . . . .. ... Lo
5.3 Summary ... ... e e

6 Conclusions and Future Work
Bibliography
Appendix
I Gabor Local Part Detector Example Images
II Part-Based Gabor Object Detector Example Images
IIT Genertive-Discriminative Hybrid Example Images

IV Supervised Object Class Color Normalisation Example Images

77
7
79
81
82
84
84
86
89

90

93

109

110

112

116



CHAPTER [

Introduction

1.1 Motivation

Computers are used in many areas of human life and are especially successful when
applied to areas demanding heavy computation (e.g. simulation of various processes)
where computers greatly outperform humans. The central role played by information
technology in modern life has naturally led to a desire to equip computers with the
ability to see and understand the perceived information. The ability of vision that most
humans have and use every day effortlessly, has turned out to be a challenging task for
computers. People can recognize objects regardless of their viewpoint, the position of
the object in the image or the viewing conditions (fog, shadow, etc.) without particular
effort, but machines tend to have problems even in relatively controlled conditions. The
main challenges facing computer vision can be categorized based on their source. One
challenge comes from the camera: sensor noise and lens distortions. Another major
challenge relates to the fact that in machine vision a 3D scene is captured in 2D losing
information in the process and producing problems related to viewpoint and occlusions.
External factors, such as lighting or background clutter, also have a strong influence
on the performance of computer vision systems. However, variation of an object class
appearance from image to image (object class detection) or single object from view to
view (single object detection) is one of the most influential factors in solving vision tasks.
Hence a good automated vision system should be computationally efficient and general
enough to capture natural appearance variation of an object or a class of objects but
discriminative enough not to confuse it with either the background or other objects.

The ultimate goal of computer vision is scene understanding with close to human per-
ception (Figure 1.1). For example, given an image of a scene an automatic system should
be able to determine the classes of the objects present in the image, their locations and
properties (color, sitting/standing/walking, frontal/side/rear view etc).

Even though the final goal of computer vision is general scene understanding, machine
vision approaches have generally broken the task into parts. For example, some methods
provide information about which objects are in the image (classification task) [97, 103]

11
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@ driving a motorbike

B

N

Figure 1.1: An example of scene understanding.

and are not interested in the exact locations, whereas others define objects’ locations
with tight bounding boxes (detection task) [78, 55, 140] or by labelling pixels belonging
to the object (segmentation task) [117, 11, 92]. Computer vision methods also differ
by the required amount of supervision, i.e., how much of additional data is provided
during training. In unsupervised approaches only a set of images is given to the system
as an input [31], semi-supervised approaches also provide labels, together with training
images [56], and supervised methods utilize object locations in the form of bounding
boxes or segmentation masks as additional input [55, 140, 106].

The task of arbitrary visual class detection is far from being solved, but certain tasks
of object detection in restricted conditions are almost solved. For example, face detec-
tion implemented in modern cameras [177] enables the camera to focus on human faces
and sometimes even take a picture at the moment a person is smiling. Pedestrian de-
tection [66, 6] has been implemented in some top-of-the-line cars to prevent accidents
involving pedestrians.

A number of different object detection methods exist: part-based [56, 183, 51], model-
free [13, 44, 158|, generative [34, 50, 186] and discriminative [55, 157, 1]. These approaches
have their advantages and disadvantages, and there is no one superior method capable
of overcoming all the computer vision challenges. Recently discriminative methods have
been the subject of great research interest [39, 55|, especially with the development of
methods based on neural networks [97, 69]. However, generative detectors can learn
object representation without negative examples, which seems a more natural way of
learning. Thus, this work focuses on building an efficient general object class detector
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that searches for predefined objects in given images and produces their locations. In the
proposed generative part-based object detection algorithm, both bounding boxes contain-
ing the whole object and manually-labelled object parts are used to train the detection
model. Therefore, the developed part-based detector employs both local discriminative
appearance of parts and their spatial arrangement.

1.2 Author’s Contribution

The developed methods are reported in four peer-reviewed conference papers: Publication
I [141], Publication II [140], Publication III [142] and Publication IV [143], and one
journal article [139].

Publication I introduces a part detector where the object parts are modelled with
biologically inspired Gabor features [65], which have been successfully used in many
vision applications [41, 74, 192]. To exclude the effect of geometric distortions on the
object part appearance, all training images are aligned to the same frame, "mean object
space", prior to feature extraction. Images are aligned using similarity transformation
matching their parts’ locations. In order to reduce the dimensionality of the features and
provide a specifically optimized descriptor for each object part, a randomized Gaussian
mixture model is employed in forming the appearance model.

Test Imageg

Train Images

i

Gaussian
Mixture Model

L

Gabor features +
Randomised GMM

pmmE -

Figure 1.2: Workflow of the developed generative part-based object class detec-
tor.

Publication II is devoted to development of a generative part-based object class detector
(Figure 1.2) with a fully probabilistic model. The detector uses privileged information in
the form of manually annotated object parts with semantic meaning (the part detector
from Publication I) and is thus a strongly-supervised method. The mean object space,
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introduced in Publication I, is also used in the object detector. In this mean space the
object’s spatial structure becomes undistorted (Figure 1.2: Constellation model block)
and is modelled along with the relative locations of the bounding box corners by the
Gaussian mixture model. The final object model is robust to occlusions and can provide
information about object pose in the image.

During testing, the object appearance model produces likelihood maps, which are then
sampled for global maxima, candidate locations of object parts, with a consecutive sup-
pression procedure. The final step of the object detection is the search for a feasible
object hypothesis (the required number of hypotheses can be predetermined) when can-
didate locations are pruned using a constellation model and prior information about data
statistics. As the developed detector is generative and based on likelihood scores rather
than probabilities it produces a lot of false positive detections (i.e. has low precision
with high recall). Therefore in Publication III false positive detections are re-scored
and further pruned by the state-of-the-art discriminative object classifiers.

Publication IV investigates a color normalization procedure based on part-based object
alignment in the color space, i.e. annotated object color regions represented as 3D points
in the RGB space are aligned to form tight clusters. Consequently, objects from the same
class obtain similar photometric appearance. This normalization procedure makes color
a more stable cue, increasing its value for visual class detection tasks.

The journal article introduces an interesting property of modern datasets, the quantised
poses in which the objects appear in the images. This property is caused by the laws
of physics and common sense, e.g. trees, doors, buildings are vertically oriented while
vehicles moving on or parallel to the ground are generally horisontally oriented and thus
most of the objects occur in images in their usual orientation.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 presents some of the most common problems of computer vision, followed by
an overview of various image databases. Chapter 2 also introduces popular image features
and generative and discriminative approaches to object detection and classification.

Chapter 3 describes a generative part detector based on Gabor features and a Gaussian
mixture model. An extensive description of Gabor features is given in the chapter as well
as a novel randomization procedure, a randomized Gaussian mixture model that allows
learning of the appearance model of the object parts with fewer training samples.

Chapter 4 introduces a part-based object class detector based on the part detector from
Chapter 3. This chapter also presents incorporation of prior knowledge, such as the
object spatial structure in the training images, object pose and bounding box statistics,
into the object detection pipeline.

Chapter 5 develops a generative-discriminative hybrid approach to object detection and
classification. The hybrid method uses the strengths of both generative and discrimina-
tive methods by applying them consecutively, which solves the problem of excessive false
positives from the generative detector but still allows learning from positive examples.
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True and false positive detections of the generative method are used as positive and neg-
ative examples in training of the discriminative method. Chapter 5 also introduces an
object class specific color normalization procedure that increases photometric consistency
of the images in a class by aligning class specific colors in a 3D RGB space.
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CHAPTER 11

Literature Review

One of the key problems of computer vision is the need for invariant object class and
location predictions. Predictions should be invariant to different types of input image
transformations, such as changes in object pose and its non-rigid transformations: trans-
lation and changes in orientation and scale of an object; changes in viewpoint; variations
in nature, intensity and position of a lighting source. Another challenge is to recognize
objects even if they are occluded. In many cases, local features, i.e. features obtained
from image patches, provide a solution to these problems. This chapter describes the
most common challenges, features and approaches to object detection. Evolution of the
datasets widely used in visual class detection is also presented.

2.1 Object Detection Pipeline

Before presenting the object detection pipeline, the term object detection should be
defined. While a classification method produces only a class label for an unseen image,
a detection method assigns a label to a certain area in the image, related to the object’s
location. Potentially, object detection can also give information about an object’s pose
in the image, in addition to its location, achieving a deeper level of scene understanding.

Dataset Image | Representation
collection preprocessing and description

Y

\ 4

Y

Recognition Evaluation

Figure 2.1: A general object detection pipeline.

Figure 2.1 presents a general pipeline followed in object detection. At the beginning of
the process data is collected into a dataset like the UIUC car dataset [2], Caltech-101 [51]
or ImageNet [148]. Depending on the application, images are either taken by researchers
or collected from various internet resources, e.g. Flickr or Google Images. The images are
then provided with the required ground truth annotations. Traditionally, object detection

17
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annotations include class labels and tight bounding boxes, defining object location in the
images, for all images in the dataset. Evolution of object detection datasets is investigated
in Section 2.3.

Dataset collection can be followed by image preprocessing. The goal of preprocessing is
image enhancement. The most common preprocessing steps are related to de-noising,
changes in contrast and lighting or color normalization. For example, color information
is an important cue in object detection and especially segmentation. However, color
variation even of the same object from image to image can be rather large (Figure 2.2
left). Preprocessing in the form of color normalization [143| can eliminate this undesirable
variation in the object’s appearance (Figure 2.2 right).
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Figure 2.2: Original Caltech-101 faces (left) and after part-based color normal-
ization [143] (right).

The main part of the pipeline, related to object appearance learning, is called "Repre-
sentation and description". A large variety of approaches exist for object representation
and description. For example, in the majority of object detection methods the objects
are described with visual features that are defined explicitly (SIFT [115], HOG [39]) or
implicitly (deep features [97]) (see Section 2.4 for more details); however, in template
matching feature extraction is not needed. Depending on the type of an object some
features are more suitable than the others. For example, in modelling a cup the main fo-
cus should be on its shape, better described with edge features, but modelling an animal
like a leopard is better done using textural features. Object representation methods can
be divided into two groups based on the use of spatial information in the object model
formulation, i.e. model-free (BOW [159], CNN [97]) and model-based (DPM [55]) meth-
ods. Another way to categorize object representation methods is based on the nature of
object model learning: generative, modelling the joint distribution of input vectors and
class labels, or discriminative, defining only a decision boundary between true-class and
not-true-class distributions. Object representation is discussed in Section 2.5.
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Recognition in object detection is based on scores associated with a certain class label
and object location. For each unseen (test) image the detection system should produce a
bounding box, defining the object’s position in the image, with a corresponding class label
and detection score. In some cases, location and/or score can be changed during post-
processing based on prior information, e.g. updating of the location of the bounding box
corners relative to the locations of the object parts or re-scoring based on co-occurrence
of classes in the training set [55].

The success of any object detection method is measured with performance evaluation
metrics. Object detection competitions, such as Pascal VOC [46] and ILSVRC [149],
have established common evaluation procedure based on precision-recall curves. During
evaluation double detections as well as detections with wrong localization are penalized.
An object is considered to be found correctly if its overlap ratio A is greater than 0.5,
i.e. A= BBy (\BBprei/BBgi\JBBprea > 0.5, where BBy, is a groundtruth bounding
box and BB,.q is a predicted box. Detection performance of a method for a class is
evaluated based on averaged precision calculated over 11 uniformly distributed levels of
recall.

2.2 Challenges of Object Detection

The ultimate goal of object detection is to reach human capability of recognition across
thousands of object categories. Fundamentally, image acquisition is a lossy process as a
3D scene is projected onto a 2D image plane. From this incomplete data, a detection
system should be able to detect an object in the image. Therefore, detection systems are
required to be robust to:

e Large intra-class variation, for example, the presence of undefined subclasses (Fig-
ure 2.3).

The definition of the class is vague, as it is often defined by the object’s function
rather than its appearance. For example, different types of airplanes share the main
function, flying, and construction concept, i.e., wings, engine, fuselage. However
each of the construction elements might have a different appearance and relative
position, producing intra-class variation of appearance.

e Viewpoint changes, which can drastically affect an object’s appearance (Figure 2.4).

Large viewpoint changes might reveal object structures that have not been seen
previously due to self-occlusion. Moreover, different views of the same object may
not share appearance similarity with each other, e.g. front and side views of a car.

e Deformation of non-rigid objects from image to image (Figure 2.5).

The majority of objects in the human environment are strictly non-rigid, i.e. the
doors of a car can be opened, the hands of a clock can point to different time,
humans and animals can take different poses, thus there is a vast number of possible
appearance combinations.

e Occlusion, self-occlusion or truncation, depending on the object’s pose and the
viewpoint (Figure 2.6).
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Figure 2.3: Different subclasses from the category airplanes of Caltech-101 [51]
dataset. Each subclass can be divided into further sub-classes, e.g. engine types
and shape of passenger airplanes (top row), variation in wings and placement
of propellers in retro airplanes (middle row), finally, military planes have very
specific appearance depending on their purpose (bottom row).

Figure 2.4: Airplanes from ImageNet [148] dataset sown from different view-
points. Even though images represent similar types of airplane (a rigid object), the
object’s appearance varies considerably from image to image due to 3D changes
in the viewpoint.

The main causes of occlusion, self-occlusion or truncation are changes in the ob-
ject’s pose or configuration, the viewpoint or from zooming, which often occurs in
uncontrolled conditions of natural images.

e [llumination variation, which can bring undesired variability into the object ap-
pearance representation (Figure 2.7).
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Figure 2.5: Snails and people from the ImageNet [148] database representing
various object deformations.

Figure 2.6: Examples of truncation, occlusion and self-occlusion (only one eye
of an owl is visible) shown from left to right on the ImageNet [148] owls.

Figure 2.7: Effect of lighting conditions. In the first image the object is a bright
spot on a dark background, whereas on the second picture a dark object is seen
on a light background. In the last image the difference in contrast between the
background and the object is very small.
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Figure 2.8: Cars category from the ImageNet [148] dataset. The grndtruth7
tight bounding boxes, is shown as red rectangles. It can be seen that both with and
without the presence of a big object in the foreground small objects are difficult
to notice.

e Changes in scale, which play an important role in object detection. For example, it
is easier to detect a dominant (occupying a big portion of the image) object rather
than a non-dominant tiny object (Figure 2.8).

Another group of challenges are caused by the data used in experiments. Firstly, require-
ments for the amount of training data and appropriate annotations should be fulfilled for
a chosen method; however, having large amounts of human annotated images or negative
examples might be infeasible. There is also a problem of subjective and /or incomplete an-
notations (Figure 2.9); what one user calls a car, another user would define with the label
"minivan" or "Mercedes". Finally, the assumption used by all machine learning methods
that training data represent fully all possible object appearance variations occurring in
the test data is rarely checked and not necessarily true.

Figure 2.9: Examples of inconsistent groundtruth (bounding boxes and class
labels). Some of the players (blue boxes) and cars (red boxes) in the leftmost
image are annotated, while some other are not. The shoulder bag shown in the
middle image has a label "backpack". The groom in the picture on the right is
marked as a person but the bride is not. Images are taken from the ImageNet [148]
dataset.

Another assumption used by model-based methods, namely that non-rigid objects can
be represented with a set of rigid parts grouped together by non-rigid connections, is
not always applicable. For example, cats are very flexible animals, thus attempts to
describe them with a standard constellation model would fail. Most successful methods
for detecting highly deformable objects use an object spatial model to locate a rigid part
of an object, such as cat’s face, combined with model-free methods like segmentation [131]
or Bag-of-Words [132] for final object localization.
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2.3 Object Detection Datasets

Data play an important role in object detection and classification tasks. Different de-
tection and classification approaches have developed in conjunction with changes in the
available datasets. Methods for detection of a single object based on a template match-
ing [146], have been extended to single object detection in 3D [58, 114, 116] and then to
object category detection [56, 15]. Datasets have gradually been extended in terms of
complexity in object appearance: pose variation has become more complex (from 2D to
3D changes), multiple instances appear in images and occluded and truncated objects oc-
cur more often. Rapid development of internet resources, e.g. crowd sourcing, have made
it possible to collect and annotate millions of images (LabelMe [151], ImageNet [148],
Microsoft COCO [111]). The increase in the amount of images, data diversity and vast
additional information (annotations) have stimulated development of completely new ap-
proaches to image classification and visual class detection that have not been possible
before (e.g. Neural Networks [97]). Examples of images from different databases are
presented in the Figure 2.10.

Figure 2.10: Images from UIUC car [2], INRIA person [40], Pascal VOC [48]
and ImageNet [148] databases with example detections by different state-of-the-
art methods.

The first generation of datasets was often gathered by members of a single group for
a specific task, therefore many early datasets have only a small number of categories,
e.g. MIT CBCL: faces [7], cars [130], pedestrians [128] or INRIA person [40], Caltech-
4 [56] and UIUC car dataset [2]. Images in these datasets were often of poor quality,
pre-scaled and centred, and sometimes histogram normalization was also performed. The
objects in the datasets appeared with small variations in their appearance. Detection
tasks for such datasets were almost perfectly solved already in the early stages of object
detection algorithm development ([122, 106, 56, 40]). At that time, generative part-
based models [34, 56] were competing with Bag-of-Word detectors (BoW) [159]. The
generative models described the appearance of local parts and tolerated their spatial
distortion, whereas the visual Bag-of-Words approaches omitted the spatial structure
of object parts and described the classes via their local part histograms. With the
help of strong discriminative learning methods, the BoW approach obtained the greater
accuracy [18] on second generation datasets such as Caltech-101 [51].

The Clatech-101 dataset consists of a diverse set of image categories (100 objects and
a background category). Each category contains from 40 to 800 images, though most
of the categories are represented with approximately 50 images. Each image has only
one object, and the objects are cropped and placed in the middle of the image. They
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are also rotated to appear in the same pose, i.e. 3D pose variation is almost completely
excluded. Nevertheless, there is great variability between images within each category,
intra-class variability, e.g. part of the images are natural while others are drawings, or
in some categories (e.g. chairs) images are grouped based on their functionality rather
than appearance (see Figure 2.11). The big variety of categories in one dataset has stim-
ulated the popularity of classification task development. Despite difficulties in modelling
classes with high intra-class variability from a small number of training examples (30
training images), already in 2005 48% classification accuracy was achieved [14], which in
2006 improved to 66% [195] and in 2009 a 84.8% accuracy was demonstrated by Yang
et al. [190]. However, deep neural networks, which show excellent results on big data
problems, do not have record-breaking performance with small datasets like Caltech 101,
achieving 87% classification accuracy [200] in 2014.

T ———

Figure 2.11: Examples of chair category in Caltech 101 with annotated
groundtruth (bounding boxes).

In [134] the authors point out some disadvantages of Caltech-101 and earlier datasets,
stating that the images are not challenging enough due to the similar viewpoint and
orientation of objects within one category, the position of the objects in the images
(which tend to be centred), the presence of only one instance per image, and little or no
occlusion or background clutter. Some of these issues were resolved in the Caltech-101
extension Caltech-256 [73], containing many of the Caltech-101 old categories. Along
with the increase in number of categories, the average number of images per category
was also significantly increased in Caltech-256. Objects in the images became more
challenging, as more variation in viewpoint was introduced, e.g. mirroring or 3D pose
changes. Additionally, the quality of the images improved due to higher resolution.

The Pascal VOC challenge [48], presenting a third generation dataset, was initiated in
2005 to boost the development of sophisticated methods to solve different computer
vision tasks. Pascal VOC included classification, detection, segmentation and action
classification challenges, providing researchers from all over the world with a standard tool
for evaluation of their success and fair comparison to others. The challenge ended in 2012.
New images were added to the dataset each year, and between 2004 and 2012 the total
number of images increased by almost five times, finally containing 20 object categories
in more than 11 000 images [46]. Images in the Pascal VOC challenge represent real-life
scenes with multiple instances of different categories in each image. Here, objects are
shown with a lot of variation in scale, rotation and viewpoint. A big portion of objects are
truncated or self-occluded. Most of the categories have very big intra-class variations and
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can be divided into sub-categories either based on the viewpoint or appearance variation.
Results for the detection challenge have progressed over the years at a rather steady pace
thanks to the discriminative part-based approach by Felzenszwalb [55] and methods based
on it, which until 2012 were constantly within the top performers. The Felzenszwalb
method’s accuracy on the Pascal VOC 2007 dataset was 29.1% mean average precision
in 2010, while in 2014 RCNN (trained on the ImageNet dataset[148]) showed a detection
result of 58.5% [69].

Finally, the fourth generation represented by large scale datasets (like ImageNet [148],
COCO [111] or LabelMe [151] ) have emerged. Millions of images and thousands of cat-
egories are now available. The ImageNet dataset is organized as a tree, so it can also be
used for fine-grained classification. ImageNet challenges present 200 categories with 456
567 images for detection and 1000 object categories with 1 431 167 images for classifi-
cation [150]. The structure of the images is simpler than in Pascal VOC (fewer objects
in the image with a smaller number of truncated or occluded objects), but the amount
of data has opened the door to a new, very powerful tool for object classification: deep
neural networks (DNN). Current results for ImageNet are 6.7% error for classification
and 43.9% mean average precision for detection (with an image classification dataset as
extra training data) [163]. The best detection performance based only on provided data
was 37.2% [109]. It is worth noting that a correct classification label is considered among
the 5 top hypotheses what explains the big gap between classification and detection re-
sults. Generative methods have not been successful with ImageNet, even the DPM model
is clearly below the state-of-the-art [163, 69, 197], but other discriminative models still
dominate the field, in particular, deep neural networks [97, 69], which have been shown
to implicitly learn local part detector layers [70].

2.4 Features for Object Detection

Image features have been one of the most popular tools for image representation in object
class detection and classification tasks. Image features can represent the content of either
the whole image, global features, or small parts of the image, i.e. local features. As global
features aim to represent an image as a whole, it means that only a single feature vector
is produced per image and thus a content of two images can be compared by comparing
their feature vectors. On the other hand, to represent an image with local features
usually a set of multiple local features, extracted from different parts of an image, is
used. For local features, feature extraction can often be divided into two parts: feature
detection and description. The main task of a detector is to find a set of stable (invariant)
distinctive regions, while the descriptor encodes information about determined regions
mathematically to enable efficient matching. Compared to global features, local features
are more robust to occlusions and spatial variations: global features describe the image
as a whole, thus traditionally they do not contain information of the spatial structure of
the image and do not provide sufficient information for object localization. Local features
are more stable and their relative locations can encode the spatial structure of objects,
which is used in the part-based approaches to object class detection.
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2.4.1 Global Features

In early stages of computer vision development, global features were widely used to
solve scene classification and single object detection problems. Popular global features
were color histograms and moments, edge orientations, frequency distributions and their
combinations [171, 165, 72, 162, 124].

Color histograms were mostly used in 3D object recognition, where part of the object’s
views was used for training and another part for testing. This approach is mostly ap-
plicable if objects are presented on the uniform background and the lighting conditions
are controlled [162]. To achieve illumination invariance, different color constancy meth-
ods [125, 63] are used as a preprocessing step. In scene classification, color information
is useful to differentiate between landscape images (sunset, mountains, forest). Scenes of
nature tend to have uniform and stable (similar from image to image) color regions like
blue sky, green grass and trees, orange sunset etc. For man-made objects color as a cue
is unstable as the objects can be made in an arbitrary color, e.g. a house can be yellow,
blue or red, a car silver, black or green [171].

Statistics of edge orientations in the image, extracted from texture and frequency fea-
tures, are useful in classifying indoor vs. outdoor and city vs. rural classes of images [165].
Man-made objects, like furniture and buildings, have distinct domination of vertical and
horizontal edges clearly separating them from the nature landscapes with randomly dis-
tributed edge directions. In city scenes, horizontal edges are less stable than vertical ones
because of variation introduced by perspective. In terms of frequency distribution, most
rural images are dominated by high and low frequencies corresponding to high textural
areas, like grass and trees, and low textural areas, like water or sky. In city images middle
range frequencies dominate the images.

The use of global features coupled with the local ones recently found a new application
in generation of category-independent region proposals, e.g. objectness [3, 4]. The ob-
jectness paradigm is based on the following properties of an object: an object in the
image is defined by a closed boundary; an object has a different appearance from its
surroundings; the object stands out as a salient region in the image. The candidate re-
gions (windows) are proposed based on a combination of global and local features: global
multi-scale saliency, color contrast (measure of dissimilarity of the proposed window and
its surroundings), density of edges near to the window borders, and superpixel strad-
dling (images are segmented into regions with uniform texture or color, superpixels; the
window containing connected segments inside of a tight window scores highest).

2.4.2 Local Features
EDGE FEATURES

Scale Invariant Feature Transform (SIFT) was proposed by Lowe in 1999 [114], and a
more stable version was subsequently presented in 2004 [115]. Based on SIFT features,
a widely used Bag-of-Words approach [37, 103, 132] was developed. SIFT features are
interest point based and can be used in unsupervised learning [169]. Recent studies [80]
have reported that SIFT descriptors demonstrate best performance even when compared
to modern fast descriptors.
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SIFT features are defined by an interest point detector and a local image descriptor. In-
terest points, found as local peaks of difference-of-Gaussian (DoG) functions, correspond
to strong edges, corners and intersections. The scale invariance is achieved by the search
of interest points (local maxima) across the scales in a scale-space DoG pyramid. Orien-
tation invariance is based on the dominant orientation assigned to every interest point.
Dominant orientations are calculated from the histogram of gradient orientations in the
interest point neighbourhood. The highest peak in the orientation histogram defines the
orientation of the interest point. However, other local peaks within 80% of the highest
peak produce secondary interest points with corresponding orientations.
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Figure 2.12: Illustration of SIFT descriptor formulation.

The SIFT descriptor is calculated for the scale level defined by the detector’s interest
point scale and gradient orientations are rotated to align their dominant orientation, thus
enabling SIFT features to achieve scale and orientation invariance. The SIFT descriptor
is composed of the Gaussian weighted gradient amplitudes calculated in eight directions.
Figure 2.12 illustrates the descriptor construction. Errors in the image represent ex-
tracted gradient orientations and magnitudes. The green circle shows the Gaussian used
for weighting gradient magnitudes, which makes the descriptor more robust to small
changes in interest point position. The area around the interest point, divided into 16
sub-regions, produces sixteen 8 direction bin histograms from the weighted gradients that
are subsequently concatenated into 128 dimensional descriptor vector. Nowadays popu-
lar and most efficient implementations of SIFT features are: VLFeat [175], OpenCV [23]
and UBC (D. Lowe’s) implementation [113].

Another very popular contour feature often used for object detection is HOG (Histogram
of Oriented Gradients), which was proposed by Dalal and Triggs for pedestrian detection
in [39]. HOGs use the distribution of local intensity gradients to describe both object
appearance and shape (Figure 2.13). HOGs require more supervision than interest point
driven SIF'T detectors: for successful learning it is extracted from a bounding box region
around the object [39, 55]. Another difference between HOG and SIFT features is that
SIFT chooses the dominant orientation of a feature, while HOGs keep information about
all gradient orientations.

Building a Histogram of Oriented Gradients starts with calculation of gradients for each
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Figure 2.13: Illustration of HOG descriptor formulation.

pixel in the image. In color images, only the value of the channel with the highest norm
of the gradient is chosen. This use of locally dominant color provides color invariance.
Image window is then divided into small rectangular cells. A histogram of gradient ori-
entations with 9 orientations is constructed for each cell. The gradient magnitudes of the
pixels in the cell are used as votes in the orientation histogram (Orientation Voting in Fig-
ure 2.13). The final stage employs contrast normalization for the overlapping 2 x 2 blocks
of cells. Each block is normalized separately. Moreover, as normalization is performed
for overlapping blocks, each cell contributes to several blocks, and is normalized every
time accordingly. Normalization introduces better invariance to illumination, shadowing
and edge contrast. The normalized block descriptors are referred to as the Histogram
of Oriented Gradients (HOG). A feature vector is constructed of HOG descriptors taken
from all blocks of a dense overlapping grid of blocks covering the detection window. The
most used implementations of HOG features are: VLFeat [175], OpenCV [23] and Pe-
dro Felzeszwalb’s implementation [55]. HOG features in combination with a deformable
part-based model (DPM) provide state-of-the-art results in many applications such as
tracking [196, 167] and object detection and classification [181, 180, 107, 202|.

TEXTURE FEATURES

In early works, wavelets, Gabor features and image patches were widely used texture
features [100, 185, 128, 56]. Wavelets and Gabor features are multiresolution function
representations that allow a hierarchical decomposition of a signal [118]. Wavelet and
Gabor features allow a potentially lossless image representation and reconstruction (in
contrast to e.g. HOGs [178] or SIFT [184] features), because wavelets or Gabor filters
applied at different scales encode information about an image from the coarse approx-
imation to any level of fine details [104]. As Gabor filters are the features of choice in
this work, their construction and properties are described in detail in Section 3.1.

An industrially used face detector implemented in modern photo cameras for focusing
on faces has been developed by Viola and Jones [177]. It is based on the simplified
Haar wavelets. These Haar-like features, represented by two-, tree- and four-rectangle
features (Figure 2.14 left), are extremely efficient in computation. The dark part in
the image corresponds to a weight -1 and the white part to a weight +1, therefore,



2.4 Features for Object Detection 29
g C D
E | |

Figure 2.14: Haar-like simple features and an integral image.

simple Haar-like features are calculated as the difference between the sum of pixels within
dark and white regions. These features capture the relationship between the average
intensities of neighbouring regions and encode them along different orientations. Efficient
feature extraction is achieved through the use of the integral image I; (Figure 2.14 right),
which allows calculation of the sum of elements in any arbitrary rectangle with only
four references to I;. Efficiently calculated simple features and classifiers, arranged as
a cascade, made the Viola-Jones face detector one of the fastest detectors of the time,
leading to its extensive use in industry.
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Figure 2.15: Illustration of the architecture of a Convolutional Neural Network
from [97].

Recently a new generation of features has been introduced for object detection and
classification. These are non-engineered features produced by deep Convolutional Neural
Networks during the learning procedure [97], referred to as "deep features". Even though
deep features are learned, the neural network’s structure is manually engineered, inspired
by the biological visual cortex, and contain a lot of parameters learned from data. The
architecture of a Convolutional Neural Network is shown in Figure 2.15. Deep features
are produced by alternating convolution and pooling procedures, where convolution can
be thought of as actual feature extraction (filtering) and pooling as an invariance step.
A max-pooling layers reduce feature dimensionality and computations for the following
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layers, simultaneously enabling position invariance over larger local regions and improving
generalization. Figure 2.16 shows the kernels of the first convolutional layer learned by
the network. It can be seen that the network has learned a variety of frequency- and
orientation-selective kernels, as well as various color blobs. Thus color information plays
an important role in the excellent performance of neural networks in computer vision
tasks [29)].

As deep features are learned from the training data, the choice of the dataset affects
feature formulation, i.e. features are data specific. In [200] Zhou et al. show the effect of
training data on the results of image classification. In particular, deep features learned
on object oriented data (ImageNet [148]) perform better than features trained on scene
oriented data (Places database [200]) for the object oriented datasets and vice versa.
Therefore in [200] authors propose to combine both training datasets and obtain results
either better or similar to the best performing method on all datasets. Deep features
extracted after the last pooling layer learned on the object oriented dataset look like
object-blobs. Features learned on the Places dataset look like landscapes with more
spatial structures, their visualization can be found in [200]. Interestingly, parameters of
a DNN learned on a large dataset, like ImageNet, produce good results when applied to
other smaller data, either as is or after fine-tuning of the final classification layer on the
target data [69].

Figure 2.16: Deep features of the first convolutional layer.

DNNs are very powerful learning tools that can achieve excellent human-competitive
results on visual and speech recognition tasks, however how and what they learn from
the data is still unclear and results in some counter-intuitive properties. For example,
invisible to human non-random perturbations of an image can change the category it
is assigned to by a network [164] or specially generated artificial images meaningless
to a human [123] can confuse the neural network and obtain a class label with high
probability. The most common open-source CNN implementations are: Caffe [90] and
OverFeat [154].
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2.5 Object Representation
2.5.1 Model-free vs. Model-based

The problem of object detection, which is localization and classification of objects appear-
ing in still images, is a hot topic in computer vision. Due to its large variations in scale,
pose, appearance and lighting conditions, the problem has attracted a wide attention
and a number of algorithms have been proposed. Existing object detection algorithms
can be divided into two categories: model-free methods [17, 18, 37, 69, 159, 197| and
model-based methods [1, 34, 54, 55, 56, 140, 141|. Specifically, the difference between
model-free methods and model-based methods lies in the usage of the explicit object
models with spatial constraints between object parts (Figure 2.17).

Bag-of-Words

(a) model-free (b) model-based

Figure 2.17: Illustration of model-free and model-based object detection con-
cepts. Sub-figure (a) demonstrates detection principle of Bag-of-Words model-free
method which does not use spatial information in object model. Sub-figure (b)
shows a part-based model of a motorbike, using which object detector is aware of
both object part appearance and their relative spatial locations.

In the category of model-free methods, discrimination of feature representation plays a
dominating role in mitigating large variations of pose, scale and appearance. The most
well known model-free methods are Bag-of-Words [103] and more recent deep feature
approaches [69, 197]. Deep learning architectures [97, 157, 69] learn a constellation
model implicitly along the deep layers of processing. First visual bag-of-words (BoW)
models [159, 37] omitted spatial constellation of parts and used shared codebook codes
to describe the parts. However, the BoW model can be extended to include loose spatial
information, for example, by dividing the image to spatial bins [103] or refining the
codebook codes by their spatial co-occurrence and semantic information [105].

On the other hand, by introducing object models, both the appearance of local object
parts and the geometric correlation between object parts (e.g. star model [57] or Im-
plicit Shape Model [106]) can be simultaneously learned in a unique framework. Thus,
part-based object model detection is based on two factors: detection of object parts and
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verification of their spatial constellation. The first part-based approach to object detec-
tion was proposed by Fischler and Elschlager in 1973 [62]. In earlier works of generative
part-based constellation algorithms [56], the location of the parts was limited and only a
sparse set of candidates, selected by a saliency detector, was considered. In [34], the pro-
posed pictorial structure model can tolerate changes of pose and geometric deformation
of the object, but label annotation is required for each object part. The first attempts
to learn full models of parts and their constellation were generative [183, 51], but due
to the success of discriminative learning the generative approach has received less atten-
tion recently. Some object detectors (both model-free and model-based) are presented
in Table 2.1. Methods are arranged chronologically in four groups (two for model-free
methods, i.e. Bag-of-Words, and two for model-based methods, i.e part-based methods).

2.5.2 Generative vs. Discriminative

Object detection and classification methods can be divided into two major categories
based on their learning principle: generative [56, 53, 8, 91] and discriminative [177, 147,
39, 55| approaches. The difference between these two approaches is that generative
models capture the full distribution of an object class while discriminative models learn
just a decision boundary between object class instances and the background or other
classes.

Let « correspond to raw image pixels or some features extracted from the image and c
is an object class that might be present in the image. Given training data consisting of
N images with X = {x1,z2,...xn} and corresponding class labels C' = {c1,ca,...cn},
when images and their labels are drawn from the same distribution, the system should be
able to predict a label ¢ for a new input vector @’. The best characteristic guaranteeing
minimization of the expected loss, e.g. number of misclassifications, is a posterior proba-
bility p(C|X). In discriminative approaches this posterior probability is learned directly
from the data. Generative approaches, on the other hand, model the joint distribution
over all variables p(C, X) and posterior probabilities are calculated using Bayesian for-
mula. Generative models are appealing for their completeness and often have higher
generalization performance than discriminative models; however, they are redundant (as
the system needs just posterior probabilities).

Generative methods can handle missing or partially labelled data, i.e. use both labelled
and unlabelled data. New classes can be added incrementally independently from pre-
vious classes. As generative learning procedure learns a full data distribution, one can
sample this learned model to 1) verify if it indeed represents provided training data or 2)
artificially extend training set by generating new instances. In contrast to discriminative
models, generative models can handle compositionality, i.e. they do not need to see all
possible combinations of features during training (e.g. hat-glasses, no hat-+glasses, no
hat+no glasses, hat+ no glasses). Discriminative methods are generally faster and have
better predictive performance as they are trained to predict class labels whereas gener-
ative methods learn a joint distribution of input data and output labels. Based on the
differences in training and calculating generative and discriminative models one of the
most important distinctions arises: to train the object model generative models do not
need background data [140, 8|, but discriminative models need both positive and negative
examples to learn decision boundaries. The most common discriminative learning tools
are SVMs [172, 173], neural networks [97] and decision trees [136, 24].
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Complementary properties of discriminative and generative methods have inspired a
number of efforts to combine the approaches and utilize the best of both paradigms.
Hybrid approaches are used in a number of computer vision applications [20, 110, 108].
The version of generative-discriminative hybrid object detector in this work is presented
in Section 5.1.

2.5.3 Examples

The deformable part-based model (DPM) [55] is a discriminative model-based method
for visual class detection and classification. DPM is one of the most successful examples
of using HOG features for visual class detection. The DPM has only a few tunable
parameters, owing to the fact that selection of the parts, learning their descriptors and
learning of the discriminative function for detection are all embedded in the latent support
vector machine framework (see Figure 2.18). Intuitively, DPM alternates optimization
of the learning weights and the relative locations of deformable part filters in order to
achieve high response in the foreground and low response in the background. With the
learned DPM model, the root filter and part filters are applied to scan the whole feature
pyramid map to find regions with high response, which can finally determine locations
of the object. In the final stage, the location of the bounding box is refined and re-
scored based on the training statistics of bounding box corner positions relative to a root
filter. A deformable part-based model [55] is used in the experiments in this work as the
discriminative part of the hybrid method (Section 5.1).
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Figure 2.18: The deformable part-based model (DPM) [55] for learning and
detecting visual classes.
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Linear Discriminant Analysis of the DPM model [78] has resulted in WHO features
(Whitened Histogram of Orientations), allowing expensive SVM training to be avoided.
In [78] background class is estimated just once and reused with all object classes.

Bag-of-(visual-)Words (BoW) is a discriminative model-free method often applied to
object detection and classification tasks [37, 44, 158]. The framework of BoW methods
is very simple. First, local image features such as SIFTs are extracted. These features
are then clustered to form an N-entry codebook characterized by N visual words. Images
are represented by histograms showing how many features from each cluster occur in
the image (cluster histograms). Histograms of training images are used to train an
SVM classifier. During testing, cluster histograms are constructed for all test images
(overlapping candidate detection windows in different scales and positions) and then
scored by SVM. Figure 2.17 left shows an example of two candidate detection windows,
each producing a histogram allowing to classify it as containing or not containing the
object.
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Figure 2.19: An example of a spatial pyramid with Bag-of-Words.

One of the most popular BOW modifications is Bag-of-Words with a spatial pyra-
mid [103]. Original BoWs are incapable to capture shape or segment an object from
its background; however, adding a spatial object model on top of a BoW representation
is not straightforward. In [103], to include spatial information images were repeatedly
subdivided (Figure 2.19) and histograms of local features were constructed for all ob-
tained image regions with increasingly fine resolutions.

Bourdev et al. [21] propose a discriminative model-based method for body parts (pose-
lets) detection. The method is based on data with annotated keypoints, in particular,
joints of the human body. Poselets are very discriminative image patches that form a
dense cluster in the appearance space. To find poselets, a lot of seed patches are first
randomly generated from object regions of training images. When a seed window is cho-
sen, patches with similar spatial configuration of keypoints are extracted from training
images and aligned with the seed based on their keypoints. The most dissimilar can-
didate patches (with big residual error) are excluded from the set of positive examples.
Negative examples are sampled randomly from images that do not contain the object.
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Then HOG features are extracted from all patches (positive and negative) and used to
train an SVM classifier. Finally a small set of poselets is selected based on the frequency
of their occurrence in the training images. In [182] a model of a human pose was hier-
archically constructed out of poselets and further used for person detection and tracking
when a system knows the location of each separate object part.

Figure 2.20: Examples of poselet image patches corresponding to a bent right
arm from which HOG features are extracted.

A work of Ying Nain Wu et al. [186] on an object active basis (sketch) model is an exam-
ple of a recent generative model-based method. The model proposed in [186] describes an
object with a small number of representative strokes. Each oriented stroke of an object
model is effectively described by a Gabor filter. Filters are allowed to shift their locations
and orientations for a best description of the nearest edge. For the final object represen-
tation, those filters are chosen whose shifted versions sketch the most edge segments in
the training images. Thus, the learning process resembles a simultaneous edge detection
in multiple images.
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Figure 2.21: Examples of active basis models for revolver and stopsign Caltech-
101 categories (original images on the left, corresponding models are on the right).

This work has been extended to form a hierarchical compositional object model [38].
The model in [38] is composed of object parts that are allowed to shift their location and
orientation, which in turn are composed of Gabor filters (strokes) that are also allowed to
shift their location and orientation. Another recent generative hierarchical object model
is proposed in [59]. In the work low level features are represented by oriented Gabor filters
learned in an unsupervised category-independent way, while high level object parts are
constructed by using specific categories.
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2.6 Summary

This chapter presented the parallel synergy and evolution of datasets and methods for
visual class detection. Major challenges of computer vision have been solved to differ-
ent extents and many different methods have been used to approach them. The dif-
ferent methods have their advantages and disadvantages, e.g. model-free methods are
very flexible in object representation and can model several views/poses at the same
time. However, a lack of spatial information makes model-free methods less precise than
model-based ones, which are able to provide object location information and filter out
hypotheses with high appearance scores but not consistent with the spatial model. Gen-
erative methods produce a complete model, can handle unlabelled data and the absence
of negative examples. However discriminative methods, despite acting like a black box
and being unable to explain obtained results, often outperform generative ones.
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Table 2.1: Part-based methods for object class detection (chronological order,

CL: the classifier type, Discriminative (D)/Generative (G)).

Ref Feature Const. model Cl. Test data
Bag of Words (omitted, see Huang et al. [83] for survey on state-of-the-art):

Sivic 2003, [159] Codebook histogram - Own

Lazebnik 2006, [103] Spatial codebook - D Scene-15, Caltech-101,
histogram Graz-02

Cao 2010, [26] Spatial codebook - D Oxford buildings
histogram

Bag of Words with spatial model:

Weber 2000, [183] Codebook P parts in canonical space G Faces and cars

Agarval 2004, [1] Codebook Pair-wise relation D Own 170 car images

Leibe 2008, [105] Codebook Hough spatial voting D Own car images

Carbonetto 2008, Codebook Overlap of spatial seg- G Caltech-4, Corel, Graz-

[27] ments 02

Allan 2009, [5] Codebook (category  Gen. model, search over G VOC2005 (4 categories)
specific) pose parameters

Ommer 2010, [127] Codebook (category  Compositions with respect G Caltech-101, VOC2006
specific composition) to the object centre

Early part-based constellation model (with interest point detectors):

Fergus 2003, [56] Patch from IPs P parts in canonical space G Caltech-4

Fei-Fei 2006, [50] Patch from IPs P parts in canonical space G Caltech-101

Crandall 2007, [35] Various features Pair-wise relation G VOC2006

Holub 2008, [82] Patch from IPs P parts in canonical space G+D Caltech-4 and Graz

Bar-Hillel 2008, [12] Patch from IPs Star model G Caltech-4 + own

Todorovic 2008, Segments Segmentation trees and G 3 cl. from Caltech-101,

[168] sub-tree matching UIUC cars, horse and

cow images

Chen 2009 and Zhu  Various features and  Feature triplet based G 26 cl. from Caltech-101

2009, [31, 201] detectors stochastical grammar

Part-based constellation model:

Rao 1995, [137] Gaussian derivative Spatial voting G A few simple objects
features

Burl 1998, [121] Sliding window de- P parts in canonical space G Own face images
tector

Crandall 2005, [34] Edge features K-fan representation G Caltech-4

Felzenszwalb 2005, Steerable filters + di- Pair-wise energy model G 20 from Yale face

[53] agonal Gaussian pdf database, articulated
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CHAPTER III
Gabor Local Part Detector

The assumption that an object can be described with a set of parts linked with each
other by spring-like connections has lead to development of a variety of part-based object
detection methods starting from Fischler and Elschlager in 1973 [62] and evolving into
modern state-of-the-art object detectors like that presented in Felzenszwalb et al. [55].
Along with the standard computer vision task of object detection, where the location of
an object is often coarsely defined by a bounding box, supplementary detection of specific
semantically meaningful object parts allows additional information to be obtained, such
as the object’s pose [160, 10, 193] or the identity of a face [199, 30].

This chapter presents a learning and detection pipeline (Figure 3.1) first introduced
in [141], explicitly providing locations of class specific landmarks, i.e. object parts.
These manually annotated landmarks are the distinguishable parts of the objects with
semantic meaning (Figure 3.5 top row). Object parts are learned in a generative manner
from only a few positive examples. In [87] Gabor features showed superior performance
compared to steerable filters [156] or local binary pattern (LBP) [126] approaches paired
with the Gaussian mixture model classifier and are the features of choice in this work.
Therefore, the object appearance model is represented by a Gaussian mixture model
of a selected subset of complex-valued multi-resolution Gabor bank responses. During
testing, the proposed method transforms an input image to a part conditional likelihood
map of landmarks. From these likelihood maps, a desired number of the best candidates
can be fetched and used in further processing stages for object detection and localization.
Figure 3.1 illustrates the method output.

3.1 Gabor Features

Gabor filters were originally introduced in 1946 by Dennis Gabor. They are used to
represent signals as a combination of elementary functions [65]. In [42] Daugman demon-
strated the similarity of 2D Gabor filters to simple cells of mammalian visual systems,
showing the biological relation of Gabor features. Moreover, invariance to translation,

38
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Figure 3.1: Generative part-detector workflow.

rotation, scale and illumination changes, which are desirable feature properties in com-
puter vision, are all achievable with features constructed from the responses of Gabor
filters. Due to these properties Gabor features have been successfully used in many
computer vision applications, especially in biometrics (iris recognition [41], face recog-
nition [155, 192], face expression recognition [74] and fingerprint matching [89]). Gabor
features are considered as effective texture descriptors [22, 119, 77, 144], but encoding of
local object parts was also among their first applications [100, 185].

3.1.1 Multi-resolution Gabor Features

In the spatial domain, the Gabor filter is a complex plane wave (a 2D Fourier basis
function) multiplied by an origin-centred Gaussian (Equation 3.1), and in the frequency
domain, it is a single real-valued Gaussian centred at f (Equation 3.2), as visualized
in Figure 3.2. The multi-resolution forms and parametrization in (3.1) and (3.2) are
used in this work. The multi-resolution Gabor filter is a restricted version of the general
2D Gabor function derived by Daugman [42] from Gabor’s original 1D “elementary func-
tion” [65]. The restricted form enforces self-similarity, i.e. all filters are scaled and rotated

versions of each other (“Gabor wavelets”) regardless of the frequency f and orientation
6.

A core element of the 2D Gabor filter function is [93]:

blary) = Lo G G g
™
2 =zcosf+ ysind (3.1)

/ j—

y = —xsinf + ycosf

where f is the central frequency of the filter, 6 the rotation angle of the Gaussian major
axis and the plane wave, v the sharpness (bandwidth) along the major axis, and 7 the
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L Rety (x

Figure 3.2: Example of a 2D Gabor filter in the spatial and frequency domain.

sharpness along the minor axis (perpendicular to the wave). In the given form, the aspect
ratio of the Gaussian is n/7.

The Gabor function in Equation 3.1 has the following analytical form in the frequency
domain

W(u, v) = oW =D )

u =wucosf +vsind (3.2)
v = —usinf +vcosf .
Responses of the Gabor filters r for an image I are calculated as a convolution:
r(z,y; f,0) =¢(z,y,; f,0) « I(z,y) =
(3.3)

= //1#(96 = Tr,Y = Yz [, )1 (27, yr ) dr - dys, .

The relationship between different filters provides the basis for distinguishing objects,
therefore multi-resolution Gabor features are constructed from the responses of the filters
in (3.1) or (3.2) on multiple frequencies and orientations. The detector assumes that local
parts can be described by multi-resolution Gabor features computed at single locations,
often in the middle of an object part. The assumption provides computational simplicity
for processing and this single location features still provide a powerful representation of
an object part as the Gabor filters are sensitive in the vicinity of their location. In this
work, filter responses at the location (zg,yo) are arranged into a matrix form as [99]

r(x0,Y0;f0,00) r(zo,y05f0,01) - 7(x0,90;f0,0n-1)
r(zo,y0;f1,00)  r(zo,yo;f1,01) - r(zo,y0;f1,0n-1)

G-= : _ ) : (3.4)

7(20,Y0;fm—1,00) 7(x0,Y05fm—1,01) -+ 7(x0,Y0;fm—1,0n—1)

where rows correspond to responses on the same frequency and columns correspond to
responses at the same orientation. The first row is the highest frequency fo = finee and
the first column 6y = 0°. Despite computation in a single location, every filter “sees” in
its vicinity defined by the filter’s effective bandwidth (the Gaussian envelope controlled

by v and 7).
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3.1.2 Gabor Feature Properties

It is interesting that the actual physical structure in the striate cortex of the mammalian
visual system has characteristics similar to a Gabor feature space G in (3.4). In the
cortex the processing cells responsible for different orientations are layered on a columnar
structure, which is repeated for different scales in the perpendicular direction [84].

As filters on the different frequencies with the same bandwidth are scaled versions of
each other, to achieve a homogeneous spacing between the scales, frequencies f,, in 3.4
are drawn from the logarithmic distribution [87]:

fmn = k7™ fnaz, m=40,...,.M — 1}, (3.5)

where f,, is the mth frequency, fo = finas is the highest frequency, and k& > 1 is the
frequency scaling factor. The filter orientations are drawn from a uniform distribution:

2
enanl, n=1{0,...,N -1}, (3.6)

where 6,, is the nth orientation and NV is the total number of orientations.

An important property which makes multi-resolution Gabor features computationally
attractive is the fact that simple row-wise and column-wise shifts of the response matrix
correspond to scaling and rotating in the input space. Rotating an input image anti-
clockwise by & corresponds to the following column-wise shift of the feature matrix

7(20,Y0;f0,0n—1)" r(zo0,y0;f0,60) = r(z0,y0;f0,0n—2)
7(20,Y0;f1,0n-1)" r(zo,y0;f1,60) = r(zo,y0;f1,0n—2)

(3.7)
(20,405 fm—1,0n-1)" 7(20,¥0;fm—1,00) = 7(x0,Y0;fm—1,0n—2)

where * denotes the complex conjugate. Downscaling an image by a factor % corresponds
to the following row-wise shift of the feature matrix

r(z0,y0;f1,00) 7(x0,y0;f1,01) - r(z0,y0;f1,0n—1)

r(x0,y0;f2,00) 7(x0,y0;f2,01) - T(x0,Y0;f2,0n—1)

(3.8)
i f T i
(20,905 fm,00) 7(€0,Y0;fm,01) - r(x0,Y0;fm,0n—1)

It should be noted that responses on the new low frequencies f,, in (3.8) must be com-
puted and stored in advance, while the highest frequency responses on fjy are excluded
from the feature matrix. The matrix shifts provide fast search of local parts over scaling
and rotation.

INlumination invariance is achieved when feature matrix 3.4 is normalized as follow:

@5 (3.9)

2
>0 1G]

where G; ; is an entry of the feature matrix on the i" row and j* column. Unfortunately,
as illumination invariance is achieved, the number of false responses on the background
often increases as areas with high and low energy are equalized.

As Gabor filters see till their vicinity, an object’s visual appearance can be reconstructed
up to an arbitrary accuracy by inverting the filtering transformation [135] (Fig. 3.3).
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Figure 3.3: Reconstruction by inverting multi-resolution Gabor responses at an
increasing number of locations.

3.1.3 Parameter Selection

In [86] authors established formulas defining relationtips between parameters of the multi-
resolution Gabor features fi,qz, kK, M, N, v and n through a parameter p denoting the
intersection point of two adjacent Gabor filters. The most intuitive parametrization was
achieved by defining an effective envelope cross point at p = 0.5, which means that all
Gaussian envelopes cross on the half magnitude with their neighbours. This value has
been experimentally tested and shown to provide sufficient “shiftability” [156, 152], i.e.
information loss is tolerable even if the signal’s frequency content falls between bank
filters. If the cross point parameter p remains fixed, then the adjustable parameters
are the highest frequency f.q4., the scaling factor of Gabor filter frequencies k, the
number of frequencies M and the number of orientations N. The bandwidths v and n
are automatically set using formulas from [86]. See Figure 3.4 for illustrations.
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Figure 3.4: Examples of a multiresolution set of Gabor filters in the frequency
domain: (a) M = 4 orientations and N = 3 frequencies, (b) the base frequency
fmaa increased, (c) the frequency scaling factor k increased.

A frequently overlooked problem in using multiresolution Gabor features to learn and
detect local object parts, and using Gabor features in general, is how the feature pa-
rameters, the maximum frequency (finest scale) fy,q2, the frequency scaling factor (scale
“jump”) k, and the numbers of orientations M and frequencies N, should be selected. The
optimal values always depend on the specific application, but for better understanding of
their meaning, generic guidelines for the ideal case of unlimited resources can be defined
as:
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fmaz: use the highest possible frequency in the Nyquist limit to capture even the finest
details,

k: use very dense frequency spacing to notice even the smallest scale changes,

M: use all frequency bands from the highest to the lowest frequency that covers the
whole image, and

N': use very dense orientation spacing to notice even the smallest rotation changes.

The above ideal case guidelines would provide ultimately traceable and accurate fea-
tures but cannot be realized in practice due to two fundamental limitations: limited
computational resources and limited amount of training data. Computational resources,
especially space and time, set practical limits within which local features must be learned
from training data and extracted from input images. Dense frequency and orientation
spacing also affect computation time due to invariance shifts; matrix shifts (Equations
3.7 and 3.8) are fast operations, but pdf evaluations over all shifts using Gaussian Mix-
ture Model (Section 3.3) become a bottleneck. However, the amount of training data is
the main limitation as learning requires images and manually annotated landmarks.

In the conducted experiments the best set of Gabor bank adjustable parameters was
exhaustively searched for each object category from the following set:

Fnaw € {1/9,3/40,1/20,1/30,1/45}, k € {x/i \/5}
M e {6,8}, N {4,6,8} .

(3.10)

fmaz 1s defined in pixels, thus is related to the image size. These frequency values give
good results for the original size of Caltech images and images from ImageNet scaled to
have highest dimension equal to 300 pixels. The optimal parameters of a bank of Gabor
filters for Caltech categories are:

Frnaw € {1/20}, ke{ﬁ} Me {6}, Ne{4) . (3.11)

3.2 Spatial Alignment

In natural images objects vary in their pose and scale, therefore if proposed multi-
resolution Gabor features are directly extracted from the original images, they not only
code visual appearance but are also perturbed by geometric distortion noise. Geometric
distortions can be removed by geometrically normalizing the images, i.e. by registering
all images to a common frame. Nevertheless, exact alignment is rarely possible due to
natural variation of part constellation. This section presents the developed procedure for
registering images to the so called "mean object space” (Figure 3.5).

In earlier works, Burl et al. [121] solved the alignment problem by fixing the locations of
two points. In his solution, variation in locations of the fixed object parts is transformed
to others while requiring a guaranteed detection of these fixed parts in all images. This
disadvantage can be overcome if instead of just two, locations of all of the object parts
are fixed during alignment, i.e. a seed image (object) is selected. Then, prior to feature
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Figure 3.5: Top row: annotated object landmarks; middle: landmarks of 50
examples in the same global space; bottom: the same landmarks in the estimated
aligned object space.

extraction, landmarks from all the images are transformed to this random seed using 2D
homography estimation. However, in this approach the seed selection affects the final
result, e.g. alignment performance degrades if a rare category example is chosen as a
seed.

Algorithm 3.1 Aligned mean object space.

1: Select a random seed image and use its parts’ locations as the initial object space.

2: for all images do

3:  Estimate isometry/similarity transformation H to the object space using the part coor-

dinates and the Umeyama’s method [170]). //Store as Hprior for Algorithm 4.1.

4:  Transform object’s parts and bounding box coordinates to the object space.

5:  Refine the object space by computing average of transformed points.

6: end for

7: Return the mean object space and transform all images, landmarks and bounding box
corners.

Finally, to form an aligned object space, the work adopts the mean shape model by Cootes
et al. [32]. Their iterative method is used, where the approximate similarity transforma-
tion is replaced by linear similarity estimation using the Umeyama method [170] (modifi-
cation of a Procrusters algorithm). The method iterates through training images simulta-
neously updating the mean object space (see the pseudo algorithm in Algorithm 3.1 and
Figure 3.5 for illustration), as a result providing the optimal pose for landmark/object
detection if the training and test set are equivalent. Here, for efficient search among the
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object detection hypothesises, a set of allowable transformations {H oy} is estimated
for Algorithm 4.1. {H i } is constructed from the set of similarity transformations H
in Algorithm 3.1.

3.3 Appearance Model for Object Parts

Construction of a probabilistic model for object parts consist of two stages: 1) extraction
of local image features g(x,y) and 2) their probabilistic representation p(g, F;), where
F; denotes an object part. The main properties/requirements of an appearance model
is the ability to classify and rank features of the new observations (test images) based
on statistics of the training images. This kind of model is often realized in the form of
a conditional density function. Therefore, the appearance model is defined by fitting a
model to the observed features. The drawback is that many of the object parts should
be represented with multi-modal distributions, e.g. opened/closed eyes vs glasses, neu-
tral mouth vs a smile vs a beard, what implies a complex multi-modal nature of the
probability density function. In [85] SVM and GMM were compared as probabilistic
feature classifiers, and GMM was found to be superior to SVM. Moreover, GMM allows
construction of a feature classifier without negative examples, resulting in the object
detection method learning from positive examples only.

3.3.1 Gaussian Mixture Model (GMM)

For a proper generative model, the landmark specific conditional probability density
functions (pdf), p(g|F;), need to be estimated. F; denotes a class specific landmark and
g is a multi-resolution Gabor feature vector formed from the matrix G (Equation 3.4)
by concatenating the responses row-wise

g=(G(1,1)...G(1,N) G(2,1)...G(2,N)...... G(M,1)...G(M,N)" . (3.12)

The feature dimension of the probability density function (pdf) is the number of frequen-
cies times the number of orientations, D = M x N. The elements of g are complex-valued
g € CP because it was found in [85] that the popular magnitude representation destroys
important information for detection. The Gaussian distribution for complex random
vectors (z € CP) is defined as [71]:

N (a1, 3) exp [~(& — )" S (@ — )] (3.13)

i

where p is the mean, ¥ the covariance matrix and  denotes the adjoint matrix (trans-
pose and complex conjugate). The complex-valued Gaussian mixture model (GMM)
probability density function can be defined as a weighted sum of Gaussians:

C
p(ﬂ:; 0) = Z OZCN(iL'; Hec, Ec) (314)

where a, is the weight of the cth component and 2521 a. = 1 (note that the complex
superscript in the normal distribution is omitted for clarity). Now, a Gaussian mixture
model probability density function can be completely defined by the parameter list [49]

0:{alvul721a"'7a07p’0720} . (315)
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The motivation to use the complex space CP lies in the fact that this is the natural
representation of the complex-valued Gabor responses and it reduces the number of free
parameters from C(2D? + 3D) + C — 1, where the complex values are separated to the
real and complex part or phase and magnitude (x € CP — R2P), to

C(D?*+2D)+C —1 . (3.16)

In [85] several algorithms for GMM pdf (Eq. 3.15) parameter estimation were compared.
It was found that the maximum-likelihood estimation by the standard expectation max-
imization (EM) algorithm [16] is best if the number of components C' is known. This,
however, is not possible for unknown feature densities and therefore unsupervised meth-
ods need to be used. In [85] two popular methods were tested, Figueiredo and Jain
(FJ) [60] and greedy EM (GEM) by Verbeek et al. [176], and in the experiments the FJ
algorithm performed better and was more stable with limited data. In the utilized imple-
mentation of the FJ algorithm, steps are replaced with complex number equations and on
every iteration the Gaussian covariance matrices are tested and enforced to proper Her-
mitians, stabilizing the estimation. For more details on unsupervised Gaussian mixture
model estimation of complex valued variables, see [129].

3.3.2 Randomized GMM

Virtually all works using Gabor features use a small bank of Gabor filters [179, 75, 191],
typically 4-6 orientations and 3-5 frequencies, and all responses form the feature vector.
This structure of filter bank may cause nearby overlapping filters to correlate strongly
and a signal can often be detected already by a subset of the filters, making many filters
redundant. The estimation becomes difficult and a large number of training examples is
required. To circumvent these problems, this work proposes to use a large Gabor bank
to make sure that different frequency and orientation characteristics of each part are
available and a randomization procedure picks the most important filter combinations
for each part (Figure 3.6).

Figure 3.6: Examples of a fixed size traditional bank of Gabor filters and a bank
used in a novel randomized GMM approach. Left: The traditional approach — a
small Gabor filter bank from where responses of all filters form the feature vector
(e.g., [179, 75, 191, 87]); Right: a large bank from where the part characteristic
frequencies are selected by the random optimization process. [141]

As already mentioned in Section 3.1.3, the bigger the bank of filters the more precisely
the object parts are represented. However, a straightforward augmentation of the filter
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bank would require an increased amount of the training data, which is not always avail-
able, and heavier computations, making the detector less efficient. Eventually, this kind
of expansion does not improve description of the object parts and consequently their
detection. The performance gain is not achieved as a lot of uninformative features are
introduced into the feature pool along with the useful features. In contrast to simple ex-
pansion, the proposed novel randomized GMM allows each object part to be represented
with a unique set of Gabor features (a subset of the full bank of filters). The randomiza-
tion procedure solves the problem of data deficiency and provides a very discriminative
representation of the object parts.

For a small number of training examples, even a subset of features may overfit, leading
to the low bias high variance problem. In machine learning literature decision trees are
known to have a similar problem, and therefore inspired by a meta-method, random
forests [24], for decision trees, it was decided to similarly adopt bagging and random-
ization to unsupervised Gaussian mixture models in this work: randomized Gaussian
mizture models. A pseudo code for the randomized GMM estimation procedure is given
in Algorithm 3.2.

Algorithm 3.2 Randomized Gaussian mixture model pdf estimation.

: Perform 4-fold separation of the training images to a training set and a validation set
: Compute filter responses with a large Gabor bank at all part locations.
: for T iterations do
Randomly select K filter responses from all training set images
Run F-J GMM estimator using the selected features
Evaluate landmark detection accuracy for the validation set
Store the filter set and its performance
end for
: Choose the B best sub-banks of filters and use their combination as the GMM pdf

© 0 NPT W

The randomization procedure from Algorithm 3.2 chooses K filters from the full bank
of Gabors at random and evaluates the performance of this randomized descriptor based
on the training data (according to the 4-fold procedure). For better generalization, the
whole process is repeated T times (e.g. T = 50). The final descriptor is composed of B
best performing sub-banks of K filters. The chosen sub-banks of Gabor filters are applied
to each pixel of an image. The received responses are then converted into B likelihood
maps using the corresponding GMM. In all experiments, K was equal to 9. This value
is the highest number of random filters, which guaranteed successful training of an FJ
GMM algorithm with less than 30 training images.

The part detection becomes slightly trickier with B random Gaussian mixture model pdfs
per one object part. Thus a procedure to combine the likelihood maps of each GMM and
non-maximum suppression to select the best candidates from an input image is needed.

The pseudo code of the detection procedure is in Algorithm 3.3.
The Gabor object part descriptor, composed only from a small portion of the original

Gabor bank filters, yields a lot of false positives. Nevertheless, each of the B sub-sets has
a different set of false positives while having high responses at the same true locations.
In order to suppress the false positives, the most strict rule for combining classifiers is
used, the product rule [96]. To further prune false positives and simplify calculations,
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Figure 3.7: Illustration of object part likelihood map formation. At the top is a
car image from which three different landmarks should be detected. The second
row shows the 5 thresholded likelihood maps of the B = 5 Gaussian mixture
models corresponding to a single landmark (a front tyre). The third row shows
the combined likelihood maps of all three landmarks. Warm colors denote high
likelihood.

Algorithm 3.3 Detection using rand-GMM & Gabor features.

Apply B sets of K Gabor filters

Compute B likelihood maps using the estimated GMMs

Threshold each likelihood map to retain the proportion of P; highest likelihoods
Compute the product likelihood of the B thresholded maps

Apply recursive global maximum search with suppression

likelihood maps prior to multiplication are thresholded so that only 40% (P = 0.4)
of the highest values of each likelihood map (Fig. 3.7 2nd row) contribute to the final
likelihood map (Fig. 3.7 3rd row). Pixels with the highest product likelihoods are the
best candidates for true object parts locations (Fig. 3.7 3rd row red areas). To find these
locations (local maxima) a simple yet effective method of global maximum search with
consecutive suppression is used. During this process, after a global maximum is found,
likelihoods in the area around it are assigned to zero. The size of the suppression region
is defined by the discrimination ability of the Gabor features, i.e. the lowest frequency
of the Gabor bank. Suppressing likelihoods in the neighbourhood of a maximum forces
the part detector to find candidates from different peaks exploring the whole image area.
Consecutive maximum search and suppression are continued until a desired number of
candidates is provided or the whole likelihood map has been explored (i.e. there are
no longer any non-zero elements). Thus, the proposed part detector provides a varying
number of landmark candidates by adapting to the difficulty (stability of representation)
of a specific landmark. Parameter B in the experiments was set to 5.
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3.4 Experiments
3.4.1 Data and Parameter Settings

Natural and divergent categories were selected from the Caltech-101 dataset for exper-
imental testing of the object part detection. Images of each category were randomly
assigned into approximately equal sized training and testing parts. The developed part
detector tolerates small amounts of training data, thus categories with 28 to 406 train-
ing images were used in the experiments. Categories selected from Caltech-101 are:
airplanes (406 train/394 test images), car side (58/65), dollar bill (28/24), faces easy
(206,/229), motorbikes (377/412), revolver (41/41), stop sign (30/34), watch (118/121),
yin yang (30/30), menorah (43/44), grand piano (49/50) and dragonfly (34/34). For
each selected Caltech-101 category from 3 to 5 semantically meaningful object parts
were manually annotated. The developed part detector was also tested on the BiolD
face database containing 1521 images of human faces (507/1024) recorded under nat-
ural conditions, i.e. with varying illumination and complex background. Faces in the
images vary in size, have different facial expressions, facial hair and glasses, belong to
different gender and racial groups. The experiments used the FGnet Markup Scheme of
the BiolD Face Database, which has 20 landmarks useful for facial analysis and recogni-
tion [138, 43, 189].

A quantitative comparison of the proposed part detector and state-of-the-art results is
presented for facial landmark detection with the BiolD dataset. Moreover, although the
developed part detector is general (can be applied to any object class) no tailoring or
parameter tweaking for facial landmark detection was applied.

3.4.2 Performance Evaluation

To the author’s best knowledge no performance evaluation method for local part detec-
tion has been proposed. Thus the evaluation metric is derived from the d.,.-measure
used for measuring face localization accuracy [76, 145]. This metric computes distances
from predicted coordinates of the object parts to the groundtruth coordinates that are
normalized by the diagonal of the corresponding bounding box. For object detection
purposes, the normalized distance < 0.05 is considered as excellent, < 0.10 good and
> 0.25 as a failure (thresholds are adopted from face detection [76, 145]). Using these
fixed thresholds, a number of the best landmark candidates falling within the thresholds
can be suggested. The sooner the correct landmarks are fetched, the better. As a result,
either a cumulative detection curve or detection bars can be plotted. The curve denotes
how fast the correct landmarks are found by increasing the number of fetched landmarks.
While the graph reports at landmark level, detection bars report at image level, i.e. for
how many images at least some number of landmarks are detected for a fixed maximum
error (0.05, 0.10, 0.15, 0.25). The latter information is important because the sampling
method in the object detection pipeline (Algorithm 4.1) is expected to perform poorly
for images with less than three landmarks detected correctly (two landmarks used to
estimate a transformation and at least one to verify it). These performance graphics are
illustrated in Figure 3.8.
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3.4.3 Visual Class Landmarks (Caltech /ImageNet) Detection

Evaluation of landmark detection for a visual class introduces a quantitative detection
measure similar to the facial landmarks by dividing the pixel detection distances by the
bounding box diagonals. The detection graphs and bars for several image categories are
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Figure 3.8: Caltech-101 landmark detection (left: cumulative detection graph,
right: detection bars for 10 best candidates).



3.4 Experiments 51

Figure 3.9: Example likelihood maps of different object classes. First four rows
illustrate probabilistic detection of landmarks in Caltech-101 images. On the left
are all annotated landmarks. Images on the right demonstrate detection of the
same landmark (airplanes: #2, motorbikes: #3, revolvers: #5, stopsign: #1)
in different images. The last three rows show probabilistic detection of landmarks
in ImageNet images. Examples of detection of different landmarks in the same
image (acousticguitar: #1,#2,#3,#6; snail and gardenspider all landmarks).

shown in Figure 3.8. The detection accuracies as the function of the best candidates
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were studied for the visual classes and the results verified that 5-10 best candidates are
needed to fetch a sufficient number of correctly detected landmarks (at least 80% of
the landmarks detected within an accuracy of 0.10). The results demonstrate that the
method has almost perfect performance for the faces class. The second best class is
motorbikes and the third airplanes. These three are the classes with the largest amount
of training images. The difference between faces (for 0.10 almost all landmarks were
detected in all images), motorbikes ( 97%) and airplanes ( 95%) can be explained by
the fact that the faces class is much easier compared to motorbikes and airplanes,
which contain many sub-classes. Results for the best performing classes are followed
by yin yang and stop sign, i.e. classes with the most simple structure. The worst
performing class is dragon fly, which has the biggest appearance variation and only few
training examples. Detection likelihoods are illustrated in Figure 3.9. Detection graphs
and bars for the remaining Caltech-101 categories are presented in Appendix I.

EFFECT OF FEATURE NORMALIZATION

This experiment was implemented to show the importance of feature normalization for
illumination invariance (see Equation 3.9) and to demonstrate the improvement in ob-
ject part representation achieved by randomization of the Gaussian mixture model (Sec-
tion 3.3.2). Experiments were conducted with the full bank of Gabor filters and its
randomized version. With the full Gabor bank (parameters from 3.11) the Gaussian
mixture model converges with approximately 200 training images, thus two Caltech-101
classes satisfying this condition (airplanes and motorbikes with 406 and 377 training
images correspondingly), were chosen for evaluation. The effect of feature normalization
is most evident for the airplanes category, the more difficult of the two. Part detection
results for motorbikes remain almost unchanged with feature normalization, however
randomization of GMM affects both categories, ensuring better results with a smaller
number of detection candidates.

Table 3.1: Object part detection results (proportion of correctly found object
parts within 5 best candidates for the 0.10 accuracy margin) using different types
of feature normalization.

airplanes(%)|motorbikes(%)
no normalization 22 84
Zero mean 13 80
zero mean std-one 9 75
L1 76 89
L2 69 86

Several types of feature normalization were investigated in this work: zero mean, zero
mean with standard deviation equal to one, L; and Ly norm. Detection results using
these normalizations applied to airplane and motorbike images are presented in the
Table 3.1. The table contains results obtained during object part detection on the test
images. Numbers correspond to the proportion of correctly found object parts within
5 best candidates for the 0.10 accuracy margin (blue curves in the Figure 3.10). The
experiments were conducted using the full bank of Gabor filters with parameters from
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Figure 3.10: Effect of feature normalization and GMM randomization on object
part detection of airplanes (left) and motorbikes (right) categories from Caltech-
101. The top row corresponds to results obtained with the full Gabor bank with-
out feature normalization. The middle row gives results with the normalization
(Equation 3.9) enabled. The bottom row shows part detection results using ran-
domized GMM (from the same bank of Gabor filters) with feature normalization.

Equation 3.11. Table 3.1 shows that the part detector achieves best performance with
the L; norm. However, in experiments with the randomized Gaussian mixture model
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the Ly norm performed favourably compared to the L; norm, and thus Lo normalization
(Equation 3.9) was used in all other experiments of this work.

3.4.4 BiolD Facial Landmarks Detection

Here generative part detector is applied to the well-known problem of facial landmark
detection. The results are reported for the BiolD database according to the BiolD
evaluation protocol. Obtained results are compared to the state-of-the-art detectors:
LEAR by Martinez et al. [120], MK-SVM by Rapp et al. [138] and CLM by Cristinacce
et al. [36]. Figure 3.11 shows dependency of a proportion of correctly detected object
parts as a function of distance from their true locations. The Gabor bank parameters
used in this experiment are: foae = v/3/20, k =+/3, M =7, N = 4 with 1 scale shift.
For each object part only one best candidate detection is considered in performance
evaluation.
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Figure 3.11: Object part detection results for the BiolD dataset. Top: illus-
tration of the detection thresholds and example of BiolD landmarks. Bottom:
detection bars and cumulative error graph.

It is noteworthy that the developed part-detector without any special processing for
facial parts performs comparably to very dedicated facial landmark detection methods
from the recent literature. The proposed detector misses about 10% of the most difficult
landmarks. On the other hand, more than half of the landmarks are correctly found in
73% of the images, even for the most strict metric (< 0.05). For the less strict metrics
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more than 10 landmarks per image are found in 90 — 98% of the images, while for
successful object class detection already 3 correctly detected landmarks are sufficient. It
should be noted that all other methods are discriminative and include special processing
and a full facial landmark model, whereas the developed method just returns the one
best candidate of each landmark with no spatial regulation. Examples of facial part
detections are given in Figure 3.12.

Figure 3.12: Example detections for BioID images in different scale and illumi-
nation conditions.

3.5 Summary

This chapter began with an extensive description of Gabor features, their properties and
parameters. Gabor features together with a Gaussian mixture model form an appearance
model for object parts but during the course of experiments it was found that about 200
training images are required for convergence of the GMM with the selected parameters of
the Gabor bank. Therefore a randomization procedure was developed. Gabor bank ran-
domization allows to relax the limitation of the required number of training images and
improves object part representation by making it part specific, i.e. by avoiding uninfor-
mative frequencies and orientations of multidimensional Gabor features. The Gaussian
mixture model, which outperformed the one-class support vector machine classifier [153]
in [85], enables learning from positive examples only. This ability to learn without nega-
tive examples sets apart the proposed part detector and based on it object class detector
from the mainstream where the background class is modelled either for every category
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separately or only once, being the same for all categories. The experiments show that
Gabor features and a Gaussian mixture model are a good combination for object part
description and detection. Results obtained with Caltech-101 categories demonstrated
good performance for all chosen categories. Moreover, comparison of the developed gen-
eral part detector with specialized state-of-the-art facial landmark detectors confirmed
the effectiveness of the proposed method. Therefore, it is logical to adopt the introduced
part-detector in the more popular task of object class detection, which is described in
the following chapter.



CHAPTER IV
Part-Based Gabor Object Detector

Object detection is a widely investigated task in computer vision. Many approaches exist
and many challenges need to be tackled, e.g., large variations in scale, pose, appearance
and lighting conditions. Part-based object representation [1, 34, 54, 55, 56, 140, 141] is
one of the popular approaches to object detection. However, part-detector based meth-
ods [15, 79, 166, 53, 185] often require manually annotated landmarks in the training
images. In [53|, similar to the concept of this work, Gaussian derivatives (steerable fil-
ters) are adopted and part pdf’s estimated by a single diagonal Gaussian. Manually
annotated object parts are used in the method by Bergtholdt et al. [15]. The landmark
selection was partially automated in [79], where landmarks were constructed from the
object outlines, but they can be distributed uniformly within a bounding box (see ex-
periments in section 4.5.5) if the training images are aligned with recent unsupervised
alignment procedures 33, 188]. However, the information provided by object parts in
part-based models with automated part detection, e.g. [55], cannot explicitly localize the
object parts having semantic meaning (e.g. eyes, tires, handle).

The detector proposed in this work is strongly supervised and, unlike weakly supervised
methods based on bounding box information, represents objects with manually anno-
tated class specific landmarks. Given this strong label information, i.e. learning using
privileged information [174], the developed framework can get benefits from additional
sources of useful information related to the object detection task and significantly boost
the training step. When provided with annotated images, the detector learns probabilis-
tic models for both class landmarks and their spatial variation, i.e. the constellation of
the class parts. The constellation model is based on the mixture of Gaussians, while
the appearance of the parts is described with Gabor features and the Gaussian mixture
model in Chapter 3. The full pipeline of the proposed generative part-base Gabor object
class detector is shown in Figure 4.1.

o7



58 4. Part-Based Gabor Object Detector

ll

\J
"IIIIIIIIIIIIIIIIII\‘

=
==
=5
-
&=
5 ”
o Y

Training

i Positive images~
i with annotated
landmarks

u

QOLLLLLLLLLEELLTELEPN

Crpnnnnnnngnnnnnnay

H
0N *

0,. "'lllllllllllllllllllllllllllllllllllllllllllll‘
“l.l'l'i\'l\\'l'l\\'l'l\\'i'l\\'i\\‘i'l\\'l‘i\\'l'l\\'i'l\\'l\\'l'l\\'l‘h\\'i'l\\'i\\'l'l\\'l‘h\\'l'l\\'i'l\\"\\'l'l 'y
0

I‘i'lrl‘l‘llll LLLLLTPN

)

Part
Detector

Object
Detector

Testing
“lllllllllllllllllll,'

)

LJ
Yt

.
Y

-— 0
nnnnnnnnnn o nnnnnnnn.

Figure 4.1: Workflow of the developed generative part-base Gabor object class
detector.

4.1 Object Pose Clustering

Analysis shows that many objects in popular datasets (Caltech-101, Caltech-256, Pascal
VOC and ImageNet) are captured from a limited set of viewpoints. This fact is easy to
explain with the laws of physics, scene structure, and the way people capture images;
pictures of sofas are usually frontal as their backs are turned towards walls; humans are
almost always photographed vertically while being awake. The local part detector in this
work can find parts in any scale or rotation via the rotation and scale shifts described
in Section 3.1, but this is effective and efficient only if the pose distribution is uniform.
Otherwise the experimental results will be inferior to methods that are not necessarily
invariant but exploit the quantized pose property of the datasets. For example, the
Deformable Part-Based Model [55] clusters training image bounding boxes and trains a
separate detector for all clusters. It is noteworthy that their heuristic method is effective
only if a class has different dimensions in different views (guitar, car). The invariance
shifts (Equations 3.7 and 3.8) would be inefficient with sparse clusters in orientation
and/or scale since most of the shifts would not provide any detections. To improve
the method the quantized inhomogeneous properties of the datasets are exploited and
several (3 in the experiments) different object models used during the training phase.
To solve the pose quantization task standard K-means clustering is used to find the
dense regions. However, instead of bounding boxes, which easily fail with objects of
almost equal dimensions, the transformations H of the images to an arbitrary mean
object space (see Algorithm 3.1) are used, which are shown as 2D points in the scale
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Figure 4.2: Examples of ImageNet classes that are clustered in their poses.
Colors denote the discovered pose clusters. For example, guitars are mainly
quantized in orientation while owls in scale.

- orientation space in Figure 4.2. To form pose clusters the images are aligned to an
arbitrary mean space, i.e. a random seed image is used, because seed selection does not
affect the results of the clustering as the absolute values of the scales and angles are not
important for grouping. Examples of discovered clusters with their representatives are
presented in Figure 4.2. More importantly, if the viewpoint changes are close to in-plane
(2D), the full training data can still be used to train a model for each cluster. For this
purpose, all training images are transformed into the new cluster specific canonical space,
i.e. aligned using the cluster center as a seed.

4.2 Constellation Model

The starting point of the probabilistic constellation model representation is the aligned
object space defined in Section 3.2. In the canonical space location variance, of the ob-
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Figure 4.3: Illustration of constellation model generation using spatial align-
ment. Left-to-right: annotated object parts; 50 training examples plotted in the
original space; the same examples plotted in the object space with their ImageNet
bounding boxes corners (see Algorithm 3.1). Yellow labels denote the mean lo-
cations and red ellipses the area of two standard deviations around the mean
locations. Parts from 4 to 7 correspond to the box corners, which have much
higher uncertainty (bigger ellipses) compared to aligned object parts.

ject landmarks is minimized with respect to the selected transformation type (similarity
transformation in the experiments). A likelihood density representation is introduced
in the canonical space by capturing each landmark location using a 2D Gaussian (see
Figure 4.3). The joint pdf of the spatial constellation is p(z}, x4 . .. €'y|0¢), where O¢ is
the set of parameters of N 2D Gaussians representing ¢ = 1... N parts &} in the aligned
space for the class C. Assuming parts’ locations independence, the constellation pdf is
(the object space notation ’ and indexing with C are omitted for clarity):

p(@1, 2y ... 2N|00) = p(x1|py, Z0) - p(@N |y, By). (4.1)

This constellation probability (4.1) is the prior in the developed generative method —
without any detected observations, it gives a probability for a configuration of the parts.
Note that the number of parts, IV, is class specific and varies from 3 to 6 in the experi-
ments.

4.3 Object Detection by Search

In the proposed generative probabilistic object model, the prior probability is the spatial
constellation model in an estimated canonical object space and observation probabilities
are found from the likelihood map of each local part provided by the part detector from
Chapter 3. The desired output of the object detector is a set of the most likely hypotheses
of object locations {hyppgrsT} - the nominator (likelihood) in the Bayes’ theorem. In
order to find these most likely object locations, the detector exhaustively samples the
best part candidates from part-specific likelihood maps, estimates their transformation
to the canonical object space, transforms all parts and selects the ones that agree with
spatial constellation model the most (i.e. have highest constellation likelihoods). The
sampling procedure is simple to implement and is effective in the experiments. In the
case of a large number of candidates, an efficient random sampling procedure can be used
instead of the exhaustive search. Analysis of landmark detection curves (e.g. Figure 3.8)
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shows that curves for most of the categories rich their saturation region when 5-10 highest
scoring candidates of each part is considered in the evaluation. Thus to find a correct
object hypothesis during sampling, it is sufficient to use as few as five best candidates
of each part and then the exhaustive search takes only several (approx. 300) hundred
iterations. Moreover, for most of the iterations only the operations up to line 3 will
be executed due to the transformation prior omitting too awkward transformations.
The spatial prior Hprior is estimated from training examples (Algorithm 3.1). Hpior
defines the allowed intervals of scales and orientations characterising object position in the
image. This allowed intervals are constructed by extending scale (x1.5) and orientation
(15 degrees) intervals obtained from the training images. The pseudo code is given in
Algorithm 4.1 where Npestrns are the best local part candidates (see Figure 3.9). The
most important factor is the detection probability computed in line 10 of Algorithm 4.1.
Line 17 in the algorithm reflects prior knowledge that all bounding boxes in all images are
annotated within the image boundaries. Thus, even though the detection bounding box
can predict the location of truncated object parts outside the image, the final bounding
box boundaries should be inside of image.

Algorithm 4.1 Object detection using the probabilistic part-based Gabor object model

1: Initialize the set of best hypotheses {hypgpsr} to null and set score values to zero
2: for all minimum combinations of the detected parts (2 for isometry /similarity) do
3:  Estimate the transformation H from the image space to the object space

4 if H ¢ {Hpior} then

5 Skip this hypothesis.

6: end if

7:  Transform all detected parts to the object space using H

8:  For each transformed part compute the spatial likelihood (the single terms in (4.1)).
9:  Select the parts with the highest likelihoods (omit if below Piandmark)-

10:  Compute the detection probability p (see Equation 4.2) (detection score)

11:  if p is better than for any in {Hpes:} then

12: Using all selected parts, estimate H~! from the object space to the image space

13: Transform the selected parts to the image space (replace omitted parts and bounding
box corners with ones from the mean shape model).

14: Add hypothesis (parts’ coordinates) to {hypprsr} (remove the worst if the max number
exceeded).

15:  end if

16: end for

17: Enforce all bounding box corners from {hypprsr} to be inside of the image
18: Return the best hypotheses in {hypprsr}

4.4 Detection Score Formulation

The detection probability consists of two elements: the probability of the spatial locations
of the parts in the object space and the likelihoods of the parts’ appearance. The tradi-
tional approach is to use the Bayesian rule of posteriors similar to [121], but that has two
problems. Firstly, to be able to apply it a good estimate of the X not_at_that_location
density is needed, i.e. a number of negative examples. Secondly, object detection, a task
when knowing object class its most probable location in the image is to be found, should
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be based on likelihood values (the nominator in the Bayes’ theorem) and is not a clas-
sification problem. Detection must be based on the highest likelihoods found for each
class. Therefore, detection precedes the classification stage, which is a Bayesian task.
Pruning false positives is also a Bayesian task that should be different from detection.
This idea is further developed in section 5.1, where the generative detector is paired with
discriminative classifiers in order to prune false positive detections.

The full likelihood consists of two elements, appearance and pose, and assuming indepen-
dence of the appearance and spatial location, can be written as (C' denotes class number,
0% and 6° are parameters of correspondingly appearance and constellation GMMs)

p(x, 9|0¢,0¢) = p(x|0¢) x p(g|0¢) == p(®1|py, 1) - ... - plen|py, ) p(gl08) -
——
constellation appearance
(4.2)

In this work, conditional independence for the appearance of different object parts is
assumed. To solve the problem of occlusion or simply detection failure all possible com-
binations of 1, 2, ..., N-1, N parts visible out of N possible are used. This leads to 1st,
2nd, ..., Nth order probability terms:

p(9110c,1) +p(ga|0c2) + ...+ plgnlOcon) + ...
p(9110c,1)p(9210c,2) + p(g91]0c,1)p(g5|0c,3)+

p(gl0¢) = { p(92|0c,2)p(g3l0c,3) + - .. (4.3)
p(9110¢,1)p(92|0c,2)p(g3]0c,3) + ...

which enforces to perform a summation of ), , (I,\c[ ) product terms. Good iterative
implementations perform well up to 10-15 parts after which approximations must be
utilized. In the performed experiments the number of parts was sufficiently small for
exact computation.

In Equation 4.2, a strong product constraint is used for the spatial locations of the parts
but a rather weak sum constraint for their appearance. The reason is that the part
detection is less reliable due to detection failures (background clutter) or occlusion. The
appearance part in Equation 4.2 consists of low, mid and high order probability terms,
exemplified in Equation 4.3, that cannot be reduced since the high order terms dominate
if almost all local parts are detected correctly and the low order terms dominate if only
a small number of the parts are detected. It should be noted that Algorithm 4.1 recovers
from occlusion (lines between 11 and 15) since the parts with too low constellation
likelihoods, which are likely to be false alarms, are replaced with the mean parts locations
and mapped back to the query image.

4.5 Experiments
4.5.1 Data

For visual class detection, several classes from the popular Caltech and ImageNet datasets
were selected. Caltech, and in particular Caltech-101, are considered easy datasets as



4.5 Experiments 63

many classes contain examples in almost the same pose. Therefore, the Caltech classes
measure the method’s capability to model visual appearance variation. ImageNet is a
more recent large scale dataset, where examples are captured from more challenging
viewpoints and many classes are difficult by their visual appearance. Images from the
ImageNet categories were selected manually in order to remove images where only a small
part of an object is visible. Since the training data is limited for Caltech-101, the results
for Caltech-101 and ImageNet are presented using the feature randomization method
with GMM-based pdf estimation (Section 3.3.2). The 12 categories with the biggest
number of images were chosen from Caltech-101: airplanes, car side, dollar bill, faces
easy, motorbikes, revolver, stop sign, watch, yin yang, menorah, grand piano, dragonfly.
From ImageNet, the following categories were selected: acoustic guitar, garden spider,
grey owl, piano and snail. For computational speed-up and for ease of Gabor bank pa-
rameter selection, all ImageNet images were pre-scaled so that their maximal dimension
is equal to 300 pixels (original aspect ratios were preserved). All classes were randomly
divided into approximately equal size training and test sets. Object parts in all images of
selected Caltech and ImageNet categories are annotated manually prior to experiments.
As proposed in this work, detection and classification stages are separated in the exper-
iments, thus test sets for the detection (localization) task are composed of only positive
examples, i.e. representatives of the category being tested. For the classification task,
on the other hand, the test sets are formed with test images of all classes from which the
system should discriminate.

4.5.2 Performance Measures

Detection evaluation in this work is based on a PASCAL VOC evaluation procedure
that includes precision-recall curves and average precision. Classification results are
represented with confusion matrices.

In [47] precision and recall are defined for images ranked according to their scores (the
higher a score is, the more confident the system is in the result). The evaluation procedure
penalizes the object class detector for: i) missing object instances, ii) multiple detections
of the same instance, and iii) false positive detections. For each image, a detector is
expected to return hypotheses of object locations, defined by corners of the bounding
box, and corresponding confidence scores. A successful detection is defined by the overlap
ratio [47]:

_ BBy N BByred

A=
BBy U BByreq’

where BBy is the area of a ground truth bounding box and BB,..q - of a predicted
bounding box. Detection is accepted if the overlap ratio is greater than 0.5. The detection
rate corresponds to the proportion of correctly located objects (A > 0.5) in the images.
Precision p is equal to the proportion of correct detections out of all detections made by
the algorithm. Recall 7 is equal to the proportion of true-class objects that are detected
by the algorithm. Average precision is also used in evaluation, it is defined as the mean
value of precision at 11 levels of recall (evenly distributed from 0 to 1) and describes the
shape of a curve:
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Even though the proposed method is designed for the detection task, there is an interest
in its performance for classification. In the classification framework a label corresponding
to the class having the highest detection score in the image is assigned to this image.
Decisions made by the classifier are presented in the form of a confusion matrix, where
each value Vj; shows the proportion of images of class ¢ that have been classified to the
class j. Thus, the values of each raw sum to one. These accuracy measures are used to
compare obtained results to other methods.

In order to use the detection score in classification it should be transformed to be non-
depend on the number of object parts by averaging the score over the object parts.
This transformation is necessary to make the detection scores of different object classes
compatible, because objects from different categories have different numbers of object
parts and the final detection score is formed as a product depending on the number of
object parts. The transformation is performed as follows:

logo(scoredetn)

SCOT€clsn = )
N,
parts

(4.4)

where scoregetn, = p(x, 9|0, 0%) from Equation 4.2. A logarithmic scale is used for its
property log(z") = N log(z), thus allowing formation of a score that is not dependent
on the number of object parts.

4.5.3 Caltech-4 Object Classification

The main interest of this experiment section is comparison of the developed genera-
tive object detector with other generative methods, therefore a common benchmark,
the Caltech-4 dataset, is used for evaluation. Caltech-4 contains the categories faces,
airplanes, motorbikes and cars rear with 435, 800, 798 and 1155 images, respectively.
The Bergtholdt et al. [15] results cannot be compared to since they report results only
for the faces category and their own background images. Other similar work by Crandall
et al. [34] omits the most difficult class, cars rear, which was replaced by a separate
background class. However, their results are reported in Table 4.1 where the diagonal
elements denote the proportions of correctly classified images. Table 4.1 also contains
a classification confusion matrix for a rival method - a state-of-the-art discriminative
object detector [55].

Table 4.1: Comparison of classification confusion matrices for Caltech-4.

Our method Crandall et al. [34] Felzenzswalb et al. [55]
faces airplanes mbikes cars rear | faces airplanes mbikes bg | faces airplanes mbikes cars rear
faces 92,11 2,63 0,44 4,82 (9490 1,40 3,70 0,00/99,12 0,00 0,88 0,00
airplanes | 0,00 100,00 0,00 0,00 0,00 90,50 1,25 8,25| 3,30 93,40 2,54 0,76
motorbikes | 0,00 0,24 99,29 0,48 0,00 1,00 96,00 3,00| 0,00 0,00 99,76 0,24
cars rear | 0,00 0,69 0,00 99,31 - - - - | 0,00 0,52 0,35 99,13

Table 4.1 reveals the importance of landmark choice. It can be noticed that most of
the misclassified images are confused with cars rear. The errors happen because of too
general nature of cars rear landmarks, i.e. simple corners, which can be found everywhere
with high probability, showing the necessity of more careful landmark choice.
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Figure 4.4: Detection precision-recall curves for Caltech-4 classes.

The developed method, utilizing only positive examples in the training phase performs
favourably with Caltech-4 compared to other methods (Table 4.1). Moreover, the clas-
sification results are based on detection scores that are not optimal for the classification
task. Figure 4.4 shows detection precision-recall curves for the Caltech-4 classes. A no-
ticeable difference between classification and detection results for the airplanes category
is most likely explained by the fact that even though hypothesis for the airplane cat-
egory had higher scores than other categories (cars rear, motorbikes and faces easy)
the overlap with the groundtruth bounding box was less than 0.5.

4.5.4 Caltech-101 with Manually Annotated Landmarks
OBJECT CLASS DETECTION

In this experiment the developed generative object class detector is compared to the
state-of-the-art discriminative deformable part-based model (DPM) by Felzenszwalb et
al. [55]. Precision-recall curves are reported for several Caltech-101 categories that show
the performance highs and lows of the both methods. The experiment is done with
Caltech-101 classes that have minor 2D pose changes and therefore mainly evaluate the
method’s ability to capture appearance variation.

The Felzenszwalb et al. method was executed in two modes: 1) with a sufficient number
of images from the background class as negative examples, exploiting its full discrimi-
native power, and 2) with only a single randomly selected background image (-no-neg).
The latter is intended to approximate the setting of positive examples only. The result
graphs in Figure 4.5 and Appendix II demonstrate that the proposed generative detector
performs comparably to the state-of-the-art method.

In general, the standard DPM method is superior, except for two classes, yin yang and
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Figure 4.5: Comparison of the generative positive examples only method and a
state-of-the-art discriminative method (Felzenszwalb et al. [55]) in an object de-
tection task for Caltech-101 categories: watch, dollar bill, dragonfly and airplanes

(from left-to-right and top-down).

watch, for which the negative set yields worse parts than without negative examples at
all. The proposed generative learning performs comparably to the DPM method without
negative examples, except for the classes dragonfly and airplanes for which the DPM-no-
neg fails to learn the classes properly. Note that both DPM methods utilize the bounding
box optimization procedure as post-processing (for more details see section 2.5.3 and [55]).
Average precision results are compared in Table 4.2

Table 4.2: Detection results (average precision) for the selected Caltech-101

categories.
Classes
Our 95,2| 95,8| 94,1|88,7| 95,7| 92,3|81,7|93,1| 99,6
DPM-no-neg [55]| 99,6| 89,1| 99,7|97,4| 60,2| 87,4(87,3/92,7| 97,0
DPM [55] 100,0{100,0|100,0|99,8]100,0{100,0{90,1{89,7{100,0
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OBJECT CLASSIFICATION

In Section 4.5.3 detection based scores (Equation 4.4) were successfully used for the
classification task of Caltech-4. Table 4.3 shows that the use of detection based scores for
classification becomes unsuccessful when the number of categories is increased. However,
numbers on the main diagonal show that the majority of the images were classified
correctly. The worst classification results were obtained for the dollar bill category (only
41,67% of true positives). The category was often confused with motorbikes and watches.
This behaviour can be explained by the fact that the dollar bill is represented with simple
and general features, i.e. corners. Moreover, many watches and motorbikes in the dataset
are shown with a dark frame around the edges, thus making the brighter area inside easily
confused with a dollar bill. The best classification results, over 90% of true positives,
were achieved for the three most plentiful Caltech-101 categories (airplanes, faces easy
and motorbikes) and grand pianos. However, grand piano and watch are categories with
which most of the other categories are confused. It is noteworthy that none of the images
were confused with categories having simple and stable spatial and appearance models,
such as yin yang, stop sign, faces and dollar bill. The confusion matrix entries were
calculated with detection scores transformed for classification according to Equation 4.4.

Table 4.3: Classification results (confusion matrix) for the selected Caltech-101
categories.

airplanes |91,37| 2,79| 0,00 1,01| 0,00| 3,05 0,00 0,25| 0,51| 0,00/ 1,01| 0,00
car side 0,00(86,15| 0,00/ 0,00| 0.00| 1,54| 0,00| 4,61| 3,08| 0,00| 4,62| 0,00
dollar bill | 0,00| 4,17]41,67| 0,00/ 0,00 4,17| 0,00|16,67| 4,17| 0,00/29,17| 0,00
dragonfly | 0,00/ 0,00/ 0,00/61,76| 0,00(11,76| 0,00| 0,00| 5,88| 0,00{20,59| 0,00
faces 0,00/ 0,00/ 0,00 0,00{92,54| 0,88| 0,00/ 0,00 0,44| 0,00| 6,14| 0,00
piano 0,00 0,00| 0,00 0,00| 0,00{94,00| 0,00| 2,00{ 0,00| 0,00| 4,00 0,00
menorah | 2,27| 0,00| 0,00 0,00 0,00{13,64|72,73| 0,00 0,00 0,00/11,36| 0,00
motorbikes| 0,24 0,48| 0,24| 0,00/ 0,00 0,71| 0,00/97,62| 0,00/ 0,00/ 0,71| 0,00
revolver 2,44| 4,88| 0,00| 4,88| 0,00| 2,44| 0,00| 2,44|75,61| 0,00| 7,32| 0,00
stop sign | 0,00 0,00| 0,00/ 0,00 0,00 5,88| 2,94| 2,94| 0,00|67,65|20,59| 0,00
watch 1,65 0,00| 0,00| 0,00| 0,00{12,39| 1,65| 2,48| 2,48| 0,00(79,34| 0,00
yin yang | 0,00/ 0,00/ 0,00/ 0,00/ 0,00 0,00/ 0,00/ 0,00 3,33| 0,00{16,67|80,00

ErrFeECT OF PRIOR KNOWLEDGE

Prior information about allowable transformations for object structure verification (Al-
gorithm 4.1) was used during testing. This not only speeds up the process of hypothesis
verification but also filters out hypotheses not consistent with training data properties,
e.g. if all people in the training set are vertically oriented the algorithm would not allow
a horizontally oriented hypothesis to score highly or be considered at all. The exper-
iment also investigates the effect of reinforcing hypothesis bounding box corners to be
inside the image boundaries. The reason for this bounding box post-processing comes
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Figure 4.6: Effect of prior knowledge about objects’ spatial statistics (orientation
and scale, Hprior) and reinforcement of all bounding box corner locations to be
inside the image boundaries.

from the empirical knowledge that all bounding boxes in all images of all datasets are
marked inside the image boundaries even if the objects are truncated. From Figure 4.6 it
can be seen that the detection results of well-performing categories (e.g. faces and stop
signs) are almost not affected by the prior knowledge factors, but the use of prior infor-
mation about object pose and bounding box correction improves the results of the more
challenging (big intra-class variation) and scarce categories like menorah and dragonfly.

4.5.5 Caltech-101 with Automatically Generated Landmarks

Since manual annotation of object parts is very time consuming, it was decided to develop
a procedure for automatic object part (landmark) selection. Another reason to renounce
the use of manual landmarks is that intuitive manual selections do not guarantee good
discriminative qualities of the landmarks from a computational point of view.

As many modern image databases provide object bounding boxes for the training images,
the most straightforward and general way for automatic landmark generation is dense
P x P sampling within the object’s bounding box [19, 103, 52]. Nevertheless, many
of the generated landmarks would not be object specific (e.g. they would appear on
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the background) thereby unnecessarily increasing computational workload. To increase
the speed of computation and decrease uncertainty in object description a procedure for
landmark selection is needed. The selection procedure is described in Algorithm 4.2.

Algorithm 4.2 Automatic landmark selection.

1: Generate dense grid of landmarks gtLms for all train images and apply the part detector to
them.

2: for all images do

Calculate the average location for the predicted landmarks predLms.

Find euclidean distances errd between the groundtruth landmarks gtLms and average

locations of the predicted ones predLms.

5: end for

: Set the threshold thld equal to the weighted mean of all errd.

7: Select those categories of landmarks for which the error distance errd is lower than the
threshold thld.

=]

The minimum number of the landmarks allowed to be chosen is 3, as similarity trans-
formations to the mean object space in Algorithm 3.1 require at least 2 landmarks. In
general, the number of selected landmarks is class dependent in order to optimally re-
flect the structural characteristics of each object class. Several object class models formed
with automatically selected landmarks with Algorithm 4.2 are shown in Fig. 4.7.

The landmark selection procedure described in Algorithm 4.2 imposes a restriction on
the object’s pose variation within the bounding box: the more dense sampling used
(the higher is P) the less variation in the object is allowed. This restriction ensures
correspondence of dense samples to the same parts of the objects in different images.

Despite the restriction mentioned above, automatic landmark selection improves the re-
sults of part detection for most of the tested classes; several examples of this improvement,
corresponding to parts shown in Figure 4.7, are shown in the Fig. 4.8. For fair compar-
ison no randomization was used here but a full bank of Gabor filters with parameters
from 3.11.

Figure 4.7: Automatically selected landmarks used for the results in Fig. 4.8.
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Figure 4.8: Top: part detection results for Caltech-101 classes (dollar bill, faces
easy and motorbikes) using full bank of Gabor filters 3.11 with manually anno-
tated landmarks. Bottom: results using the same Gabor bank with automatically
selected landmarks.

Two experiments with Caltech-101 classes exploring the applicability of automatically
selected landmarks object class detection are described below. Both experiments are
based on dense grid generated landmarks. The first set of landmarks represents object
parts, so a grid of 3 x 3 points is placed inside the bounding box (Figure 4.9 top left).
The second set of points corresponds to the object contours, thus evenly spaced points
are generated along bounding box edges plus one point in the centre (Figure 4.9 top
right). The experiments show that object detection results with points inside bounding
box outperform those on its edges, though are still worse than manually annotated se-
mantically meaningful object parts (Figure 3.5 top). It can be seen from Table 4.4 that
motorbikes can be described with their contours as well as with manually selected parts.
The yin yang category has better detection results with the dense grid generated inside
the bounding box than with manual landmarks. These results show the possibility of
discarding the exhaustive annotation step by substituting it with a dense grid of points
after prior image alignment, for example with [101, 188]. However, in general, represen-
tation with manually annotated parts outperforms both types of dense grid, leaving the
unsupervised automatic landmark selection as an open question for the future.
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Table 4.4: Detection average precision for Caltech-101 categories with different

landmarks.

car side |dollar bill| stop sign |revolver|dragonfly|grand piano
manual ann 95,21 95,84 94,12 88,65 | 95,72 92,29
grid inside BB 55,97 91,67 81,69 80,26 | 83,17 82,94
grid on BB border| 50,13 70,40 47,03 73,20 | 65,46 67,81

menorah| yin yang |faces easy| watch |airplanes| motorbikes
manual ann 81,69 93,07 99,56 97,19 | 86,68 96,92
grid inside BB 78,40 | 100,00 98,42 82,16 | 67,69 87,44
grid on BB border| 51,74 96,33 97,76 54,68 | 63,81 95,02
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Figure 4.9: Object detection results for Caltech-101 classes using automatically
generated landmarks. Top: Automatic landmarks inside the bounding box (left)
and on the box contour plus centre (right). Bottom: object detection results,

correspondingly.
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4.5.6 ImageNet Object Class Detection

Pose and appearance variation in the ImageNet classes is much more complex and repre-
sents more realistic test data. For ImageNet classes the novel pose quantization procedure
was tested with three pose models (“our-3”). Table 4.5 also shows the detection results
using only the most frequent of the three pose models (“our-1”). An experiment with test
images in the canonical space (“our-canonic”), where pose variation is removed and no
quantization is needed, is also presented in this section. The idea behind the canonical
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Figure 4.10: Precision-recall curves for the selected ImageNet categories.
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Figure 4.11: Example detections in the images from ImageNet. Note that
bounding boxes provided by the developed object detector are not limited to
a rectangular shape, but show the object’s pose, hence sometimes they are not
counted as correct (with overlap > 0.5). Yellow boxes - groundtruth, red boxes -
obtained detections.

space experiment was to study the contribution of appearance without pose variation.
These experiments verified the previous results with the Caltech images: DPM without
negatives often fails to learn the proper object class model, while in other cases the DPM-
no-neg and the method presented in this work provide comparable accuracy (Table 4.5).
However, the developed object detector does not suffer from problems with the negative
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examples since they are not used. The biggest problem with the proposed detector
occurs with the snails class where there is a significant gap between the performance in
the canonical space and the original test images. This difference can be explained by
the presence of multiple sub-classes, i.e. different types of snails, and 3D pose changes,
which cannot be modelled properly by the 2D quantization procedure (Section 4.1). It
was also found that the object parts that were manually selected have a dramatic effect
on object detection and parts intuitive to humans are not necessarily easy to detect with
local part detectors. The full precision-recall curves are shown in Figure 4.10. Several
example detections in the ImageNet images are presented in Figure 4.11.

Table 4.5: Detection results (average precision) for the selected ImageNet cate-

gories.
ImageNet categories

grey | acoustic | garden | piano | snail

owl guitar spider
our-canonic 96,3 88,4 71,5 66,8 | 58,2
our-1 (best of 3)| 42,9 60,4 60,9 53,2 | 29,8
our-3-model 81,7 80,2 52,5 59,5 31,4
DPM-no-neg 76,4 86,2 24.6 39,0 | 20,8
DPM 90,9 90,7 88,0 90,5 | 86,8

4.5.7 Making the DPM [55] Fail

In the previous experiments, the developed object detector performed comparably or even
superior to the DPM method trained with a single negative example among the positive
examples. However, the standard DPM was clearly superior to both leaving little space to
the proposed detector or the DPM with a single (or only a few) negative examples. This
work nevertheless postulates that detection is essentially a generative machine learning
problem and other classes should not affect selection of the best parts to detect an object
class. Even if the best parts are easily confused with parts of another class, the pruning
of false positives should happen in the stages following detection. Some evidence that
this problem could occur with DPM appeared in the Caltech experiment, where the no-
negative version of the DPM outperformed the standard DPM with the two classes, yin
yang and watches. Further investigation of this finding was conducted by introducing
“hard” negative examples, i.e. images from a visually similar class (violin vs. cello, etc.)
into the training images. For all tested classes there was a clear drop in the results, but
there was also a striking finding that sometimes even a small number of hard negatives,
down to 1%, can make the strong discriminative latent support vector machine learning
of DPM fail. For example, Figure 4.12 shows the DPM results for the garden spider class
trained with 200 random negative examples and the same 200 negative examples with
two hard examples of the black widow spider. Presence of hard negatives caused the
accuracy to collapse from AP = 88.0 to AP = 14.4. This result further justifies research
on the generative approach to object detection or hybrids adopting both generative and
discriminative principles of learning.
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Figure 4.12: The DPM method by Felzenszwalb et al. [55] fails to learn an object
detector for garden spiders (top right) if two examples from a similar class, black
widow spider (bottom right), are introduced into the training set of 200 negative
examples.

4.6 Summary

In this chapter, a generative part-based object class detector was described and its per-
formance on several Caltech and ImageNet categories evaluated. An interesting property
of various databases, object pose quantization, was also investigated in the beginning
of the chapter. During training, the detector aligns the images in order to learn their
appearance without geometric distortions (see Section 3.2) simultaneously revealing the
spatial structure of the objects. With pose clustering, separate models can be learned
by aligning training images belonging to a cluster, i.e. using just part of the training im-
ages, or aligning all training images, forcing cluster centres to act as seeds. The resulting
object’s spatial structures, i.e. the constellation models, are described with a mixture
of 2D Gaussians. During object hypothesis retrieval the constellation and appearance
scores are combined in Algorithm 4.1, which is robust to occlusions and miss-detections.
Experiments showed that the proposed generative object detector is capable of good ob-
ject representation when only small 3D pose variation is present (Caltech-101 results).
The detector’s performance drops when 3D pose changes are introduced (ImageNet re-
sults). In most cases, the developed generative object detector performs as well as a
state-of-the-art discriminative detector in generative mode, significantly outperforming
it for a few categories, e.g. airplanes (Figure 4.5). However, the discriminative detector
with full discriminative power stably gave better results than other two approaches. An
attempt to solve the problem of unsupervised object part selection was also made in
this chapter. The experiments showed that object detection with dense grid landmarks
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generated within a bounding box of aligned images provides results comparable to those
with manually annotated landmarks, but the problem of automatic landmark selection
remains an open question.

Despite one of suggestions made in this work that object detection and classification
should be separated, as detection is a maximum likelihood task while classification is a
Bayesian one, an attempt to use detection scores for classification was made for Caltech-
4 and Caltech-101 categories. It is evident from the results (Caltech-101 classification)
that the detection score does not have enough discriminative power to perform well in
classification for a large number of categories. Moreover, features/object parts that are
good for detection can perform poorly for classification.

The generative nature of the developed object detector allows learning from positive
examples only, but at the same time the lack of discriminative power causes an excessive
amount of false positive detections. Another reason for the large number of false positives
is that the appearance score used in this work is essentially a likelihood not a probability,
which makes the resulting detection scores not readily comparable between the images.
In other words, the developed object detector tries to find an object from everywhere,
hence it has high recall but low precision. This problem can be solved by adding a
discriminative classifier after the generative detector. Thus the next chapter presents
generative-discriminative hybrid combinations applied to the object detection task.



CHAPTER V

Advanced Processing for Object Detection

The previous chapter described a generative part-based object detector. Even though the
detector achieves high levels of recall with challenging object classes, its average precision
level is relatively low due to a large number of false positive detections. This problem
arises from the way the task for object detection is formulated: find a place/places in
the image that most likely contain an object of a certain class. Thus, the system has a
predisposition to produce a lot of false positive detections and "see" objects even if they
are not present. In this chapter, a 2-stage generative-discriminative hybrid is proposed
to overcome the problem of excessive false positive detections. In the hybrid method,
candidate detections of the generative method are re-scored by a discriminative stage,
pruning false positives.

Another possible extension to the object detector is related to the use of color. It has
been reported that use of raw color brings only several per-cent improvement to the
performance of current systems [29]. However, proper color normalization could possibly
increase the impact of color on the detectors’ performance. This chapter also describes a
color normalization technique in which true colors are not important per se but examples
of the same class have photometrically consistent appearance. The color normalization
is achieved by supervised estimation of a class specific canonical color space where the
examples have minimal variation in their colors.

5.1 Hybrid Generative-Discriminative Method

Hybrid generative-discriminative methods are widely used in different applications of
computer vision such as scene classification [20], tracking [110] and image classification
[108]. Hybrid methods for visual object recognition can be divided into two categories:
feature encoding based [108, 133] and learning based [64, 94, 102, 194] approaches. The
framework in [64] shares a similar structure to the proposed algorithm, but in the devel-
oped framework the generative and discriminative stages are based on different and more
generic features (Gabors and HOGs), while in [64] the same codebook representation is
used by both stages of the hybrid system. Another mechanism similar to the proposed

7
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method was introduced in Regions with Convolutional Neural Networks (RCNN) in [69],
where a general objectness detector from [4] generates a large number of bounding box
candidates and then a discriminative classifier is applied to obtain true positives in the
images. Different from the RCNN method, the generative object detector in this frame-
work provides control over the number of proposals generated, which can vary from max 1
per class to max N per class. Thus the following discriminative detector in the proposed
framework can focus on coping with the variance between the background and object
classes instead of both inter-class and intra-class variations as in the RCNN framework.

Generative model
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Figure 5.1: Workflow of the developed hybrid generative-discriminative method.
In the generative detector only positive instances of each object class with anno-
tated bounding boxes and semantic object parts are employed. The true positive
and false positive detections, obtained from the generative model with training im-
ages, are used as positive and negative input examples for the discriminative object
detector, which learns to discover their dissimilarities. During testing, candidate
object detections of the generative method are re-scored with the discriminative
method, leading to a reduction in false positives and increasing precision. Here tp
denotes true positives and fp - false positives.

In this chapter, a hybrid 2-stage method for object detection is proposed. The method
exploits the complementary properties of generative and discriminative approaches. Gen-
erative models capture the appearance distribution of a class and produce compact intra-
class variance, while discriminative models learn the decision boundary between correct
and false positive detections, producing large inter-class variance. By separating these
stages, unlike in existing monolithic systems, a hybrid generative-discriminative model
for visual class detection (Figure 5.1) can be established. The proposed framework can
be viewed as a coarse-to-fine cascade, i.e., first localize the candidate locations with the
generative object detector and then find true objects among those candidates with the
discriminative classifier. In the experiments, the hybrid method was composed of the fully
probabilistic Generative Object Detector (GOD) (presented in Chapters 3 and 4) and var-
ious state-of-the-art discriminative methods (deformable part-based model (DPM) [55],
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histogram of oriented gradients (HOG) [175] or deep features (DF) [154] combined with
the support vector machine (SVM) [28] or random forest (RF) [88] classifiers).

As shown in Figure 5.1, the pipeline of the proposed framework can be divided into
a generative part (see Chapter 3 and 4) and a discriminative part (see Section 5.1.1).
Section 5.1.2 presents details of the generative-discriminative hybrid formulation.

5.1.1 Discriminative Learning

Discriminative learning efficiently establishes mapping between input and output pa-
rameters (e.g. between features and class labels). This section presents two popular
discriminative classifiers: the Support Vector Machine (based on the generalized portrait
algorithm [172, 173|) and the random forest [24].

SUPPORT VECTOR MACHINES (SVM)

For easier understanding, a support vector machine applied to a 2D linearly separable
classification problem (Figure 5.2) is described in this section. However, SVMs can
handle linearly non-separable cases by using kernel functions to transform features into
higher dimensional spaces where classes are separable. Ultimately good separation is
achieved with a hyperplane that has the largest margin to the nearest instances of the
different classes, i.e. maximum margin classification. The larger the margin the better
the classifier is expected to perform on unseen data.

A
X1

e Maximum margin decision hyperplane

Figure 5.2: Linear SVM maximum margin separation.
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Any hyperplane can be defined by its perpendicular w and offset from the origin wq/||w||,
thus the equation of a hyperplane is w -  — wg = 0, where - is a dot product. In this
example x; € R?. Given the points x;, 7 = 1...N and the corresponding class labels
y; = {—1,1}, SVM finds such a hyperplane that samples from different classes are on
the different sides of the hyperplane. The hyperplane also provides the largest margin
between the points of class 1 and -1. Points closest to the hyperplane, defining the
margin, are called support vectors. The corresponding optimization problem is defined
as follows: max”i—u, subject to y;(w - & — wg) > 1.

There exist a variety of SVMs, such as latent-SVM used in [55], Least Squares Sup-
port Vector Machines [161] or SVM for multiple-instance learning defined in [9]. In the
experiments SVM implementation from the libsvm library [28] was used.

RaANDOM FORESTS

To understand the concept of random forests it is better to start with a single tree
example. As in the case of SVM the input data is multidimensional features x; € RP, i =
1...L and the corresponding class labels y; = 1...C. Each node in a tree corresponds
to a split of a feature into two regions, e.g., splitting of feature j with a splitting point
s results in Ry (7, s) = x|z; > s, Ra(i,s) = x|x; < s. Both of these regions are also split
into several regions and this process is repeated on all of the resulting regions until some
stopping rule is applied. The splitting feature and splitting point are defined so that
error between predicted and ground truth classes is minimized.

Figure 5.3: Visualization of a random forest. Darker blue circles with thicker
branches highlight the decision path, which ends with red circle - the terminal
node that gives the class label.
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One of the major problems of single tree classifiers is their high variance, i.e. a small
change in the data may result in a very different series of splits. Random forest, a forest
composed of de-correlated trees, solves the problem of high variance. Random forest
(Figure 5.3) is composed of a big number of trees each of which is trained on a random
subset of training examples and each split is based on a random subset of features. The
experiments used a Google implementation of random forests [88].

5.1.2 Generative-Discriminative Hybrid

The limitations of using exclusively either a generative or discriminative approach moti-
vate the development of a hybrid detectors. The 2-stage pipeline where a discriminative
classifier follows a generative object detector in order to improve the detection perfor-
mance is inspired by state-of-the-art hybrid methods. In the developed hybrid method
the discriminative classifier can be viewed as a post-processing stage of the generative
object detector. Figure 5.5 illustrates the pipeline of the proposed hybrid method.

Train Images

Train cand. det.

Part-Based
Generative
Model

Discriminative
Model

( )
Test Candidate ‘( Revised
Images L Detections ) 'L Detections

Figure 5.4: Generative-discriminative hybrid method. Blue parts correspond to
the training stage, red parts to testing.

The generative method is trained by positive examples of the query image category with
annotated object parts and bounding boxes. The discriminative method, on the other
hand, uses the training stage outputs of the generative method as its inputs. Candi-
date detections of the generative method (training data) are transformed to the aligned
space using the detected part locations. After alignment, detections are scaled to the
size 64 x 64 in pixels and subsequently fed to the discriminative part for re-scoring. Gen-
erative output candidates having bounding box overlap ratio A > 0.7 with the ground
truth are used as positive examples in discriminative training and outputs with A < 0.2
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as negatives. This representation of positive and negative data allows the discriminative
method to learn, exploit and emphasize the difference in appearance of the true positives
and false positives that the generative part produces but is blind to. The re-scored de-
tections of the discriminative stage are further processed by non-maximum suppression,
which removes very similar and overlapping candidates. Non-maximum suppression in
the experiments removes candidates with lower scores if their overlap ratio is greater
than 0.5 (i.e. BBhyp1 N BBhyp2/BBhypt U BBhyp2 > 0.5). The non-maximum suppres-
sion procedure is applied to all hybrid pipelines studied (GOD+DPM, G-DPM-+DPM,
GOD+HOG+SVM, GOD+HOG+RF, GOD+DF+SVM and GOD+DF+RF).

5.1.3 Experiments
SETTINGS

Five challenging categories from the ImageNet database were used in the experiments:
acoustic guitar, piano, snail, garden spider and grey owl. The images contain objects ap-
pearing in different scales, orientations, lighting conditions, with limited 3D pose changes
and moderate intra-class variation. The images for each class were randomly divided into
training and testing groups of approximately the same size. In these experiments the test
set was composed of the test images from all categories selected from ImageNet, same
way as in the classification task (e.g. subsection 4.5.3). Therefore result curves in this
section demonstrate methods ability to detect and classify objects.

PERFORMANCE METRICS

The detection hypothesis is considered correct if the overlap ratio A (see Section 4.5.2)
is greater than 0.5 and detection is not duplicate, as in the experiments in Chapter 4.
The general performance of the investigated methods is described with the precision-
recall curves used in major computer vision competitions (e.g., PascalVOC [48] and
ImageNet [148]). Precision and recall are defined through the concept of true positives,
tp, and false positives, fp, where tp is the proportion of instances correctly labelled as
positive, while fp is the number of negative examples incorrectly labelled as positive.
Precision and recall are computed in the following way:

Recall = tp

Precision = ———, —.
tp+ fp Total number of positives

In general, a generative method can produce a large number of hypotheses to guarantee
that at least one passes the test in (4.5.2). This would result in high recall, but poor
precision which, is the problem of generative methods. The discriminative part of the
proposed pipeline aims to reduce the number of false positives (fp) by keeping the number
of true positives (tp) high.

RESULTS

The results of the various implementations of the proposed hybrid method are shown
in Table 5.1. The implementations are based on publicly available code: the proposed
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Figure 5.5: Precision-recall curves for the Imagenet category piano.
Table 5.1: Detection results (average precision and maximum recall) for the
selected ImageNet categories.
grey acoustic garden piano snail
owl guitar spider
AP /max(rec)|AP /max(rec)|AP /max(rec) AP /max(rec)|AP /max(rec)
GOD 71,1/89,8 37,6/96,2 34,5/93,9 14,5/92,4 12,8/69,1
G-DPM 73,1/90,6 | 76,5/93,3 | 30,3/85.2 | 14,5/94,7 | 42,9/81,9
G-DPM { DPM 89,9/90,2 | 79,2/90.8 | 69,4/80.2 | 75.2/91,8 | 504/77.2
GOD-+DPM 89,2/89,3 87,6/91,2 73,0/81,6 63,6/80,6 55,2/69,1
GOD+HOG +SVM| 89,5/80,7 | 84,5/92,0 | 66,1/79,5 | 54,2/78,8 | 48,1/65,8
GOD+HOG+RF | 84,5/80.3 | 75,5/88,7 | 64,0/80,9 | 49,5/74,1 | 41,2/61,7
GOD{DF+SVM | 89,4/89.8 | 83,4/80,5 | 67.8/80,5 | 59,6/85,9 | 40,3/64,4
GOD +DF + RF 79,3/88,0 | 49,2/86,1 | 484/79,1 | 32,6/82,9 | 21,5/59,1
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Gabor object detector (GOD) [140, 141], histogram of oriented gradients (HOG) [175],
deep features (DF) produced by a deep convolutional neural network [154], and a state-
of-the-art discriminative part-based model (DPM) by Felzenszwalb et. al. [55]. In addi-
tion to the standard DPM a generative version (G-DPM) was constructed by allowing
only a single negative example. From the results in Figure 5.5, Appendix III and Ta-
ble 5.1, it is obvious that the plain generative methods (GOD, G-DPM) achieve high
recall but poor precision; they detect the correct class but are also triggered by many
other things. The tested hybrid generative-discriminative methods (GOD+DPM, G-
DPM+DPM, GOD+HOG+SVM, GOD-+HOG+RF, GOD+DF+SVM, GOD+DF+RF)
achieve almost the same recall as the generative methods, but with significantly better
precision. The two strongest combinations are GOD+DPM and G-DPM+DPM, indicat-
ing the superiority of part-based methods over model-free ones.

5.2 Supervised Class Color Normalization

Color is an important cue in many applications of computer vision and image process-
ing [29, 68]. Colors are determined by the intrinsic properties of the objects and surfaces
as well as the color of the light source. For robustness, the effect of the light source must
be filtered out, known as color normalization or color constancy. Previously proposed
methods for color constancy aim to estimate the color of the light source, and then trans-
form the image colors to the “world color space” (white illuminant) [67, 61]. In the world
color space, the photometric variations are only due to the natural variation of the scene
objects. A survey of existing methods can be found from Gijsenij et al. [68]. The human
visual system is remarkably robust to change of colors and even to completely abnormal
colors [81], but it is unclear how color normalization or constancy should be performed
for computer vision tasks.

In this chapter, a novel computational approach for color normalization is proposed.
The proposed object class specific color normalization produces colors that minimize the
difference within a provided set of images instead of giving physically correct colors.
This approach is supervised utilizing common object landmarks. Using the landmarks,
an optimal “canonical object color space” is estimated and all the examples transformed
to the space. New examples can be transformed to the space by detecting the same
landmarks.

5.2.1 Estimation of Canonical Object Color Space

The goal of the proposed color normalization is to construct a class specific "canonical
object color space" where color variance of the transferred objects is minimized. This
canonical space is based on alignment of class specific object colors in a 3D RGB color
space. Class specific colors are defined by manually annotated landmarks (see Figure 5.6)
corresponding to object regions, whose colors are expected to be photometrically (chroma
and brightness) consistent. The minimum required number of annotated landmarks is 3
for 3D similarity transformation.

The canonical object color space estimation algorithm is outlined in Algorithm 5.1. The
algorithm is based on the same principle as spatial alignment Algorithm 3.1 (Chapter 3).
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Figure 5.6: Caltech-101 examples with annotated landmarks (denoted by the
green circles and numbers). Good landmarks are: petals of a flower, green leaves,
skin and fur patches.

Geometric transformation is estimated using the Umeyama method [170]. The estimation
procedure is further illustrated in Fig. 5.7.

Algorithm 5.1 Canonical color space.

1: Select a random seed image r and use N landmark colors {col,1,...,col, n} as the initial
color space S.

2: for all images 7 do

3:  Estimate the geometric transformation ST'; (3D similarity) from the colors of the ith
image landmarks to the current color space S.

4: Transform the ith landmarks {col; 1,...,col; n} to the current color space using ST,

5:  Refine the current canonical color space by taking the average of the all transformed
landmarks S < avg({col.},).

6: end for

7: Return S as the canonical color space.

Figure 5.7: Example of the Umeyama estimated similarity; original (left) and
the transformed (right). Note that the transform is not exact for four points.
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SEED SELECTION

One issue that affects the final result of Algorithm 3.1 is seed selection. It is noteworthy
that the seed does not particularly affect color variance but the mean, i.e. average colors
of each landmark (Figure 5.8). Therefore, for the computational methods the result is
seed-independent but for a human viewer it can be undesired that colors change after
each run of the algorithm due to a random seed. However, there is a simple procedure to

Figure 5.8: Original (left) and color normalized images using three different
random seeds shown in bottom right corners. Note that in all the images the
skin colors look natural but biased toward the skin color of a person in each seed
image.

fix seed selection: compute the mean colors of each landmark and then select the image
whose landmark colors are closest to the mean values. This simple procedure is adopted
in the experiments.

5.2.2 Experiments

In the following quantitative and qualitative results for class specific color normalization
are reported. Experiments are conducted on the popular classification dataset Caltech-
101 [51]. Additionally, the success of the canonical object color space is confirmed with a
real application where the proposed method is used to photometrically normalize images
prior to object pose estimation for robot grasping (see [25] for more details).

CALTECH-101

For testing, the following Caltech-101 classes were selected: Garfield, water lily, straw-
berry, sunflower, panda and faces containing 11-28 images. Each class is represented
by 3-4 manually annotated landmarks. Examples of original and processed images are
shown in Figure 2.2, Figure 5.9 and Appendix IV.

The quantitative performance metric used in the experiments is the proportional changes
in landmark color variances, provided that the mean color values are left almost un-
changed during color normalization procedure:

Uar(corig) - Uar(ccanonical)
var(Corig)

(5.1)
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Figure 5.9: Sunflowers (originals on the left, images after color normalization
on the right).

The computed performance values are given in Table 5.2. The variance reduction for all
classes was between 0.28-0.68, indicating significant improvement in color similarity (see
also Figure 5.10 for illustration).

Table 5.2: Relative variances of the landmark colors after color normalization.

Relative variance
Cat. LM-1 | LM-2 | LM-3 | LM-4 | Avg.
Faces 0.61 0.62 0.15 0.56 0.55
Water lily 0.63 0.57 0.60 0.14 0.55
Garfield 1.08 0.45 0.40 0.50 0.32
Sunflower 0.34 0.47 0.59 0.13 0.44
Panda 0.78 0.42 0.54 0,61
Strawberry | 0.72 0.65 0.76 0.72

200

Figure 5.10: All sunflower landmark colors as points in the RGB space: original
(left) and processed (right).



88 5. Advanced Processing for Object Detection

CoOLOR FEATURE BASED POSE ESTIMATION FOR ROBOT GRASPING

This experiment demonstrates the use of the developed color normalization approach in
a practical vision application in a robotic grasping work cell, which requires accurate
pose estimation of objects. A Kinect sensor was used as the visual scene input, and the
pose estimation system recently proposed in [25] was applied. The task was to find the
pose of a real object in a captured scene using the KIT 3D model database [95]. The
KIT database contains colorful richly textured objects for which color is an important
cue for relating model points to corresponding scene points.

Figure 5.11: An input Kinect scene (top left), two textured KIT object models
(top middle), color normalized KIT models (top right) and pose estimation results
(color features projected to the scene) (bottom).

The very different illumination conditions between the experiment setup and the setup
used for capturing the model textures had significant negative impact on the calculation
of the color correspondences between the model textures and the observed scene data,
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making the pose estimation to fail. To overcome this problem, a small set of landmarks
was used between the textured models and frontal views of the objects in the setup
for estimating the color transformation. After processing the models, pose estimation
was successfully carried out with a great degree of robustness and accuracy. More de-
tails can be found in the paper where the pose estimation method and full results are
published [25]. An example scenario for two objects is given in Figure 5.11.

5.3 Summary

This chapter presented two possible extensions of a developed generative part-based ob-
ject detector. The first part of the chapter was devoted to a generative-discriminative
hybrid object detector, where the discriminative part is used for re-scoring detections
of the preceding generative detector and thus pruning undesired false positive detec-
tions. Experiments showed that all combinations of generative-discriminative detectors
performed better than pure generative methods, supporting the author’s contention that
detection and classification tasks should be separated.

The second part of the chapter investigated supervised object class color normalization.
Even though traditionally color is considered an important cue in object detection or
classification tasks, in reality color is often not consistent within a visual class, especially
with man-made objects. The good performance of the proposed color normalization
scheme for the popular classification dataset Caltech-101 and, more importantly, in a
practical application of pose estimation for robot grasping suggests that the use of color
cues should be studied further in future work.



CHAPTER VI

Conclusions and Future Work

This work was devoted to the development of a generative part-based object detector
based on Gabor features and learning from positive examples only. The proposed visual
class object detector originated from a face detector described in [85], however a number
of major contributions have been made. The biggest contribution of this work is undoubt-
edly the introduction of a randomized Gaussian mixture model enabling learning from
tens of training images in contrast to the hundreds required by a regular GMM. The ran-
domized GMM also improves object part representation, keeping only descriptive filters
in a Gabor filter bank. Another contribution is raising awareness of the importance of
learning in the aligned object space to avoid learning of spatial distortions along with the
objects appearance. The aligned object space also provided important statistics about
object positions in the training images, used as prior knowledge to prune hypotheses with
objects in odd poses (e.g. face or a car upside down). A spatial model (constellation
score) robust to occlusions and parts misdetections was developed. A property of object
classification datasets, object pose quantization, was investigated, leading to learning of
object pose clusters instead of searching over all possible combinations of object scales
and rotations. Finally, the generative Gabor object detector was combined with discrim-
inative classifiers, which allowed the number of false positive detections of the generative
object detector to be decreased, especially for images in which the searched object is
not present. Moreover, the proposed method is generic, so its parts can be replaced by
other methods, for example, the Gabor features and Gaussian mixture model in the part
detector can be changed to a SIFT descriptor and SVM classifier.

This work suggested to separate detection, based on likelihood values, and classification,
a Bayesian problem. Figure 6.1 illustrates difference in detection and classification ap-
proaches in object part selection. The picture shows two classes of objects: class one
defined by corners and a rectangle in the middle and class 2 defined by corners and an
ellipse in the middle. The corners are very clearly visible, but the figures in the middle
of the objects are not. The best features for detection are object corners as they would
allow reliable object detection. However, using corner features it is impossible to differen-
tiate between the objects, i.e. classify them. The features most suitable for classification

90
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are the figures in the middle of the objects, but due to their poor visibility they would
give much worse results for detection than corners. This simple example shows the need
to separate the detection and classification tasks in such a way that detection precedes
classification. Selection of too discriminative parts unsuitable for detection can explain
the DPM failure in Section 4.5.7 (Figure 4.12) when two similar classes were used as
positive and negative examples.

Class 1 Training examples Class 2

l_rf_ll_ﬁ__ll_ ] l_/\‘_ll_/_‘_ll_w_l
L L L R N T

! . [

[ : ] L [ . ]
|_ J Detection |_ J

Object model class 1 ] O Object model class 2

Classification
Figure 6.1: Illustration of good features for detection and classification.

Experiments done in this work show that the developed part and object detectors have a
performance comparable to state-of-the-art methods; however, there is room for improve-
ment. For example, it was demonstrated that combining the proposed generative object
detector with discriminative classifiers significantly reduces the number of false positive
detections, improving the average precision of the method. Extensive experiments on
adding color information have not been conducted yet, but preliminary results on color
normalization indicate that transforming objects to a canonical object color space could
boost the performance of the proposed object detector if combined with color features.
Both of the aforementioned topics (discriminative postprocessing and color normaliza-
tion) are possible areas of future research.

This work emphasizes the importance of object part choice for the performance of an ob-
ject detector. Experiments with landmarks selected from a dense grid within a bounding
box showed that semantically meaningful object parts might not be optimal for object
detection. Thus, one direction for further research is unsupervised selection of optimal
object parts. In Caltech-101 the majority of the classes have only minor pose variations,
which explains the success of dense grid object parts. From image to image, the gener-
ated points should correspond to approximately the same region of the object, which is
impossible in most modern datasets containing big pose variations. A possible solution to
this problem can be found from interest point driven alignment of objects prior to dense
grid generation. Based on the alignment results (similarity graph), images can be divided
into groups by object pose similarity, thus assuring only minor pose changes within a
group. This idea is based on a recent unsupervised object alignment method [188].

Another area for extending the developed object detector is detection of objects in 3D.
The current 2D constellation model can be extended to 3D by using 3D similarity trans-
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formation instead of 2D transformation. A PASCAL3D+ dataset [187] with annotated
object parts and 3D object models provides a suitable benchmark to proceed in this
direction.
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Figure I.1: Caltech-101 landmark detection (left: cumulative detection graph,
right: detection bars for 10 best candidates).
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Part-Based Gabor Object Detector Example Images
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Figure II.1: Comparison of the generative positive examples only method and
a state-of-the-art discriminative method (Felzenszwalb et al. [55]) in the object
detection task of Caltech-101 categories: faces, motorbikes, stop sign and car side

(from left-to-right and top-down).

110



111

precision

precision

menorah det pr/rec curves. grand_piano det pr/rec curves.
1 - 1 -
- e Y
0.8r 0.8f ]
0.6r .5 0.61 ]
@
(5]
o
0.4r 1 8 04f ]
0.25 —Felzenzwalb 1 bg image 4 0.2{{=—Felzenzwalb 1 bg image 4
s Felzenzwalb 400 bg images s Felzenzwalb 400 bg images
===:rour method ===rour method
0 ! 0 !
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
. recall recall
yin_yang det pr/rec curves. revolver det pr/rec curves.
1 ey 1
'hnnlnll:“';
0.8r 1 0.8f
0.6r 15 0.61
@
Q
<
04 - o 0.4} 4
0.2/ — Felzenzwalb 1 bg image ‘ 4 0.2{{— Felzenzwalb 1 bg image ‘ 4
== Felzenzwalb 400 bg images = Felzenzwalb 400 bg images
. === our method 0 ===:our method
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
recall recall

Figure I1.2: Comparison of the generative positive examples only method and
a state-of-the-art discriminative method (Felzenszwalb et al. [55]) in the object
detection task of Caltech-101 categories: menorah, grand piano, yin yang and
revolver (from left-to-right and top-down).



APPENDIX III

Genertive-Discriminative Hybrid Example Images
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Figure III.1: Precision-recall curves
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Supervised Object Class Color Normalisation
Example Images
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Figure IV.1: Strawberry and Garfield (originals left).
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Figure IV.2: Panda and water lily (originals left).
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