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a b s t r a c t

Membrane computing is a class of distributed parallel computing models. Inspired from the structure and in-

herent mechanism of membrane computing, a membrane clustering algorithm is proposed to deal with auto-

matic clustering problem, in which a tissue-like membrane system with fully connected structure is designed

as its computing framework. Moreover, based on its special structure and inherent mechanism, an improved

velocity-position model is developed as evolution rules. Under the control of evolution-communication

mechanism, the tissue-like membrane system cannot only find the most appropriate number of clusters but

else determine a good clustering partitioning for a data set. Six benchmark data sets are used to evaluate the

proposed membrane clustering algorithm. Experiment results show that the proposed algorithm is superior

or competitive to three state-and-the-art automatic clustering algorithms recently reported in the literature.
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1. Introduction

Data clustering as one of the most useful data mining techniques

has been widely used in many fields, such as pattern recognition, im-

age processing, web mining and biology [7,10,22,38]. Clustering will

accomplish such a task that finds out the natural partition from a

data set such that data points belonging to the same class are as sim-

ilar to each other as possible whereas data points from two different

classes share the maximum difference [13]. Partional clustering is a
class of the most important clustering methods, which attempts to
directly decompose the data set into several disjointed clusters ac-

cording to some criteria [44]. The criteria commonly adopted in clus-

tering is minimizing some measure of dissimilarity in the samples

within each cluster and maximizing the disimilarity of different clus-

ters. K-means is a widely used partitional clustering algorithm [16].

However, k-means has the following disadvantages: (1) it is sensitive

to the initial cluster centers and easy to get stuck at the local optimal

solutions; (2) it takes large time cost to find the global optimal solu-

tion when the number of data points is large; (3) it requires a priori
specification of the number of clusters.

In recent years, a number of global optimization methods have

been introduced to overcome the disadvantages of k-means, such 
as genetic algorithms (GA), simulated annealing (SA), ant colony

c

s

s

l

ptimization (ACO), particle swarm optimization (PSO) and differen-

ial evolution (DE) algorithm. The global search ability of the GA was

rst developed to find the optimal cluster centers for a data set [21].

he GA-based methods use two different coding schemes to express

he clustering solutions: (i) using the chromosome directly to encode

he cluster number that each data point belongs to [20]; (ii) using

he chromosome to describe the cluster centers [2]. First scheme

an suffer from huge searching space and high computing cost when

he number of data points is very large. Thus, second scheme is

ommonly adopted by most of GA-based methods [3,19]. Although

any GAs have shown good performance for finding the promising

egions of the search space, most of them often have two drawbacks:

remature convergence and lack of good local search ability. Thus,

n order to overcome the problems above, other global searching

echniques have been successively developed for data clustering

roblem. A PSO-based clustering method has been proposed in [17],

here the PSO is used to find the optimal cluster centers. In [39], ACO

as been introduced to process data clustering problem. Moreover,

CO and SA has been combined to solve clustering problem in

25], and a hybrid evolutionary algorithm based on PSO and ACO to

nd the optimal cluster centers has been also presented in [24]. In

ddition, a hybrid clustering method, which combines GA and EM

expectation maximization) to automatically determine the optimal

luster centers has been proposed in [23].

The clustering methods described above use the different global

earching techniques to find the optimal cluster centers for a data

et to be clustered. However, these clustering methods have a

imit in practical application: the number of clusters needs to be
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etermined a priori. In fact, it is difficult to specify the number of clus-

ers in advance for most application. Thus, it becomes a challenge in

uch a situation in order to determine an appropriate number of clus-

ers and provide a good partitioning for a data set automatically, that

s, automatic clustering problem. In recent years, GA, PSO and DE have

een used to deal with the automatic clustering problem. A cluster-

ng method that uses the GA to automatically evolve the clusters has

een presented in [1]. This method uses a variable-length chromo-

ome to express both the cluster centers and the number of clusters,

nd then achieves automatic clustering by evolving the two parts at

he same time. In [27], a PSO-based automatic clustering method has

een reported, which first uses the PSO to find the optimal number

f clusters and then determines the corresponding cluster centers by

sing k-means algorithm. In addition, a variable-length GA to solve

utomatic fuzzy clustering problem has been developed in [37], while

n automatic clustering algorithm based on an improved differential

volution has been presented in [6].

Membrane computing, as a class of distributed parallel computing

odels, is inspired from the structure and functioning of living cells

s well as the cooperation of cells in tissues, organs and populations

f cells [35,36]. The models are commonly called membrane systems

r P systems. Over the past years, a variety of variants of membrane

ystems have been proposed [12,15,32–34,40,42,43], including mem-

rane algorithms of solving the global optimization problems. In re-

ent years, membrane algorithms have attracted much attention on

pplications of membrane computing [26]. The research results on a

ot of global optimization problems have shown that compared to the

xisting evolutionary algorithms, membrane algorithms offer a more

ompetitive method due to three advantages: better convergence,

tronger robustness and better balance between exploration and ex-

loitation [14,29–31,45]. Based on the above consideration, this paper

roposes an automatic clustering algorithm that uses a tissue-like

embrane system with fully connected structure to determine the

ost appropriate number of clusters and find a good partition for a

ata set to be clustered. Moreover, a modification of velocity-position

odel is developed according to its special structure and evolution-

ommunication mechanism, which can accelerate the object evolu-

ion and enhance the diversity of objects in the system.

The rest of this paper is organized as follows. Section 2 states

he problem to be solved and then presents a brief of introduction

f tissue-like membrane systems. The proposed membrane cluster-

ng algorithm is described in detail in Section 3. Experimental results

nd analysis are provided in Section 4. Finally, Section 5 draws the

onclusions.

. Preliminaries

.1. Data clustering problem

Data clustering in a D-dimensional Euclidean space is such a pro-

ess, which partitions a data set consisted of n data points into K

roups (clusters) according to some similarity measure. It is well-

nown that minimizing some similarity measure to find the natural

artitioning on a non-uniform data set is a NP-hard problem essen-

ially [11,22,24].

Assume that X = {X1, X2, . . . , Xn} is a data set of n unlabeled data

oints, where Xi = (xi1, xi2, . . . , xiD) is its ith data point. For the data

et X, a partitional clustering algorithm tries to find a partitioning,

C1,C2, . . . ,CK}, such that the similarity of the data points in the same

luster is maximum and data points from different clusters differ as

ar as possible.

K-means algorithm is a widely used clustering technique, which

ttempts to find the optimal cluster centers for determining a good

artitioning of a data set. In order to determine the optimal clus-

er centers, therefore, a data clustering problem can be viewed as an

ptimization (minimization) problem. The objective function used in
-means is the following total mean square error:

m(C1,C2, . . . ,CK) =
K∑

i=1

∑
Xj∈Ci

||Xj − zi||2 (1)

here z1, z2, . . . , zK are the cluster centers of the partitioning,

1,C2, . . . ,CK , respectively. Note that in k-means each cluster center

s the average of samples in the corresponding cluster. However, in

ost evolutionary clustering algorithms and the proposed algorithm,

he cluster center is a representative point of the corresponding clus-

er and it is often different from the average of samples. Moreover,

he cluster centers, as the solutions of an optimization problem, are

etermined by the evolutionary clustering algorithms.

In recent years several clustering validity indexes have been pro-

osed to evaluate the goodness of partitioning obtained by a cluster-

ng algorithm, such as DI index [9], DB index [8], PBM index [28] and

S measure [4]. The existing works have shown that Jm index can well

apture only hyperspherical shaped clusters. However, data sets may

ave different shapes, spatial separations, densities and sizes. Com-

ared with other clustering validity indexes, advantage of CS mea-

ure lies in the effectiveness of dealing with the clusters with differ-

nt densities and sizes [4,5,7]. The CS measure is defined as follows:

S(K) =

∑K
i=1

[
1
Ni

∑
Xl∈Ci

max
Xj∈Ci

||Xl − Xj||
]

∑K
i=1

[
min

1≤ j≤K, j �=i
||mi − mj||

] (2)

here mi denotes average (vector) of samples in ith cluster and is

alculated as follows:

i = 1

Ni

∑
Xj∈Ci

Xj (3)

Generally, the lower CS measure under the constrain that CS > 0

eans that the obtained partition is better, namely, the considered

lustering algorithm gains a good clustering performance, and vice

ersa.

.2. Tissue-like membrane systems

Tissue-like membrane systems are a kind of variants of membrane

ystems, which are inspired from the behavior of multiple single-

embrane cells evolved in a common environment. A tissue-like

embrane system can be logically viewed as a net, in which each cell

s regarded as a processor that deals with the objects and communi-

ates them between the cells along the channels assigned in advance.

he object processing is completed by evolution rules while object

ommunication is achieved by communication rules. We briefly re-

iew the definition and inherent mechanism of tissue-like membrane

ystems. More detailed descriptions of tissue-like membrane systems

an be found in [12,35].

A tissue-like membrane system of degree q is a construct

= (O, w1, . . . , wq, R1, . . . , Rq, R′, i0) (4)

here

(1) O is a finite non-empty alphabet (of objects);

(2) wi(1 ≤ i ≤ q) is finite set of strings over O, which represents

multiset of objects initially present in cell i;

(3) Ri(1 ≤ i ≤ q) is finite set of evolution rules in cell i;

(4) R′ is finite set of communication rules of the form (i, u/v, j),

which represents communication rule between cell i and cell j,

i �= j, i, j = 1, 2, . . . , q, u, v ∈ O∗;

(5) i indicates the output region of the system.



Fig. 1. The designed tissue-like membrane system.

Fig. 2. The example of object representation.
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A tissue-like membrane system consists of q cells and each cell is

surrounded by a cell membrane, while the region outside the q cells

is called the environment. Usually, each cell contains a number of ob-

jects. w1, w1, . . . , wq describe multisets of objects of the q cells, re-

spectively.

In a tissue-like membrane system, there are usually two types of

rules: evolution rule and communication rule. Evolution rule is of the

form u → v, which means that object u will be evolved to object v.

The communication rule between cell i and cell j is of the form (i, u/v,

j). The application of this rule means that the objects represented by

u and v are interchanged between the two cells. Specially, the com-

munication rule between cell i and the environment is described by

the rule (i, u/λ, 0), which indicates that object u will transported into

the environment.

As usual in the framework of membrane computing, every cell as a

computing unit works in a maximally parallel way (a universal clock

is considered here). A computation in a tissue-like membrane system

is a sequence of computing steps which start with the q cells contain-

ing the initial multisets of objects w1, . . . , wq and where, in each step,

one or more rules are applied to the current multisets of objects. A

computation is successful if and only if it halts. When it halts, it pro-

duces a final result in output region.

3. Membrane clustering algorithm for automatic clustering

problem

3.1. A tissue-like membrane system designed

The proposed membrane clustering algorithm is an automatic

clustering algorithm inspired by inherent mechanism of membrane

systems, whose key component is a tissue-like membrane system

with fully connected structure, shown in Fig. 1. The tissue-like mem-

brane system consists of q cells that are surrounded by q elemen-

tary membranes respectively. Each cell will use the evolution rules to

evolve its objects. The dotted lines with direction describe the com-

munication channels between the cells, which are used to achieve the

exchange and sharing of objects. The communication of objects are

achieved by communication rules. The communication mechanism

of objects can realize the co-evolution of objects between the q cells

and accelerate the convergence to the global optimum. Assume that

the environment (labeled by 0) is the output region of the system.

3.1.1. Objects

The role of the tissue-like membrane system in the proposed

membrane clustering algorithm is to determine the most appropriate

number of clusters and search for the corresponding optimal clus-

ter centers for a data set. Therefore, each object in cells is used to

describe a feasible solution of automatic clustering problem. A max-

imum number of clusters is assigned a priori, denoted as Kmax. Thus,

the number of clusters of the found good partitioning should be be-

tween 2 and Kmax.

Assume that the data set X to be clustered has at most Kmax

clusters, C1,C2, . . . ,CKmax
, and the corresponding cluster centers are
1, z2, . . . , zKmax
, respectively. Each cluster center is a D-dimensional

vector, zi = {zi1, . . . , ziD}, i = 1, 2, . . . , Kmax. Thus, each object in the

system is designed as a (Kmax + Kmax × D)-dimensional vector:

= (τ1, . . . , τKmax
, z11, . . . , z1D, . . . , zKmax1, . . . , zKmaxD) (5)

he first Kmax components, τ1, τ2, . . . , τKmax
, are real numbers in

0, 1], where component τ i indicates whether the ith cluster is active,

amely, it will participate in classification or not. The remaining parts

orrespond to Kmax cluster centers respectively, where zi1, zi2, . . . , ziD

re the D components of ith cluster.

The ith cluster Ci of an object Z is called active cluster if and only if

i ≥ 0.5. However, if τ i < 0.5 the cluster is inactive. An active clus-

ter means that it will participate in partitioning data points, oth-

erwise it does not participate in data classification. Therefore, the

i(i = 1, 2, . . . , Kmax), as some control variables, maintain the selec-

ion of active clusters.

Fig. 2 shows an example of object representation. Let the maxi-

um number of clusters, Kmax, be 5, namely, at most five clusters are

ssigned a prior, and they are denoted by C1, C2, C3, C4, C5, respec-

ively. The centers of the five clusters are (3.2, 8.6), (5.9, 1.3), (0.6,

.3), (4.4, 7.1) and (2.5, 7.5), respectively. The first five components

f the object, (0.6, 0.2, 0.7, 0.9, 0.4), are control variables that indi-

ate whether the corresponding clusters are active. According to the

efinition of active clusters, C1, C3, C4 are three active clusters. This

means that actual clusters expressed by the object are the three clus-

ters, thus the corresponding cluster centers, (3.2, 8.6), (0.6, 8.3) and

(4.4, 7.1), will participate in data classification. However, C2 and C5 are

nactive, so they will be ignored when partitioning data points.

As usual in membrane systems, each cell contains one or more ob-

ects and these objects will be evolved by its evolution rules. For sim-

ly, assume that the q cells have the same number of objects, denoted

y m. During the calculation, the best object found in whole system

o far is always stored in the environment, which is called global best

bject, denoted by Zbest.

Initially, the system will generate m initial objects for each cell.

When producing an initial object, Kmax real numbers in [0,1] and

(Kmax × D) random real numbers that satisfy the ranges of the cor-

esponding component values of samples in data set are generated

epeatedly. During object evolution, the system needs to evaluate its

ach object. The CS measure descried above is used to evaluate the

bjects or as the fitness values of objects. Generally, the lower the CS

easure, the better the object, otherwise, it is worse.

.1.2. A modification to velocity-position model

The tissue-like membrane system uses evolution rules to evolve

he objects in cells. In this work, the velocity-position model in PSO

18] is introduced as the evolution rules of cells. However, a modifica-

ion of velocity-position model is developed based on the used mem-

rane structure and inherent mechanism of the tissue-like mem-

rane system. The modification is inspired from such an intuition:

ach cell has two best objects from different sources, first is the best

bject found by it so far (called local best object, denoted by Zlbest),

nd another is the best object communicated from other q − 1 cells

called external best object, which is selected randomly from the

− 1 communicated best objects, denoted by Zebest). The two best ob-

jects of different sources will participate in or guide the evolution of
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Begin
Initialize the objects in cells;
t 0;
While (t < tmax) do
For each cell in parallel do
Evolve its objects by using the evolution rules;
Transport its best object into other cells by the communication rule of type I;
Update the global best object by the communication rule of type II;

End
t t + 1;

End
Export the number of clusters and the corresponding cluster centers;
Partition n data points into the corresponding clusters;

End

Fig. 3. Pseudo code of the proposed membrane clustering algorithm.
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bjects in cells. The benefit of the consideration is enhancing the di-

ersity of objects in the system and the global exploration ability of

he designed tissue-like membrane system.

Assuming that Zi is ith object in a cell, the modification of velocity-

osition model can be described as follows:

Vi = wZi + c1r1(Pi − Zi) + c2r2(Zlbest − Zi)
+ c3r3(Zebest − Zi)

Zi = Zi + Vi

(6)

here Pi is the best position of object Zi found so far, w is inertia

eight, c1, c2, c3 are learning factors, and r1, r2, r3 are three random

eal numbers in [0,1]. In the implementation, we use the following

ecreasing strategy of inertia weight:

= wmax − (wmax − wmin)t/tmax (7)

here wmax and wmin are maximum value and minimum value of in-

rtia weight respectively, and tmax is maximum computing step num-

er (or maximum iteration number).

.1.3. Communication rules

The tissue-like membrane system uses inherent communication

echanism to achieve the exchange and sharing of objects between

ifferent cells. The communication mechanism is provided by com-

unication rules. In the tissue-like membrane system, two kinds of

ommunication rules are adopted:

(I) (i, Z1Z2 · · · Zr/Z′
1Z1Z′

2 · · · Z′
r, j), where i �= j, i. j = 1, 2, . . . , q.

Application of the rule means that r objects Z1Z2���Zr in cell i

will be communicated into cell j, and at the same time r objects

Z′
1Z′

2 · · · Z′
r in cell j will be communicated into cell i.

(II) (i, Zlbest/λ, 0), i = 1, 2, . . . , q.

Here, Zlbest is local best object of cell i in current computing

step and λ is an empty object. Application of the rule means

that object Zlbest in cell i will be communicated into the envi-

ronment.

The q cells in the tissue-like membrane system apply first com-

unication rule (I) to establish the communication relationship of

bjects between them (see the dotted lines in Fig. 1). Each cell trans-

orts its best object into other q − 1 cells by using first communi-

ation rule, thus, each cell will receive q − 1 best objects from other

ells. The received q − 1 best objects constitute a subset of external

est objects in the cell, which will participate in object evolution in

ext computing step. At the same time, each cell communicates its

est object into the environment by using second communication

ule (II) and updates the global best object Zgbest.

.1.4. Halting and output

The designed tissue-like membrane system adopts a simple halt-

ng condition, namely, maximum computing step number. The tissue-

ike membrane system will continue to execute until the halting con-

ition is reached, thus, the system halts. When the system halts, the

lobal best object stored in the environment is regarded as final com-

uting result, namely, the determined number of clusters and the cor-

esponding cluster centers.

.2. Automatic membrane clustering algorithm

The role of the tissue-like membrane system in the developed

utomatic membrane clustering algorithm is determining the most

ppropriate number of clusters and find the corresponding optimal

luster centers for a data set. For a data set of n data points, X, the

aximum number of clusters, Kmax, is assigned by a prior. Each ob-

ect in the tissue-like membrane system represents a vector associ-

ted with a group of feasible clusters, including the control variables

f active clusters and the corresponding cluster centers.
The membrane clustering algorithm first generates m initial

bjects for each cell, and then executes the tissue-like membrane

ystem. As usual, all cells in the tissue-like membrane system

s computing units run in parallel. Each cell uses the improved

elocity-position rule to evolve its objects, and then transports its

est object into other cells and updates the global best object Zgbest.

he evolution-communication procedure is repeated constantly until

he halting condition is reached. At this time, the global best object

gbest is found most appropriate number of clusters, K, as well as

he corresponding optimal cluster centers. Finally, the membrane

lustering algorithm achieves data clustering by partitioning n data

oints into K clusters according to the obtained optimal cluster cen-

ers. The proposed membrane clustering algorithm is summarized

n Fig. 3. In the following, we briery discuss its time and storage

omplexities. The proposed algorithm consists of three main steps:

nitialization, object evolution-communication and output. From

ig. 3, it can be observed that initialization step contains double loop

q and m times, respectively), so its time complexity is O(qm). For

bject evolution-communication step, there are triple loop (q, m, and

max times, respectively), therefore, its time complexity is O(qmtmax).

or output step, its time complexity is O(nKmax). Therefore, the time

omplexity of the proposed algorithm is O(qmtmax + nKmax). During

he computation, the used membrane system needs to store qm

bjects (it has q cells and each cell has m objects), so the storage

omplexity of the proposed algorithm is O(qm).

. Experimental results and analysis

In order to evaluate the performance of the proposed membrane

lustering algorithm, six benchmark data sets from [41] are used in

xperiments, including Iris, Newthyroid, Vowel, Glass, Wine and Can-

er. The six data sets are briefly described as follows:

(1) Iris. The data set consists of 150 points distributed over three

clusters (setosa, versicolor and virginica). Each data has four fea-

tures: sepal length, sepal width, petal length and petal width.

(2) Newthyroid. The data set has 215 points along with five fea-

tures, which are distributed over three clusters: euthyroidism,

hypothyroidism and hyperthyroidism.

(3) Vowel. The data set has 871 points along with five features and

is divided into six clusters.

(4) Glass. The data set has 214 points and is divided into six

clusters. Each data point has nine features: rrefractive index,

sodium, magnesium, aluminum, silicon, potassium, calcium, bar-

ium and iron.

(5) Wine. The data set has 178 points along with 13 features. It is

divided into three clusters.

(6) Cancer. The data set consists of 683 points and each pattern has

nine features. There are two categories in the data: malignant

and benign.



Table 1

The numbers of clusters estimated by several clustering algorithms.

Data sets Actual

number

Membrane

systems

ACDE GCUK DCPSO

Iris 3 3.26 3.28 2.33 2.21

±0.028 ± 0.039 ± 0.098 ± 0.045

Newthyroid 3 3.15 3.22 2.74 3.31

±0.015 ± 0.036 ± 0.086 ± 0.038

Vowel 6 6.25 5.68 5.03 7.18

±0.022 ± 0.065 ± 0.023 ± 0.035

Glass 6 6.03 6.08 5.89 5.81

±0.009 ± 0.074 ± 0.018 ± 0.019

Wine 3 3.12 3.31 2.74 3.47

±0.014 ± 0.042 ± 0.025 ± 0.029

Cancer 2 2.02 2.05 2.12 2.31

±0.010 ± 0.064 ± 0.011 ± 0.027

Table 2

The F-measures calculated by several clustering algorithms.

Data sets Membrane systems ACDE GCUK DCPSO

Iris 0.826 0.821 0.695 0.728

±0.009 ± 0.022 ± 0.032 ± 0.043

Newthyroid 0.842 0.835 0.762 0.785

±0.011 ± 0.023 ± 0.033 ± 0.039

Vowel 0.882 0.874 0.826 0.829

±0.008 ± 0.025 ± 0.036 ± 0.044

Glass 0.492 0.485 0.429 0.433

±0.012 ± 0.024 ± 0.031 ± 0.038

Wine 0.683 0.685 0.523 0.547

±0.013 ± 0.022 ± 0.030 ± 0.042

Cancer 0.967 0.963 0.826 0.854

±0.009 ± 0.021 ± 0.033 ± 0.040
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In experiments, the proposed membrane clustering algorithm is

compared with three recently developed automatic clustering algo-

rithms, which are GCUK [1], ACDE [5] and DCPSO [27] algorithms. In

order to evaluate the objects in cells or chromosomes in population,

CS measure is used as fitness function in these clustering algorithms.

The input parameters of tissue-like membrane system in the pro-

posed membrane clustering algorithm are as follows: the number

of cells q = 4, the number of objects in each cell m = 50, and max-

imum computing step number tmax = 300. In the improved velocity-

position model, input parameters are wmax = 0.9, wmin = 0.2 and

c1 = c2 = c3 = 1.0. In experiments, ACDE, GCUK and DCPSO use the

parameters given in original literature. In the implementation of

ACDE, we use the population size NP = 200, CRmax = 1.8, CRmin = 0.5

and iteration number tmax=300. For GCUK, we set the population size

NP = 200, crossover probability pc = 0.8, mutation probability pm =
0.001 and iteration number tmax=300. The parameters of DCPSO are

as follows: the population size NP = 200, C1 = C2 = 1.494, Pini = 0.75

and iteration number tmax=300. In addition, assume Kmax = 10 in the

clustering algorithms above.

In order to check the clustering qualities of the clustering algo-

rithms, we use F-measure of the whole partitioning and at the same

time examine the optimal numbers of clusters determined by the

clustering algorithms. Let mij be the number of points that belong to

both cluster i and cluster j; mi is the total number of points in cluster

i. The F-measure of cluster i with respect to class j is defined by:

F(i, j) = (2 × precision(i, j) × recall(i, j))

(precision(i, j) + recall(i, j))
(8)

where precision(i, j) = pi j = mi j/mi expresses the precision of cluster

i with respect to class j, and recall(i, j) = mi j/m j denotes the recall of

cluster i with respect to class j. Thus, the overall F-measure of the

whole partitioning is calculated by:

F =
∑

j

mj

m
max

i
F(i, j) (9)

For the F-measure, the optimum score is 1; higher scores are consid-

ered better than lower scores.

Since the proposed membrane clustering algorithm, ACDE, GCUK

and DCPSO contain some random/stochastic factors, the optimal

numbers of clusters determined by them as well as the obtained

F-measures of the corresponding clustering partitioning on different

runs may be different. Therefore, the clustering algorithms are inde-

pendently executed 50 times on each data set (with different initial

objects or initial population), and then calculate the mean values and

standard deviations of the obtained optimal numbers of clusters and

F-measures respectively.

Table 1 provides the comparison results of the optimal numbers

of clusters estimated by the clustering algorithms. Each data set has

an actual number of clusters, while Table 1 gives the mean values and
tandard deviations of the numbers of clusters estimated by the clus-

ering algorithms the 50 times on each data set. It can be seen from

able 1 that mean values of the proposed membrane clustering algo-

ithm (membrane systems) and ACDE algorithm are the most close to

he actual number of clusters in each data set. For example, for Iris,

he mean values of the number of clusters estimated by the proposed

embrane clustering algorithm and ACDE are 3.26 and 3.28, however,

hat of GCUK and DCPSO are 2.33 and 2.21 respectively. Note that the

ctual number of clusters for Iris is 3, so this illustrates the ability

f the membrane clustering algorithm for estimating the number of

lusters outperforms other three clustering algorithms. The results

n Glass show that the average number of clusters for the proposed

embrane clustering algorithm is 6.03 while the average numbers

f clusters for ACDE, GCUK and DCPSO are 6.08, 5.89 and 5.81 respec-

ively. The Glass actually has six clusters, so the comparison results

ndicate that the membrane clustering algorithm is the best of all the

lustering algorithms for the prediction ability. At the same time it

s clear seen that standard deviations of the numbers of clusters ob-

ained by the proposed membrane clustering algorithm is lower than

hat of other three clustering algorithms, so the membrane clustering

lgorithm is robust.

The F-measure is used to evaluate the goodness of clustering

artitioning generated by a clustering algorithm. Usually, higher

-measure means that the clustering algorithm has a better clus-

ering performance, otherwise, it has a worse performance. Table 2

hows the comparison results of F-measures obtained by all cluster-

ng algorithms on the six benchmark data sets. It can be observed

rom Table 2 that for all data sets, the mean values of F-measures

roduced by the proposed membrane clustering algorithm and ACDE

re higher than that of GCUK and DCPSO. This illustrates that the pro-

osed membrane clustering algorithm and ACDE can find the better

lustering partitioning. Moreover, in addition to Wine, the cluster-

ng performances of the proposed membrane clustering algorithm

n other five data sets are better than that of ACDE. Table 2 clear

hows that the proposed membrane clustering algorithm achieves

he lowest standard deviation on all data sets. Therefore, compared

ith other three algorithms, the proposed membrane clustering al-

orithm has a stronger robustness.

In experiments, when a clustering algorithm is executed a time

n a data set, we compute its classification error according to the

btained partitioning and actual partitioning. Then, we further com-

ute the average classification errors and standard deviations of the

0 runs on each data set for the clustering algorithms, respectively.

able 3 reports comparison results of classification errors produced

y the clustering algorithms on six benchmark data sets. The results

lear show that compared with other three clustering algorithms, the

roposed membrane clustering algorithm has lower average classi-

cation error and standard deviation. Therefore, the experimental

esults further demonstrate the effectiveness of the proposed mem-

rane clustering algorithm in solving automatic clustering problem.



Table 3

The classification errors of several clustering algorithms.

Data sets Membrane systems ACDE GCUK DCPSO

Iris 2.44 2.56 5.37 4.92

±0.01 ±0.01 ± 0.03 ± 0.03

Newthyroid 12.26 12.33 25.47 22.75

±1.18 ± 1.27 ± 1.46 ± 1.51

Vowel 38.51 40.24 112.15 102.61

±1.01 ± 1.02 ± 1.16 ± 1.12

Glass 94.65 98.85 102.39 107.19

±0.21 ± 0.25 ± 0.14 ± 0.89

Wine 37.46 41.12 107.72 102.32

±0.07 ± 0.08 ± 1.28 ± 1.25

Cancer 23.92 25.18 30.42 29.21

±0.26 ± 0.35 ± 1.82 ± 1.39

Table 4

Comparison of average computing time (second) over 50 runs.

Data sets Membrane systems ACDE GCUK DCPSO

Iris 11.38 11.87 12.62 12.45

Newthyroid 12.19 12.35 12.93 12.65

Vowel 15.58 15.81 16.38 16.19

Glass 12.57 12.85 13.42 13.15

Wine 13.18 13.36 13.97 13.62

Cancer 16.47 16.62 17.38 17.04
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The computing time refers to the spending time of an algorithm

hen it converges to its best objective function value during its a

un. Table 4 provides the comparison results of the four algorithms

n terms of computing time (second). It can be seen from Table 4

hat the proposed membrane clustering algorithm has the smallest

verage computing time in the four algorithms. Note that the four

lgorithms have the same computational load because they contain

00 objects (individuals or particles). The comparison results illus-

rate that the proposed membrane clustering algorithm has the rela-

ively faster convergence.

The experimental results above demonstrate that the proposed

embrane clustering algorithm can find the optimal number of clus-

ers and provide a good clustering partitioning for a data set. We fur-

her notice that Iris, Newthyroid and Vowel have the lower dimensions

4-, 5- and 5-dimensions respectively) while dimensions of Glass,

ine and Cancer are higher (9-, 13- and 9-dimensions respectively).

t can be seen from the experimental results above that the proposed

embrane clustering algorithm not only has a good clustering perfor-

ance on the low dimensional data sets but also achieves the better

lustering effects on the higher dimensional data sets. This observa-

ion demonstrates that the proposed membrane clustering algorithm

as the better scalability.

. Conclusions

This paper introduces the inherent mechanism of tissue-like

embrane systems to solve automatic clustering problem and pro-

oses an automatic clustering algorithm, called membrane cluster-

ng algorithm. A tissue-like membrane system with fully connected

tructure is designed, and a modification of velocity-position model

s developed as evolution rules based on its communication mecha-

ism. The tissue-like membrane system can automatically determine

he most appropriate number of clusters as well as the correspond-

ng optimal clustering partitioning for a data set. In order to establish

he availability and effectiveness of the proposed membrane cluster-

ng algorithm in solving automatic clustering problem, it is compared

ith three recently developed automatic clustering algorithms on six

enchmark data sets. The comparison includes three aspects: the es-

imated number of clusters, F-measure and classification error. The

omparison results indicate that the proposed membrane clustering
lgorithm can effectively determine the most appropriate number of

lusters and provide a good clustering partitioning and it is robust.

t the same time, the proposed membrane clustering algorithm not

nly has a good clustering performance on the low dimensional data

ets but also achieves the better clustering effects on the higher di-

ensional data sets.
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[12] R. Freund, G. Pǎun, M. Pérez-Jiménez, Tissue-like p systems with channel-states,

Theor. Comput. Sci. 330(1) (2005) 101–116.
[13] J. Hartigan, Clustering Algorithm, Wiley, New York, 1975.

[14] L. Huang, I. Suh, A. Abraham, Dynamic mul-objective optimization based on
membrane computing for control of time-varying unstable plants, Inf. Sci. 181(11)

(2011) 2370–2391.
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