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ABSTRACT

Periocular refers to the facial region in the vicinity of the eye, including eyelids, lashes and eyebrows.
While face and irises have been extensively studied, the periocular region has emerged as a promising
trait for unconstrained biometrics, following demands for increased robustness of face or iris systems.
With a surprisingly high discrimination ability, this region can be easily obtained with existing se-
tups for face and iris, and the requirement of user cooperation can be relaxed, thus facilitating the
interaction with biometric systems. It is also available over a wide range of distances even when the
iris texture cannot be reliably obtained (low resolution) or under partial face occlusion (close dis-
tances). Here, we review the state of the art in periocular biometrics research. A number of aspects
are described, including: i) existing databases, ii) algorithms for periocular detection and/or segmen-
tation, iii) features employed for recognition, iv) identification of the most discriminative regions of
the periocular area, v) comparison with iris and face modalities, vi) soft-biometrics (gender/ethnicity
classification), and vii) impact of gender transformation and plastic surgery on the recognition accu-
racy. This work is expected to provide an insight of the most relevant issues in periocular biometrics,
giving a comprehensive coverage of the existing literature and current state of the art.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Periocular biometrics has been shown as one of the most dis-
criminative regions of the face, gaining attention as an inde-
pendent method for recognition or a complement to face and
iris modalities under non-ideal conditions (Santos and Proencal,
2013; Nigam et al.| [2015). The typical elements of the pe-
riocular region are labeled in Figure [T} left. This region can
be acquired largely relaxing the acquisition conditions, in con-
traposition to the more carefully controlled conditions usually
needed in face or iris modalities, making it suitable for un-
constrained and uncooperative scenarios. Another advantage is
that the problem of iris segmentation is automatically avoided,
which can be an issue in difficult images (Jillela et al.l 2013)).

This paper presents a survey of periocular research works
found in the literature. We provide a comprehensive framework
covering different aspects, from existing databases (Section [2),
to algorithms for detection of the periocular region (Section [3)),
and features for recognition (Section [d)). Databases utilized in-
clude face and iris databases (since the periocular area appears
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in such data), as well as newer databases capturing specifically
the periocular area. Although initial studies have made use of
annotated data, detection and segmentation of the periocular re-
gion has become a research target in itself. We also provide a
taxonomy of the features employed for periocular recognition,
which can be divided between those performing a global analy-
sis of the image (extracting properties describing an entire ROI)
and those performing local analysis (extracting properties of the
neighborhood of a set of sparse selected key points).

Most recognition algorithms work by applying feature ex-
traction and/or key points detection to a predefined ROI around
the eye (Figure [T} right). This holistic approach implies that
some components not relevant for identity recognition, such
as hair or glasses, might be erroneously taken into account
(Proenca et al.l 2014). It can also be the case that a certain
feature is not equally discriminative in all parts of the periocu-
lar region. Some works have addressed these problems, as pre-
sented in Section[5] Since the periocular area appears in face
and iris images, comparison and fusion with these modalities
has been also proposed, which is the focus of Section[6] Be-
sides personal recognition, a number of other tasks have been
also proposed using features extracted from the periocular re-



gion. In this direction, Section El deals with issues like soft-
biometrics (gender/ethnicity classification), and impact of gen-
der transformation and plastic surgery on the recognition ac-
curacy. We finally conclude the paper by highlighting current
trends and future directions in periocular biometrics.
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Fig. 1. Left: elements of the periocular region. Right: region of interest
around the eye for feature extraction. Image from UBIRIS v2 database.

2. Databases

Table [T] summarizes the databases used in periocular re-
search. Some sample images are shown in Figure 2] Very
few databases have been designed specifically for periocular
research, with face and iris databases mostly used for this pur-
pose. The ‘best accuracy’ shown in Table [T|should be taken as
an approximate indication only, since different works may em-
ploy different subsets of the database or a different protocol. A
general tendency, however, is that facial databases exhibit a bet-
ter accuracy. These are the most used databases, so each new
work builds on top of previous research, resulting in additional
improvements. The accuracy with newer periocular databases
are only some steps behind, demonstrating the capabilities of
the periocular modality even in difficult scenarios, where new
research leaps are expected to bring accuracy to even better lev-
els. The following is a short description of each database, high-
lighting the features not contained in Table[T]

2.1. Facial Databases

M2VTS has video of people counting ’0°-’9’ in their native
language and rotating the head left-right. AR has frontal
view with different expressions, illumination, and occlusions
(sun glasses, scarf). GTDB: Georgia Tech has frontal/titled
faces with cluttered background, four expressions and light-
ning/scale change. Caltech has frontal pose under with differ-
ent lighting/expressions/backgrounds. FERET: Facial Recog-
nition Technology has variations of illumination, expression,
pose (frontal, left/right), race, glasses, etc. CMU-H: CMU
Hyperspectral has videos in the range 450nm-1100 nm, in
steps of 10nm. Three halogen lamps surrounding the face was
used individually one at a time, and all together (four light-
ning conditions). FRGC: Face Recognition Grand Challenge
has controlled/uncontrolled and 3D images. Controlled images
were taken in a studio setting, and uncontrolled images in hall-
ways, atria, or outdoors, with varying lightning and distance.
MORPH aging (Albuml) has scanned mug-shots taken be-
tween 1962 and 1998, with age of the subjects ranging 15-68
years old. The gap between first and last images is from 46
days to 29 years. Images are near-frontal, with many types of
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Fig. 2. Samples of databases used in periocular research. Top row: facial
databases. Middle: iris databases. Bottom: periocular databases.

AR Face

Compass

illumination and eye occlusions. PUT has partially controlled
illumination, uniform background and pose variation. Most im-
ages have neutral expression, although a small set has no con-
straints on pose or expressions. MBGC v2: Multiple Biomet-
ric Grand Challenge is organized into 3 challenges: i) Portal,
i) Still Face and iii) Video. Only i and ii have been used in
periocular research. Portal data has subjects walking naturally
through a portal, acquired simultaneously with NIR and VW
video cameras. Therefore, many image perturbations appear. In
the NIR sequences, some frames are too dark or too bright since
the NIR lights shine only for a short time. Still Face data has
high resolution images with controlled/uncontrolled illumina-
tion and frontal/non-frontal collected both in a studio environ-
ment and in hallways/outdoors. Plastic Surgery has one pre-
and one post-surgery image for each person, both frontal, with
proper illumination and neutral expression. ND-twins has im-
ages of twins under varying lighting (indoor/outdoor), expres-
sion (neutral/smile), and pose (frontal/non-frontal). Compass
has four manners (neutral, smiling, eyes closed, facial occlu-
sion) at two distances (10m and 20m) acquired with a pan-tilt-
zoom (PTZ) camera. FG-NET Aging has subjects from multi-
ple race, large variation of lighting, expression, and pose. The
age range is 0-69 years, with images taken years apart. CASIA
v4 Distance has high-resolution frontal NIR images with neu-
tral expression acquired at ~3 meters. FaceExpressUBI has
seven expressions, with location/orientation of the camera and
light sources changed between sessions.

2.2. Iris Databases

BioSec, CASIA Interval v3 and IIT Delhi v1.0 have NIR im-
ages acquired with close-up iris cameras. UBIRIS v2 has VW
images acquired between 3-8 meters with a digital camera. The
1* session has controlled conditions, and the 2"? session was



Table 1. Databases used in periocular research. Only public available databases are included. The ‘best accuracy’ indicates the best performance reported
in the literature (Table[3). The availability of ground-truth information is also indicated, either provided with the database, or available elsewhere.

Variability factors Best accuracy
g
£ 5 £ 5
k: 23 < g : E AR EERE RN p %
Name & 3 | & 5 s S 2 I - - - N - I A & E
FACIAL DATABASES
M2VTS {Pigeon and Vandendorpe]|1997) 37 5 185 videos 286x350 VW o o yes o yes yes 03% na
AR {Martinez and Benavente)|1998) 126 2 >4000 images 768x576 yes VW no no yes | yes | yes o n/a 76%
GTDB (Georgia Tech face database (GTDB)) 50 2-3 750 images 640x480 yes VW no yes yes yes no yes 0.25% 89.2%
Caltech (Caltech face database) 27 n/a 450 images 896x592 yes VW no no yes yes no no 0.12% n/a
FERET (Phillips et al.|2000) 1199 15 14126 images 512x768 yes VW no no yes yes no yes 0.22% 96.8%
CMU-H (Denes et al.|[2002) 54 1-5 764 videos 640x480 450-1100nm yes no no yes no no n/a 97.2%
FRGC (Phillips et al.|[2005) 741 [ 36818 images <1200x1400 | yes VW no yes | yes | yes no o 0.09% 983%
MORPH (Ricanek and Tesafaye||2006) 515 2-5 1690 images 400x500 yes VW no no no yes yes no n/a 33.2%
PUT {Kasinski et al.[|2008) 100 n/a 9971 images 2048x1536 yes VW no no yes no no yes 0.09% 89.7%
MBGC v2 still (Phillips et al.|2009) 437 n/a 3482 images variable VW no yes yes yes no yes 0.20% 85%
MBGC v2 portal 114 n/a 628 videos 2048x2048 NIR yes yes no yes yes no 0.21% 99.8%
91 n/a 571 videos 1440x1080 VW n/a 98.5%
Plastic Surgery (Singh et al., 12010) 900 2 1800 images 200x200 VW no no no no no no n/a 63.9%
ND-twins (Phillips et al.[2011) 435 n/a 24050 images 600x400 VW no no yes yes no yes n/a 98.3%
Compass (Juefei-Xu and Savvides| 2012} 20 na 3200 images T28x128 yes VW o yes yes o yes o ~10% na
FG-NET {Han et al.[[2014) 82 12 1002 images 400x500 yes VW no yes yes yes no yes 0.6% 100%
CASIA v4 Distance (CASIA databases) 142 1 2567 images 2352x1728 NIR no no no no no no n/a 67%
FaceExpressUBI (Barroso et al.|[2013) 184 2 90160 images 2056x2452 yes VW no no yes yes no no 16% n/a
IRIS DATABASES
BioSec (Fierrez et al]2007) 200 2 3200 images 480x640 yes NIR no no no no no no 10.56% 66%
CASIA Interval v3 (CASIA databases) 249 2 2655 images 280x320 yes NIR no no no no no no 8.45% n/a
UBIRIS v2 (Proenca et al| 2010) 261 2 11102 images 300x400 yes VW no yes no yes no yes 9.5% 87.62%
1T Delhi v1.0 (Kumar and Passi|[2010) 224 1 2240 images 240x320 yes NIR no no no no no no 1.88% n/a
MobBIO {Sequeira et al|[2014) 100 1 300 images 200%240 yes VW no o no yes no yes 987% 75%
PERIOCULAR DATABASES
UBIPr {Padole and Proencal [2012) 261 12 10950 images var., yes VW no yes no yes | yes | yes 6.4% 99.75%
FOCS (Jillela et al.|2013) 136 var. 9581 images 750x600 NIR no yes no yes yes yes 18.8% 97.75%
IMP (Sharma et al.| 2014} 62 n/a 620 images 640x480 NIR yes yes o yes o o 3.5% n/a
310 images 600x300 VW
310 images 540x260 night vision
CSIP (Santos et al[[2014) 50 n/a 2004 images var. yes VW yes yes no yes yes yes 15.5% n/a

captured in a real-world setup (natural light, reflections, con-
trast change, defocus, occlusions, blur and off-angle). Mob-
BIO has VW images from a Tablet PC with two lighting condi-
tions, variable eye orientations and occlusions. Distance to the
camera was kept constant. Annotation of the iris databases de-
scribed, or a subset of them, have been made available (Alonso-
Fernandez and Bigun, [2015; Hotbauer et al.| 2014)).

2.3. Periocular Databases

UBIPr was acquired with a digital camera, with distance, il-
lumination, pose and occlusion variability. The distance varies
between 4-8m in steps of 1m, with resolution from 501x401
pixels (8m) to 1001x801 (4m). FOCS: Face and Ocular
Challenge Series has images from NIR videos of subjects
walking through a portal (as in MBGC). A large number of
images are of very poor quality, with high variations in illu-
mination, out-of-focus blur, sensor noise, specular reflections,
partially occluded iris and off-angle. The iris is very small (~50
pixels wide). IMP: IITD Multispectral Periocular has three
spectrums: NIR, VW, and Night Vision. The NIR dataset is
created with a close-up iris scanner, the VW dataset with a dig-
ital camera at 1.3 meters, and the night dataset with a handy-
cam in night mode. CSIP: Cross-Sensor Iris and Periocular
has images with four different smarphones. Ten different se-
tups are included by capturing with both frontal/rear cameras
and with/without the flash embedded in the device. The res-
olution of each camera is different, ranging from 640x480 to
3264x2448. Participants were captured at different sites with
artificial, natural and mixed illumination. Noise factors include
multiple scales, chromatic distortions, rotation, poor lightning,
off-angle, defocus, and iris obstructions (including reflections).

3. Detection and segmentation of the periocular region

Initial studies were focused on feature extraction only (with
the periocular region manually extracted), but automatic detec-
tion and segmentation have increasingly become a research tar-
get in itself. Some works have applied a full face detector first
such as the Viola-Jones (VJ) detector (Viola and Jones|, 2004),
e.g. [Park et al.| (2011) or Juefei-Xu and Savvides| (2012), but
successful extraction of the periocular region in this way relies
on an accurate detection of the whole face. Using iris segmen-
tation techniques may not be reliable under challenging condi-
tions either (Jillela et al.l |2013). On the other hand, eye detec-
tion can be a decisive pre-processing task to ensure successful
segmentation of the iris texture in difficult images, as in the
study by Jillela et al.|(2013)). Here, they used correlation filters
to detect the eye center over the difficult FOCS database of sub-
jects walking through a portal, achieving a 95% success rate.
However, despite this good result in indicating the eye position,
accuracy of the iris segmentation algorithms evaluated were be-
tween 51% and 90% Correlation filters were also used for eye
detection in [Mahalingam et al.|(2014), although after applying
the VJ face detector.

Table[2]summarizes existing research dealing with the task of
locating the eye position directly, without relying on full-face
or iris detectors. |{Uhl and Wild| (2012)) and (Uzair et al.| (2015)
used the VJ detector of face sub-parts. |Uzair et al.|(2015) also
experimented with the CMU hyperspectral database, which has
images captured simultaneously at multiple wavelengths. Since
the eye is centered in all bands, accuracy can be boosted by col-
lective detecting the eye over all bands. [Smeraldi and Bigiin
(2002) made use of Gabor features for eye detection and face



Table 2. Overview of existing automatic eye/periocular detection and segmentation works. The acronyms of this table are fully defined in the text or in the

referenced papers. Column ‘task’ stands for: D=Detection, S=Segmentation.

[ Approach [ Features [ Task | Training [ Database [ Bestaccuracy |
Smeraldi and Bigiin?2002) Gabor filters D M2VTS (202 VW images) M2VTS (349 VW images) 99.3% (M2VTS)
XM2VTS (2388 VW images) 99% (XM2VTS)
Juefei-Xu and Savvides}2012) [ Active Shape Models (ASM) [ D ] MBGC (VW images) [ Compass (3200 VW images) [ n/a |
'Uhl and Wild|(2012) Viola-Jones (VJ) detector of D n/a CASIA distance v4 (282 NIR images) 96.4% (NIR)
face sub-parts (OpenCV) Yale-B (252 VW images) 99.2% (VW)
Zhou et al.]2012) [ HSV color space + convex hull | D,S | n/a [ UBIRIS v1 (1877 VW images) [ n/a |
Jillela et al[(2013) [ Correlation filters [ D ] 1000 eye images [ FOCS (404 NIR images) [ 95% |
Le et al.[(2014) [ LE-ASM + graph-cut [ DS [ MBGC (500 VW images) | MBGC (200 still VW images) [ F-measure: 99.4% |
Mahalingam et al.|(2014) [ Correlation filters [ D] n/a [ HRT (VW images) [ n/a |
Oh et al.[(2014) [ HSV color space [ D,S [ n/a [ UBIRIS v1 (1877 VW images) [ n/a ]
Proencal(2014) [ HSV+YCbCr color spaces | D.S | n/a [ UBIRIS v2 /FRGC (2340/4360 VW images) | n/a |
Proenca et al[(2014) [ Texture/shape descriptors [ S [ UBIRIS v2 (35 VW images) | UBIRIS v2 (200 VW images) [ 97.5% |
Alonso-Fernandez and Bigun|(2015) Symmetry filters D NO 6 iris datasets: 4 NIR, 2 VW 96% (NIR)
(6932 NIR images, 3050 VW) 79% (VW)
Uzair et al.|(2015) V] eye-pair + Hough D n/a MBGC (VW, NIR), UBIPr (VW) n/a
VIJ eye-pair + morphology n/a CMU-H n/a
tracking purposes by performing saccades across the image, GLOBAL LOCAL
whereas |Alonso-Fernandez and Bigun| (2014} 2015) proposed Textural —— BRISK
. . Shape ORB
the use of symmetry filters tuned to detect circular symmetries. BB‘S}II‘: RSN e Eyelids PILP
. .. > Eyebrows
The latter has the advantage of not needing training, and detec- CRBM JDSR PDM s
. . . . . oqs DCT Laws Masks PIGP
tion is possible with a few 1D convolutions due to separability DWT LBP SRC n;-SIFT
. . .. . URF
of the detection filters, built from derivatives of a Gaussian. [Le Force fields LMF SRP Color
K Gabor filters LoG Walsh masks TcH
et al.| (2014) proposed a Local Eyebrow Active Shape Model

(LE-ASM) to detect the eyebrow region directly from a given
face image, with eyebrow pixels segmented afterwards using
graph-cut based segmentation. ASMs were also used by Juefei-
Xu and Savvides| (2012) to automatically extract the periocular
region, albeit after the application of a VI full-face detector.
Recently, |Proenca et al| (2014) proposed a method to la-
bel seve components of the periocular region (iris, sclera, eye-
lashes, eyebrows, hair, skin and glasses) by using seven clas-
sifiers at the pixel level, with each classifier specialized in
one component. Pixel features used for classification included
the following texture and shape descriptors: RGB/HSV/YCbCr
values, Local Binary Patterns (LBP), entropy and Gabor fea-
tures. Some works have proposed the extraction of features
from the sclera region only, therefore requiring an algorithm
to specifically segment this region. For this purpose, Oh
et al.| (2014), [Proencal (2014) and |Zhou et al.| (2012) used the
HSV/YCbCr color spaces. In these works, however, sclera de-
tection is guided by a prior detection of the iris boundaries.

4. Recognition using periocular features

Several feature extraction methods have been proposed for
periocular recognition, with a taxonomy shown in Figure[3] Ex-
isting features can be classified into: i) global features, which
are extracted from the whole image or region of interest (ROI),
and ii) local features, which are extracted from a set of discrete
points, or key points, only. Table[3|gives an overview in chrono-
logical order of existing works for periocular recognition. The
most widely used approaches include Local Binary Patterns

Fig. 3. Taxonomy of periocular features. The acronyms are fully defined in
the text or in the referenced papers.

(LBP) and, to a lesser extent, Histogram of Oriented Gradi-
ents (HOG) and Scale-Invariant Feature Transform (SIFT) key
points. Over the course of the years, many other descriptors
have been proposed. This section provides a brief description
of the features used for periocular recognition (Section {f.T|and
[.2), followed by a review of the works mentioned in Table [3]
(Section [4.3), highlighting their most important results or con-
tributions. Due to pages limitation, we will omit references to
the original works where features have been presented (unless
they are originally proposed for periocular recognition in the
mentioned reference). We refer to the references indicated for
further information about the presented feature extraction tech-
niques. Some preprocessing steps have been also used to cope
with the difficulties found in unconstrained scenarios, such as
pose correction by Active Appearance Models (AAM) (Juefei-
Xu et al., 2011), illumination normalization (Juefei-Xu and!
Savvides,, 2014 Nie et al., [2014), correction of deformations
due to expression change by Elastic Graph Matching (EGM)
(Proenca and Briceno) 2014), or color device-specific calibra-
tion (Santos et all [2014). The use of subspace representation
methods after feature extraction is also becoming a popular way
either to improve performance or reducing the feature set, as
mentioned next in this section. There are also periocular studies
with human experts. |[Hollingsworth et al.| (2010} 2012) evalu-
ated the ability of (untrained) human observers to compare pairs



Table 3. Overview of existing periocular recognition works. The acronyms of this table are fully defined in the text or in the referenced papers.

Best accuracy

|
[ Approach | Features evaluated | Test Database il Features [ #eyes | EER | Rank-1 |
[ : Idi and Bigiin|{2002) [ Gabor filters [ M2VTS (349 VW images) Il Gabor [ ome ] 0.3% [ n/a |
Park et al.|(2009; HOG, LBP, SIFT FRGC (1704 VW images) HOG/LBP/SIFT one 21.78/19.26/6.96% 66.64/72.45/79.49%
ark et al. (20 HOG+LBP+SIFT both n/a 87.32%
Adams et al. {20]0' GEFE+LBP FRGC (820 VW images) GEFE+LBP one/both n/a 86.85% /92.16%
FERET (108 VW images) GEFE+LBP one/both n/a 80.80% / 85.06%
Bharadwaj et al. 12010' CLBP, GIST UBIRIS v2 (7409 VW images) CLBP one/both n/a 54.30% [ 63.77%
GIST one/both n/a 63.34% [ 70.82%
CLBP+GIST one/both n/a nfa/73.65%
[Hollingsworth et al.{{2010) | Human observers | Proprietary (120 subjects NIR) Il Human | one | n/a | 92% |
I; uefei-Xu et al.; 12010 201 1' LBP, WLBP, SIFT, DCT, Gabor FRGC (16028 VW images) FRGC: LBP+DWT both nfa 53.2%
filters, Walsh masks, DWT, SURF FRGC: LBP+DCT both nfa 53.1%
Law Masks, Force Fields, LoG FG-NET (1002 VW images) FG-NET: WLBP both 0.6% 100%
E iller et al. 12010!)' LBP FRGC (1230 VW images) LBP one/both 0.10% / 0.09% 84.39% / 89.76%
FERET (162 VW images) LBP one/both 0.22% / 0.23% 72.22% [ 74.07%
Woodard et al.[(2010a) [ LBP [ MBGC (1052 NIR portal images) Il LBP [ one ] 21% [ 92.5% |
2010 LCH FRGC (4100 VW images) FRGC: RG one/both /a 96.1%/ 97.6%
LBP FRGC: LBP one/both n/a 95.6% | 97.6%
FRGC: LCH+LBP one/both n/a 96.8% / 98.3%
MBGC (911 NIR portal images) MBGC: LBP one n/a 87%
[ FBoddeli etal [{2011) [ BGM [ FOCS (9581 NIR images) Il BGM [ one [ 23.81% [ 94.2% |
zong and Woodard| 1201 IP eyebrow shape MBGC (922 NIR portal images) eyebrow shape one n/a 91%
FRGC (800 VW images) eyebrow shape one n/a 78%
|Alonso-Fernandez and Bigun|{2012[[2014/[2015) Gabor filters BioSec (1200 NIR images) Gabor one 10.56% 66%
Casia Interval v3 (2655 NIR images) Gabor one 14.53% n/a
IIT Delhi v1.0 (2240 NIR images) Gabor one 2.5% n/a
MobBIO (800 VW images) Gabor one 12.32% 75%
UBIRIS v2 (2250 VW images) Gabor one 24.4% n/a
[ |Hollingsworth et al.[{2012) [ Human observers [ Proprietary (210 subjects VW, NIR) [ VW/NIR: Human [ one [ n/a [ 88.4% / 718.8% |
[ Pillela and Ross[{2012) [ SIFT, LBP [ Plastic Surgery (1800 VW images) || LBP/SIFT/LBP+SIFT [ both | n/a [ 456/48.1/63.9% |
[ JJoshi et al.|{2012] [ LBP [ UBIRIS v2 (2400 VW images) Il LBP [ one [ 12.94% [ 81.03% |
[ Juefei-Xu and Savvides|{2012) | ‘WLBP | Compass (3200 VW images) Il WLBP | both | ~10% | nfa |
[ [Oh et al{{2012) [ LBP, PCA/LDA variants [ FERET (354 VW images) I (2D)’LDA [ one ~15% [ n/a |
[ [Padole and Proencal (2012) | HOG, LBP, SIFT | UBIPr (10950 VW images) Il HOG+LBP+SIFT | one | ~20% | nfa |
Ross et al. 12012' HOG, m-SIFT, PDM FOCS (9581 NIR images) HOG/m-SIFT/PDM/all one 33.2/27.2/23.9/18.8% n/a
FRGC (2272 VW images) HOG/m-SIFT/PDM/m-SIFT+PDM one 18.61/2.37/3.84/1.59% n/a
[ [Santos and Hoyle[{2012) [ LBP, SIFT T UBIRIS v2 (1000 VW images) I LBP/SIFT [ one | 31.87/32.09% T 56.4/~8% ]
[ |Tan and Kumar|(2012) [ SIFT, LBP, HOG, LMF [ CASIA v4 Distance (2567 NIR images) [[ SIFT/LBP/HOG/LMF [ one [ n/a [ ~39/59/60/67% |
Mahalingam and Ricaneli 12013' LBP, 3PLBP, H3PLBP Morph (1690 VW images) H3PLBP both n/a 332%
FRGC (16000 VW images) H3PLBP both n/a 97.51%
Georgia Tech (750 VW images) H3PLBP both n/a 92.4%
ND Twins (6863 VW images) H3PLBP both n/a 98.03%
Raghavendra et al|{2013) LBP+SRC Proprietary, light-field and digital Light-field: LBP+SRC one 12.04% n/a
cameras (420 VW images each) Digital camera: LBP+SRC one 16.21% nfa
Smereka and Kumaf"ZOl}P PDM, m-SIFT FOCS (9581 NIR images) PDM/m-SIFT one 18.85/24.64% 97/97.75%
UBIPr (10252 VW images) PDM/m-SIFT one 6.43/13.63% 99.75/96.24%
[ |Uzair et al.[(2013) | _raw pixels, LBP, PCA, LBP+PCA_ | MGBC (3163 NIR portal images) || LBP+PCA [ both ] n/a | 97.7% |
[ [Bakshi et al [{2014) I PIGP, CLBP, WLBP [ UBIRISv2 (11102 VW images) || PIGP/CLBP/WLBP [ ome | n/a [ 82.86/63.77/65.16% |
Gangwar and Joshi; 120 1 4' LPQ, LBP, Gabor filters Caltech (VW images) LPQ+Gabor magnitude one/both 0.12/0.14% n/a
PUT (VW images) LPQ one/both 0.09/0.10% n/a
GTDB (VW images) LPQ+Gabor magnitude one/both 0.28/0.25% n/a
MBGC (VW still images) LPQ+Gabor magnitude one/both 0.22/0.20% n/a
[ [Jillela and Ross[(2014) [ LBP, NGC, JDSR | Proprietary iris (NIR), face (VW) 11 VW: LBP/NGC/JDSR/all [ one ] 12/8/7/6% [ n/a |
Joshi et al.| 12019 Gabor-PPNN, DWT, LBP, HOG MBGC (VW still images) Gabor-PPNN both 6.4% 75.8%
GTDB (VW images) Gabor-PPNN both 5.9% 89.2%
IITK (VW images) Gabor-PPNN both 15.5% 67.6%
PUT (VW images) Gabor-PPNN both 4.8% 89.7%
[ [Karahan et al |(2014) [_SIFT, SURF, BRISK, ORB, LBP | FERET (2380 VW images) 1T SIFT+SURF [ one | n/a I 96.8% ]
Le et al.| 12014' Eyebrow shape MBGC (4400 VW still images) Eyebrow shape both n/a 85%
AR Face (2800 VW images) Eyebrow shape both n/a 76%
[ [Mahalingam et al[{2014) T TPLBP, LBP, HOG T HRT (>1.2 mill. VW images) Il TPLBP [ both | 3521% T 57.19% ]
‘Mikaelyan et al.|(2014] Symmetry patterns (SAFE) BioSec (1200 NIR images) SAFE one 10.75% n/a
2015) CASIA Interval v3 (2655 NIR images) SAFE one 8.45% n/a
IITD (2240 NIR images) SAFE one 1.88% n/a
MobBIO (800 VW images) SAFE one 9.87% n/a
UBIRIS v2 (2250 VW images) SAFE one 24.56% n/a
I Nie et al.|(2014] I PCA to: CRBM, SIFT, LBP, HOG I UBIPr (10252 VW images) ” CRBM-PCA/all I one I 10/6.4% I n/a/50.1% I
[ Oh et al.[{2014 [ Directional projections (SRP) [ UBIRIS v1 (1877 VW images) Il SRP [ one [ 6.52% [ n/a |
Proencal (2014 LBP to eyelids region, FRGC (4360 VW images) LBP+EFD one <25% n/a
eyelids shape (EFD) UBIRIS v2 (2340 VW images) LBP+EFD one <24% n/a
[ |Proenca and Briceno|{2014) [ GC-EGM to: LBP+HOG+SIFT | FaceExpressUBI (90160 VW images) || GC-EGM [ one [ 16% [ n/a |
[ [Proenca et al [2014) [ LBP, HOG, SIFT T UBIRIS v2 (5551 VW images) I LBP+HOG+SIFT [ one | 95% T n/a ]
Raja et al.. 12014} BSIF Proprietary, light-field and digital Light-field: BSIF one 3.39% n/a
cameras (420 VW images each) Digital camera: BSIF one 3.96% n/a
Santos et al."2014' I LBP, HOG, SIFT, ULBP. GIST I CSIP (2004 VW images) ” LBP/HOG/SIFT/ULBP/GIST/all I one I 30.5/30.8/34.3/25.9/16.3/15.5% I n/a I
2014 LBP, HOG, PHOG, IMP: IITD Multispectral VW : PHOG+NN both ~8% nfa
FPLBP, PHOG+NN (310 VW, 310 night, 620 NIR images) night : PHOG+NN both ~1% n/a
NIR : PHOG+NN both ~3.5% nfa
Bakshi et al.| 12015' PILP, SIFT, SURF Bath (32000 NIR images) any one n/a 100%
CASIA Lamp v3 (16212 NIR images) PILP/SIFT one n/a 100%
UBIRIS v2 (11102 VW images) PILP one n/a 87.62%
FERET (14126 VW images) PILP one n/a 85.8%
! zair et al.| 12015' raw pixels, LBP, PCA, LBP+PCA MGBC (NIR portal images) LBP one n/a 99.8%
MGBC (VW portal images) LBP+PCA one n/a 98.5%
CMU Hyperspectral PCA one n/a 97.2%
UBIPr (VW images) LBP one n/a 99.5%




of periocular images both with VW and NIR illumination, ob-
taining better results with the VW modality. They also tested
three computer experts (LBP, HOG and SIFT), finding that the
performance of humans and machines was similar.

4.1. Global features

Global approaches extract properties describing a entire ROI,
such as texture, shape or color features. They are typically com-
puted by dividing the image into a grid of patches (Figure [I]
right) and extracting features in each patch. A global descriptor
is then built by concatenating features from each patch into a
single vector. This produces fixed length vectors, with match-
ing between two images simply done by comparing these vec-
tors with some distance measure, which is very time efficient.

4.1.1. Textural-based features

BGM: Bayesian Graphical Models were used by Boddeti
et al.| (2011). They adapted an iris matcher based on correla-
tion filters applied to non-overlapping image patches. Patches
of gallery and probe images are cross-correlated, and the output
used to feed a Bayesian graphical model (BGM) trained to con-
sider non-linear deformations and occlusions between images.
BGM were also used by |Smereka and Kumar (2013)) and Ross
et al. (2012), although called PDM or Probabilistic Deforma-
tion Models in these works.

BSIF: Binarized Statistical Image Features (Raja et al)
2014} Raghavendra et al.l [2013) computes a binary code for
each pixel by linearly projecting image patches onto a sub-
space, whose basis vectors are learnt from natural images us-
ing Independent Component Analysis (ICA). Since it is based
on natural images, it is expected that BSIF encodes texture fea-
tures more robustly than other methods that also produce binary
codes, such as LBPs.

CRBM: Convolutional Restricted Boltzman Machines are
a convolutional version of the Restricted Boltzman Machines,
previously used in handwriting recognition, image classifica-
tion, and face verification. CRBM, proposed for periocular
recognition by Nie et al.| (2014), is a generative stochastic neu-
ral network that learn a probability distribution over a set of
inputs generated by filters which capture edge orientation and
spatial connections between image patches.

DCT: Discrete Cosine Transform (Juefei-Xu et al.l 2010)
expresses data points by a sum of cosine functions oscillating
at different frequencies (which in 2D corresponds to horizontal
and vertical frequencies). The 2D-DCT is computed in image
blocks of size N x N (with N=3,5,7...) and the N? coefficients
are assigned as featureto the center pixel of the block.

DWT: Discrete Wavelet Transform was used by Juefei-Xu
et al| (2010) and Joshi et al| (2014) with respect to the Haar
wavelet, which, in 2D, leads to an approximation of image de-
tails in three orientations: horizontal, vertical and diagonal.

Force Field Transform (Juefei-Xu et al.,[2010) employs an
analogy to gravitational force. Each pixel exerts a ‘force’ on its
neighbors inversely proportional to the distance between them,
weighted by the pixel value. The net force at one point is the
aggregate of the forces exerted by all other 5 x 5 neighbors.

Gabor filters are texture filters selective in frequency and
orientation. A set of different frequencies and orientations are

6

usually employed. For example, Smeraldi and Bigiin| (2002)
and|Alonso-Fernandez and Bigun|(2012,2014}/2015)) employed
five frequencies and six orientations equally spaced in the log-
polar frequency plane, achieving full coverage of the spectrum.
Juefei-Xu et al.[(2010) employed one frequency and four orien-
tations, Gangwar and Joshi|(2014)) employed one frequency and
one orientation only, and Joshi et al.|(2014) employed five fre-
quencies and six orientations. Lastly, (Cao and Schmid| (2014
used two frequencies and eight orientations, with Gabor re-
sponses further encoded by LBP operators (below).

GIST perceptual descriptors (Bharadwaj et al.,|2010; San-
tos et al., [2014) consist of five perceptual dimensions related
with scene description, correlated with the second-order statis-
tics and spatial arrangement of structured image components:
naturalness, which quantizes the vertical and horizontal edge
distribution; openness, presence or lack of reference points;
roughness, size of the largest prominent object; expansion,
depth of the space gradient; and ruggedness, which quantizes
the contour orientation that deviates from the horizontal.

HOG: Histogram of Oriented Gradients. In HOG, the gra-
dient orientation and magnitude are computed in each pixel.
The histogram of orientations is then built, with each bin ac-
cumulating corresponding gradient magnitudes. In PHOG or
Pyramid of Histogram of Oriented Gradients, instead of using
image patches, HOG is extracted from the whole image. Then,
the image is split up several times like a quad-tree and all sub-
images get their own HOG.

JDSR: Joint Dictionary-based Sparse Representation
(Jillela and Ross| 2014). computes a compact dictionary us-
ing a set of training images. A new image is represented as a
sparse linear combination of the dictionary elements. A simi-
lar approach is SRC, or Sparse Representation Classification
(Raghavendra et al.}, 2013). An image is represented as a sparse
linear combination of training images plus sparse errors due to
perturbations. Images can be in original raw form or repre-
sented in any feature space. The features used included Eigen-
faces, Laplacianfaces, Randomfaces, Fisherfaces, and down-
sampled versions of the raw image. [Raghavendra et al.| (2013)
also tested BSIF and LBP features.

Laws masks were used by Juefei-Xu et al.|(2010). Five 1D
masks capturing shapes of level, edge, spot, wave and ripple
were employed. In 2D, masks are 1D-convolved in all possible
combinations with an image, thus producing 25 local features.

LBP: Local Binary Patterns were first introduced for tex-
ture classification, since they can identify spots, line ends,
edges, corners and other patterns. For each pixel p, a 3 X 3
neighborhood is considered. Every neighbor p; (i=1...8) is as-
signed a binary value of 1 if p; > p, or 0 otherwise. The binary
values are then concatenated into a 8-bits binary number, and
the decimal equivalent is assigned to characterize the texture at
p, leading to 28=256 possible labels. The LBP values of all
pixels within a given patch are then quantized into a 8-bin his-
togram. LBP is one of the most popular periocular matching
techniques in the literature (Table [3), with many variants pro-
posed. One is Uniform LBP or ULBP (Santos et al., 2014),
used to reduce the length of the feature vector and achieve rota-
tion invariance. A LBP is called uniform if it contains at most



two bitwise transitions from O to 1 or vice-versa. A separate
label is used for each uniform pattern, and all the non-uniform
patterns are labeled with a single label, yielding to 59 different
labels, instead of 256 as the regular LBP. The neighborhood can
be also made larger to allow multi-resolution representations of
the local texture pattern, leading to a circle of radius R, also
called Circular LBP or CLBP (Bharadwaj et al.| [2010; Bakshi
et al 2014). To avoid a large number of binary values as R
increases, only neighbors separated by certain angular distance
may be chosen. In Three-Patch LBP or TPLBP/3PLBP (Ma-
halingam and Ricanekl 2013} Mahalingam et al.|[2014), pixel p
is compared with the central pixel of two (non-adjacent) patches
situated across a circle R. Application of 3PLBP to multiple
image scales across a Gaussian pyramid leads to the Hierarchi-
cal Three-Patch LBP or H3PLBP (Mahalingam and Ricanek),
2013). Further extension to two circles R; and R, results in
Four-Patch LBP or FPLBP (Sharma et al.,[2014]), involving four
patches instead of three in the comparison. The use of subspace
representation methods applied to LBPs is also very popular
to reduce the feature set or improve performance, for example:
Adams et al.| (2010), Juefei-Xu et al.| (2011}, |(Oh et al.| (2012),
Uzair et al. (2013 2015) and Nie et al.| (2014). Other works
have also proposed to apply LBP upon other feature extraction
itself, for example Juefei-Xu et al.| (2010); Juefei-Xu and Sav-
vides| (2012), Bakshi et al.|(2014) or|Cao and Schmid| (2014).

LMF: Leung-Mallik filters is a set of filters constructed
from Gaussian, Gaussian derivatives and Laplacian of Gaus-
sian at different orientations and scales. In the experiments by
Tan and Kumar|(2012), filter responses from an image training
set were clustered by k-means to construct a texton dictionary.
The clusters (texton) producing the lowest EER were then used
to classify test images.

LoG: Laplacian of Gaussian filter is an edge detector, used
by Juefei-Xu et al.|(2010) for periocular recognition.

LPQ: Local Phase Quantization (Gangwar and Joshi,
2014) extracts phase statistics of local patches by selective fre-
quency filters in the Fourier domain. The phases of the four
low-frequency coeflicients are quantized in four bins.

NGC: Normalized Gradient Correlation (Jillela and Ross|,
2014) computes in the Fourier domain the normalized correla-
tion between the gradients of two images in pair-wise patches.

PIGP: Phase Intensive Global Pattern (Bakshi et al.,[2014)
computes the intensity variation of pixel-neighborhoods with
respect to different phases by convolution with a bank of 3 x 3
filters. The filters have ‘U’ shape when seen in 3D, with differ-
ent rotations corresponding to the different phases. Four differ-
ent angles between 0 and 37/4 in steps of /4 were considered.

SRP: Structured Random Projections (Oh et al., 2014)) en-
code horizontal and vertical directional features by means of
1D horizontal and vertical binary vectors (projection elements).
Such elements have a single group of contiguous ‘1’ values,
with the location of ‘1’s’ randomly determined. The number k&
of projection elements and the length / of contiguous ‘1’s’ are
to be fixed experimentally, with k=10 and /=3.,6,...150 tested.

Walsh masks are convolution filters which only contain +1
and -1 values, thus capturing the binary characteristics of an
image in terms of contrast. N different 1D-filters of N elements
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are produced (N=3,5,7...) and combined in all possible pairs,
yielding to N2 2D-filters. Walsh masks were used by Juefei-Xu
et al. (2010), Juefe1-Xu and Savvides| (2012) and Bakshi et al.
(2014) to compute the Walsh-Hadamard Transform based LBPs
(WLBP), which consists of extracting LBPs from the input im-
age after being filtered with Walsh masks.

4.1.2. Shape-based features

Eyelids shape descriptors (Proencal 2014) extract several
properties from the polynomial encoding each eyelid, includ-
ing: accumulated curvature at point i (out of 7), defined as

3‘=1 % / Z.ti=l % shape context, represented by the his-
togram h; of (x; — x;,y; — y;) at each point (x;,y;), ¥j # i; and
the Elliptical Fourier Descriptors (EFD) parameterizing y; co-
ordinates of the eyelids. |Proenca) (2014) also applied LBP to
the eyelids region only.

Eyebrows shape was studied by [Dong and Woodard| (2011
and Le et al.|(2014). [Dong and Woodard! (2011) encoded rect-
angularity, eccentricity, isoperimetric quotient, area percent-
age of different sub-regions, and critical points (comprising the
right/left-most points, the highest point and the centroid). [Le
et al.| (2014) proposed the use of shape context histograms en-
coding the distribution of eyebrow points relative to a given
(reference) point, and the Procrustes analysis representing the
eyebrow shape asymmetry.

4.1.3. Color-based features

LCH: Local Color Histograms from image patches were
used by [Woodard et al.[(2010b). They experimented with RGB
and HSV spaces and their sub-spaces, finding that the RG (red-
green) color space outperformed the other, with a 4 X 4 his-
togram giving better results than coarser or finer resolutions.
Thus each 4 x 4 histogram provides a 16 element feature vector
per patch. LCH were also used by |Lyle et al.[(2012) for gender
and ethnicity classification using periocular data (Section[7).

4.2. Local features

In local approaches, a sparse set of characteristic points
(called key points) is detected first. Local features encode prop-
erties of the neighborhood around key points only, leading to
local key point descriptors. Since the number of detected key
points is not necessarily the same in each image, the resulting
feature vector may not be of constant length. Therefore, the
matching algorithm has to compare each key point of one im-
age against all key points of the other image to find a pair match,
thus increasing the computation time. The output from the
matching function is typically the number of matched points,
although a distance measurement between pairs may also be
returned. To achieve scale invariance, key points are usually
detected at different scales. Different key point detection algo-
rithms exist, with some of the feature extraction methods of this
section also having its own key point extraction method. For ex-
ample, detection of key points with the SIFT feature extractor
relies on a difference of Gaussians (DOG) function in the scale
space, whereas detection with SURF is based on the Hessian



matrix, but relying on integral images to speed up computa-
tions. Newer algorithms such as BRISK and ORB claim to pro-
vide an even faster alternative to SIFT or SURF key point ex-
traction methods. |[Karahan et al.| (2014) employs one key point
extraction method (SURF), and then compute the SIFT, SURF,
BRISK and ORB descriptors from these key points. Other peri-
ocular works like Karahan et al.|(2014), Mikaelyan et al.|(2014)
and |Alonso-Fernandez and Bigun| (2015)) extract key points de-
scriptors at selected sampling points in the center of image
patches only, resembling the grid-like analysis of global ap-
proaches (Figure [T] right) but using local features. This way,
no key point detection is carried out, and the obtained feature
vector is of fixed size. The following local descriptors have
been proposed in the literature for periocular recognition.

BRISK: Binary Robust Invariant Scalable Key points de-
scriptor is composed of a binary string by concatenating the
results of simple brightness comparison tests. BRISK applies
a sampling pattern of N=60 locations equally spaced on circles
concentric with the key point. The origin of the sampling pat-
tern is rotated according to the gradient angle around the key
point to achieve rotation invariance. The intensity of all possi-
ble short-distance pixel pairs p; and p; of the sampling pattern
is then compared, assigning a binary value of 1 if p; > pj,
and 0 otherwise. The resulting feature vector at each key point
has 512 bits. BRISK is employed for periocular recognition by
Karahan et al.| (2014).

ORB: Oriented FAST and Rotated BRIEF is based on
the FAST corner detector and the visual descriptor BRIEF (Bi-
nary Robust Independent Elementary Features). As in BRISK,
BRIEF also uses binary tests between pixels. Pixel pairs are
considered from an image patch of size S x S. The original
BRIEF deals poorly with rotation, so in ORB it is proposed to
steer the descriptor according to the dominant rotation of the
key point (obtained from the first order moments). The param-
eters employed in ORB are S=31 and a vector length of 256
bits per key point. ORB was used for periocular recognition by
Karahan et al. (2014).

PILP: Phase Intensive Local Pattern was used by [Bakshi
et al.| (2015), following the work in|Bakshi et al|(2014) where
they presented PIGP (Phase Intensive Global Pattern). PILP
uses a similar filter bank than PIGP, but used for key point ex-
traction, rather than for feature encoding. Size of the filters
varies from 3 X 3 to 9x 9, to allow to cope with scale variations.
This way, key points are the local extrema among pixels in its
own window and windows in its neighboring phases. Feature
extraction is then done by computing a gradient orientation his-
togram in the neighborhood of each keypoint, in a similar way
than SIFT descriptor, below.

SAFE: Symmetry Assessment by Feature Expansion
(Mikaelyan et al., [2014} |Alonso-Fernandez and Bigun, 2015)
describes neighborhoods around key points by projection onto
harmonic functions which estimates the presence of various
symmetric curve families. The iso-curves of such functions
are highly symmetric w.r.t. the key points and the estimated
coefficients have well defined geometric interpretations. The
detected patterns resemble shapes such as parabolas, circles,
spirals, etc. Detection is done in concentric circular bands of
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different radii around key points, with radii log-equidistantly
sampled. Extracted features therefore quantify the presence of
pattern families in annular rings around each key point.

SIFT: Scale Invariant Feature Transformation. Together
with LBP, SIFT is the most popular matching technique em-
ployed in the literature (Table [3)). SIFT encodes local orienta-
tion via histograms of gradients around key points. The dom-
inant orientation of a key point is first obtained by the peak of
the gradient orientation histogram in a 16 x 16 window. The key
point feature vector of dimension 4x4x8 = 128 is then obtained
by computing 8-bin gradient orientation histograms (relative to
the dominant orientation to achieve rotation invariance) in 4 X 4
sub-regions around the key point. m-SIFT (modified SIFT) is
a SIFT matcher where additional constraints are imposed to the
angle and distance of matched key points (Ross et al., 2012
Smereka and Kumar, 2013).

SUREF: Speeded Up Robust Features was aimed at provid-
ing a detector and feature extractor faster than SIFT and other
local feature algorithms. Feature extraction is done over a 4 x 4
sub-region around the key point (relative to the dominant ori-
entation) using Haar wavelet responses. SURF is employed for
periocular recognition by |Juefei-Xu et al.[(2010), Karahan et al.
(2014) and [Bakshi et al.| (2015).

4.3. Literature review of periocular recognition works

Periocular recognition started to gain popularity after the
studies by [Park et al.| (2009} 2011)). Some pioneering works can
be traced back to 2002 (Smeraldi and Bigiin, 2002), although
authors here did not call the local eye area ‘periocular’. The ap-
proach by |Park et al.|(2011) combined global and local features,
concretely LBP, HOG and SIFT. Reported performance of such
study was fairly good, setting the framework for the use of the
periocular modality. Many works have followed this approach
as inspiration, with LBPs and their variations being particu-
larly extensive in the literature (Miller et al., 2010bj; Woodard
et al., 2010alb; [Tan and Kumar, 2012; Mahalingam and Ri-
canek, 2013 |[Karahan et al.| [2014). The studies of (Woodard;
et al., [2010alb) used for the first time NIR data (MBGC portal
video), although they selected usable frames (higher quality)
which mostly are in the earlier part of the video, where scale
change is not substantial. [Boddeti et al.[| (2011} also presented
experiments over NIR portal data from the more difficult FOCS
database, but with a different descriptor (BGM). [Mahalingam
and Ricanek|(2013)) also evaluated the impact of covariates such
as pose, expression, template aging, glasses and eyelids occlu-
sion. Some works have also employed other features in addition
to LBPs (Woodard et al.,|2010b;|{Tan and Kumar, 2012} Karahan
et al.| [2014). Woodard et al.| (2010b) employed LCH (RG color
histograms), reporting the best accuracy up to that date with the
FRGC database of VW images. [Tan and Kumar| (2012) pro-
posed Leung-Mallik filters (LMF) as texture descriptors over
the CASIA v4 Distance database of NIR images. [Karahan et al.
(2014) evaluated LBP, SIFT, and other local descriptors includ-
ing SURF, BRISK and ORB over the FERET database. The
use of subspace representation methods applied to raw pixels or
LBP features is also becoming a popular way either to improve
performance or reducing the feature set (Adams et al.,2010;Oh



et al.| [2012; |Uzair et al., |2013; Juefei-Xu and Savvides|, [2014;
Nie et al., 2014} |Uzair et al.,[2015)). LBP has been also used in
other works analyzing for example the impact of plastic surgery
(Jillela and Ross, [2012) or gender transformation (Mahalingam
et all[2014) on periocular recognition (see Section [7).

Inspired by |Park et al. (2009), Juefei-Xu et al.| (2010) ex-
tended the experiments with additional global and local fea-
tures to a significant larger set of the FRGC database with less
ideal images (thus the lower accuracy w.r.t. previous studies):
WLBP, Laws Masks, DCT, DWT, Force Field transform, SURF,
Gabor filters and LoG filters. They later addressed the prob-
lem of aging degradation on periocular recognition using the
FG-NET database (Juefei-Xu et al., 2011), reported to be an
issue even at small time lapses (Park et al.l 2011). To ob-
tain age invariant features, they first performed preprocessing
schemes, such as pose correction by Active Appearance Models
(AAM), illumination and periocular region normalization. In a
later work, Juefei-Xu and Savvides| (2012) also applied WLBPs
to study periocular recognition with data from a pan-tilt-zoom
(PTZ) camera. As in the study above, they employed different
schemes to correct illumination and pose variations.

The mentioned work by|Smeraldi and Bigiin|(2002)) with Ga-
bor filters served as inspiration to|Alonso-Fernandez and Bigun
(2012] 2014} 2015) to carry out periocular experiments with
several iris databases in NIR and VW, as well as a compari-
son with the iris modality (Section [6). A variation of this al-
gorithm was fused with the SIFT descriptor, obtaining a lead-
ing position in the First ICB Competition on Iris Recognition,
ICIR2013 (Zhang et al.|2014). They later proposed a matcher
based on Symmetry Assessment by Feature Expansion (SAFE)
descriptors (Mikaelyan et al., [2014; |/Alonso-Fernandez and Bi-
gun, 2015), which describes neighborhoods around key-points
by estimating the presence of various symmetric curve families.
Gabor filters were also used by |Gangwar and Joshi| (2014) in
their work presenting Local Phase Quantization (LPQ) as de-
scriptors for periocular recognition. Joshi et al.| (2014)) also
employed Gabor features over four different VW databases,
with features reduced by Direct Linear Discriminant Analysis
(DLDA) and further classified by a Parzen Probabilistic Neural
Network (PPNN).

Bharadwaj et al.|(2010) evaluated CLBP and GIST descrip-
tors. They used the UBIRIS v2 database of uncontrolled VW
iris images which includes a number of perturbations intention-
ally introduced (see Section[2). A number of subsequent works
have also made use of UBIRIS v2 (Joshi et al., 2012} |Santos and;
Hoylel |2012; |Bakshi et al., [2014} Proenca, 2014} Proenca et al.}
2014; Bakshi et al.l 2015). [Joshi et al.| (2012) used UBIRIS
v2 in their comparison of iris and periocular modalities (Sec-
tion [6), obtaining better results than Bharadwaj et al| (2010)
using just LBPs, although over a smaller set of images. |San-
tos and Hoyle| (2012) used LBPs and SIFT as by [Park et al.
(2009) in their study combining iris and periocular modalities
(Section [6). [Bakshi et al| (2014) proposed global PIGP fea-
tures, outperforming the Rank-1 performance of any previous
study using UBIRIS v2. They later proposed local PILP fea-
tures (Bakshi et al.,|2015)), reporting the best Rank-1 periocular
performance to date with UBIRIS v2. |Proencal (2014) studied
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the fusion of iris and periocular biometrics (Section[6). Perioc-
ular features were extracted from the eyelids region only, con-
sisting of the fusion of LBPs and eyelids shape descriptors. In
a subsequent study, |[Proenca et al.[(2014) proposed a method to
label seven components of the periocular region (see Section 3]
with the purpose of demonstrating that regions such as hair or
glasses should be avoided since they are unreliable for recogni-
tion (Section [5). They also proposed to use the center of mass
of the cornea as reference point to define the periocular ROI,
rather than the pupil center, which is much more sensitive to
changes in gaze. Finally, |Oh et al.| (2014)) used the first version
of UBIRIS in their study presenting directional projections or
Structured Random Projections (SRP) as periocular features.

Other shape features have been also proposed, such as eye-
brow shape features, with surprisingly accurate results as a
stand-alone trait. Indeed, eyebrows have been used by forensic
analysts for years to aid in facial recognition (Le et al., |[2014),
suggested to be the most salient and stable features in a face
(Sadr et al.l [2003). Dong and Woodard| (2011) studied several
geometrical shape properties over the MGBC/FRGC databases.
They also used the extracted eyebrow features for gender clas-
sification (see Section[7)). [Le et al| (2014) proposed an eyebrow
shape-based identification system, together with a eyebrow seg-
mentation technique (presented in Section [3).

Padole and Proencal (2012) presented the first periocular
database in VW range specifically acquired for periocular re-
search (UBIPr). They also proposed to compute the ROI w.r.t.
the midpoint of the eye corners (instead of the pupil center),
which is less sensitive to gaze variations, leading to a significant
improvement (EER from ~30% to ~20%). Posterior studies
have managed to improve performance over the UBIPr database
using a variety of features (Smereka and Kumar, 2013; Nie
et al., |2014). The UBIPr database is also used by [Uzair et al.
(2015) in their extensive study evaluating data in VW (UBIPr,
MBGC), NIR (MBGC) and multi-spectral (CMU-H database)
range, with the reported Rank-1 results being the best published
performance to date for the four databases employed. A new
database of challenging periocular images in VW range (CSIP)
was presented recently by |Santos et al.| (2014)), the first one
made public captured with smartphones. The paper proposed a
device-specific calibration method to compensate for the chro-
matic disparity, as result of the variability of camera sensors
and lenses used by different mobile phones. They also com-
pared and fused the periocular and iris modalities (Section|[6)).

Another database captured specifically for cross-spectral pe-
riocular research (IMP) was also recently presented by [Sharma
et al.| (2014), containing data in VW, NIR and night modalities.
To match cross-spectral images, they proposed neural networks
(NN) to learn the variability caused by different spectrums, with
several variations of LBP and HOG tested as features. Cross-
spectral recognition was also addressed by |Jillela and Ross
(2014) using a proprietary database of NIR and VW images. Fi-
nally, Raghavendra et al.[(2013)) andRaja et al.|(2014) presented
a database in VW range acquired with a new type of camera, a
Light Field Camera (LFC), which provides multiple images at
different focus in a single capture. LFC overcomes one impor-
tant disadvantage of sensors in VW range, which is guarantee-



ing a good focused image. Unfortunately, the database has not
been made available. Individuals were also acquired with a con-
ventional digital camera, with a superior performance observed
with the LFC camera. New periocular features were also pre-
sented in the two studies. [Raghavendra et al.| (2013)) proposed
Sparse Representation Classification (SRC), previously used in
face recognition. [Raja et al|(2014) proposed Binarized Sta-
tistical Image Features (BSIF) for periocular recognition, fur-
ther utilized as features of the SRC method described. Both
Raghavendra et al.|(2013)) and Raja et al.|(2014) tested the fu-
sion of iris and periocular modalities as well (Section [6).

5. Best regions for periocular recognition

Most periocular algorithms work in a holistic way, defining
a ROI around the eye (usually a rectangle) which is fully used
for feature extraction. Such holistic approach implies that some
components not relevant for identity recognition, such as hair
or glasses, might erroneously bias the process (Proenca et al.
2014). It can also be the case that a feature is not equally dis-
criminative in all parts of the periocular region.

The study by Hollingsworth et al. (2012) identified which
ocular elements humans find more useful for periocular recog-
nition. With NIR images, eyelashes, tear ducts, eye shape and
eyelids, were identified as the most useful, while skin was the
less useful. But for VW data, blood vessels and skin were
reported more helpful than eye shape and eyelashes. Similar
studies have been done with automatic algorithms (Smereka
and Kumar, [2013} |Alonso-Fernandez and Bigun, [2014)), with
results in consonance with the study with humans, despite us-
ing several machine algorithms based on different features, and
different databases. With NIR images, regions around the iris
(including the inner tear duct and lower eyelash) were the most
useful, while cheek and skin texture were the less important.
With VW images, on the other hand, the skin texture surround-
ing the eye was found very important, with the eyebrow/brow
region (when present) also favored in visible range. This is in
line with the assumption largely accepted in the literature that
the iris texture is more suited to NIR illumination (Daugman)
2004), whereas the periocular modality is best for VW illumi-
nation (Hollingsworth et al.| | 2012; Woodard et al.,|2010b)). This
seems to be explained by the fact that NIR illumination reveals
the details of the iris texture, while the skin reflects most of the
light, appearing over-illuminated (see for example ‘BioSec’ or
other NIR iris examples in Figure [2); on the other hand, the
skin texture is clearly visible in VW range, but only irises with
moderate levels of pigmentation image reasonably well in this
range (Bowyer et al., 2007).

Park et al.| (2011) carried out experiments by masking parts
of the periocular area over VW images of the FRGC database.
They found that inclusion of eyebrows is beneficial for a bet-
ter identification performance, with differences in Rank-1 of
8-19%, depending on the machine expert. Similarly, they ob-
served that occluding ocular information (iris and sclera) dete-
riorates the performance, with reductions in Rank-1 accuracy of
up to 41%. In the same direction, |Oh et al.| (2012) focused on
the inclusion of a significant part of the cheek region over VW
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images of the FERET database, finding that it does not contain
significant discriminative information while it increases the im-
age size. Including the eyebrows and the ocular region was also
found to be beneficial in this study, corroborating the results of
Park et al.| (2011). Recently, |Proenca et al.| (2014) proposed a
method to label seven components of the periocular region: iris,
sclera, eyelashes, eyebrows, hair, skin and glasses. The useful-
ness of such segmentation is demonstrated by avoiding hair and
glasses in the feature encoding and matching stages, obtaining
performance improvements by fusion of LBP, HOG and SIFT
features (Park et al.,[2011) over the UBIRIS v2 database of VW
images (EER reduced from 12.8% to 9.5%).

6. Comparison and fusion with other modalities

Periocular biometrics has rapidly evolved to competing with
face or iris recognition. The periocular region appears in face
or iris images, therefore comparison and/or fusion with these
modalities has been also proposed. This section gives an
overview of these works, with a summary provided in Table
Under difficult conditions, such as acquisition portals (Woodard
et al., [2010a; Boddeti et al.| 2011; Ross et al.| [2012)), dis-
tant acquisition (Tan and Kumar, [2012), smartphones (Santos
et al., 2014), webcams or digital cameras (Alonso-Fernandez
and Bigun, 2015; |Alonso-Fernandez et al., [2015)), the periocu-
lar modality is shown to be clearly superior to the iris modality,
mostly due to the small size of the iris or the use of visible il-
lumination. Visible illumination is predominant in relaxed or
uncooperative setups due to the impossibility of using NIR il-
lumination. Iris texture is more suited to the NIR spectrum,
since this type of lightning reveals the details of the iris tex-
ture (Daugman), 2004), while the skin reflects most of the light,
appearing over-illuminated. On the other hand, the skin tex-
ture is clearly visible in VW range, but only irises with moder-
ate levels of pigmentation image reasonably well in this range
(Bowyer et al., 2007). Nevertheless, despite the poor perfor-
mance shown by the iris in the visible spectrum, fusion with pe-
riocular is shown to improve the performance in many cases as
well (Santos and Hoylel 2012} |Alonso-Fernandez et al.,[2015]).
Similar trends are observed with face. Under difficult condi-
tions, such as blur or downsampling, the periocular modality
performs considerably better (Miller et al.,|2010a). It is also the
case of partial face occlusions, where performance of full-face
matchers is severely degraded (Park et al., 2011)).

6.1. Iris Modality

‘Woodard et al.| (2010a) evaluated NIR portal videos of the
MBGC database. The periocular modality showed consider-
able superiority, with the performance further improved by the
fusion, demonstrating the benefits of fusing periocular and iris
information in non-ideal conditions. Boddeti et al.| (2011} and
Ross et al.| (2012)) also used NIR portal data from the FOCS
database. Despite using other feature extraction methods, they
also concluded that the periocular modality is considerable su-
perior than the iris modality in such difficult data. [Santos
and Hoyle| (2012) utilized VW images from the UBIRIS v2
database, which has several perturbations deliberately intro-
duced. As with the above studies with NIR data, combining
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Table 4. Overview of existing works on comparison and fusion of the periocular modality with other biometric modalities. The acronyms of this table are
fully defined in the text or in the referenced papers. Features with best accuracy are those giving the best fusion results. If no fusion results are available,
they indicate the best features of each individual modality. The following acronyms are not defined elsewhere: ‘w-sum’=‘weighted sum’, ‘LR’="‘logistic
regression’, ‘NN’=‘Neural Networks’, ‘TERELM’=‘Total Error Rate Minimization’, ‘LG’=‘Log-Gabor’.

COMPARISON WITH THE IRIS MODALITY

Best accuracy
[ Features with best accuracy [ Fusion | Periocular 11 Tris 11 Fusion
[ Approach | Periocular I Tris | method | Test Database EER | Rank-1 || EER | Rank-1 || EER | Rank-
Woodard et al [{2010a) | LBP | Gabor [ wsum [ MBGC (I052NIR portal images)  [[ 21% | 925% || 32% | 1381% || 18% | 965% |
[ Boddeti et al.|(2011) | BGM | Gabor | | FOCS (9581 NIR images) [[ 2381% | 942% || 308% | 887% || na | na |
Joshi et al[(2012) LBP wavelets DLDA UBIRIS v2 (2400 VW images) + 12.94% 81.03% 12.07% 88.79% 6.9% 96.55%
mean CASIA Interval (2400 NIR images) 9.5% 83.62%
Ross etal.|[(2012) | HOG, m-SIFT, PDM | LG | | FOCS (9581 NIR images) [ 188% [ na [ 331% | na [ na_ | na |
Santos and Hoyl1e[{2012) [ LBP, SIFT [ wavelets, Gabor | R ]| UBIRIS v2 (1000 VW images) [[ 3187% | 564% [[ 23.12% | 419% [[ 1848% | 743% |
Tan and Kumar|(2012) | SIFT, LMF | LG [ w-sum | CASIA v4 Distance (2567 NIR images) [[  na | ~67% || nja | ~54% ||  nja | 845% |
Raghavendra et al. 2013} LBP+SRC LBP+SRC W-sum Light-field camera (420 VW images) 12.04% n/a 1.2% nfa 0.81% n/a
Digital camera (420 VW images) 16.21% nfa 8.24% nfa 7.45% n/a
Proencal(2014) LBP + eyelids shape MLDF sum FRGC (4360 VW images) <25% n/a <11% n/a <8.5% n/a
UBIRIS v2 (2340 VW images) <24% n/a <11% n/a <9% n/a
Raja et al. 2014} BSIF BSIF w-sum Light-field camera (420 VW images) 3.39% n/a 0.72% n/a 0.61% n/a
Digital camera (420 VW images) 3.96% n/a 3.46% nfa 2.02% n/a
Santos et al |{2014) [ LBP+HOG+SIFT+ULBP+GIST | Gabor filters | NN | CSIP (2004 VW images) [ 155% | n/a [ 344% | n/a [ 145% | nfa ]
[ [Alonso-Fernandez and Bigun]Z[)]4’2{)] 5) Gabor filters LG mean BioSec (1200 NIR images) 10.56% 66% 1.12% 98% 1.96% 96%
Gabor filters LG mean Casia Interval v3 (2655 NIR images) 14.53% n/a 0.67% n/a 2.38% n/a
Gabor filters LG mean 1IT Delhi v1.0 (2240 NIR images) 2.5% n/a 0.59% n/a 1.2% n/a
Gabor filters LG mean MobBIO (800 VW images) 12.32% 75% 18.81% 56% 11% 77%
Gabor filters LG mean UBIRIS v2 (2250 VW images) 24.4% n/a 34.94% n/a 22.41% n/a
'Alonso-Fernandez et al[{2015) Gabor, SAFE, SIFT LG, DCT mean BioSec (1200 NIR images) 8.5% n/a 1.12% nfa 0.75% n/a
Mikaelyan et al.|(2014) SAFE, SIFT LG, DCT, SIFT mean Casia Interval v3 (2655 NIR images) 7.52% n/a 0.67% n/a 0.51% n/a
SIFT LG mean 1T Delhi v1.0 (2240 NIR images) 0.8% n/a 0.59% n/a 0.38% n/a
Gabor, SAFE, SIFT LG mean MobBIO (800 VW images) 8.73% n/a 18.81% n/a 6.75% n/a
Gabor, SAFE, SIFT LG, DCT, SIFT mean UBIRIS v2 (2250 VW images) 24.4% n/a 35.61% n/a 15.17% n/a
COMPARISON WITH THE SCLERA MODALITY
Best accuracy
[ Features with best accuracy Fusion | Periocular Il Sclera Il Fusion
[ Approach | Periocular Sclera | method | Test Database EER [ Rank-1 [[ EER [ Rank-1 || EER [ Rank-1
Oh et al.|(2014) l SRP l MLBP l TERELM l UBIRIS v1 (1877 VW images) H 6.52% l n/a H 8.44% l n/a H 3.26% l n/a ]
COMPARISON WITH THE FACE MODALITY
Best accuracy
[ Features with best accuracy Fusion | Periocular 11 Face 11 Fusion
[ Approach | Periocular Face | method | Test Database EER | Rank-1 || EER | Rank-l || EER | Rank-
Smeraldi and Bigiin[{2002) | Gabor filters [ Gaborfillers | w-sum | M2VTS (349 VW images) [[ 03% [ na J[ 013% [ na [ na | na |
Miller et al.[(2010a) LBP LBP FRGC (VW images) n/a 99.5% n/a 99.75% n/a n/a
FRGC - blur (kernel=7 pix, o=1.5) n/a 77.86% n/a 31.09% n/a n/a
FRGC - downsampling (40%) nfa 97.76% n/a 70.40% n/a nfa
FRGC - uncontrolled lightning n/a 11.17% n/a 12.18% nfa n/a
Park et al[{2011) HOG, LBP, SIFT FaceVACS - FRGC (1704 VW images) n/a 87.32% n/a 99.77% n/a n/a
FRGC - partial face n/a ~84% n/a 39.55% nfa n/a
Jillela and Ross|{2012) | SIFT, LBP [ VeriLook, PittPatt | w-sum | Plastic Surgery (1800 VWimages) [[ na | 639% || na | 853% || nja | 874% |
etal [(2014) | TPLBP | TPLBP | - | HRT (>1.2 mill. VW images) [[ 3521% | 57.79% || 3860% | 4649% [[ na | nja |

periocular and iris features improved the overall performance
over difficult VW data too. [Joshi et al.| (2012) used a virtual
database, with VW periocular data from UBIRIS v2 and NIR
iris data from CASIA Interval. Fusion was carried out at the
feature level, with vectors from the two modalities pooled to-
gether. They also tested a simple mean fusion rule at the score
level, which resulted in a smaller performance improvement.
Tan and Kumar (2012) used at-a-distance images from CA-
SIA v4 Distance database, with a considerable performance im-
provement w.r.t. the individual modalities. |Raghavendra et al.
(2013) used a VW Light Field Camera (LFC), which provides
multiple images at different focus in a single capture. Individ-
uals were also acquired with a conventional digital camera. A
superior performance with the LFC camera was observed with
both modalities, which was reinforced even more with the fu-
sion. The same databases were used in a posterior study by
Raja et al| (2014), obtaining even better performance. |San-
tos et al.[(2014) used their new CSIP database, acquired with
4 different mobile telephones in 10 different setups. Using a
sensor-specific color correction technique, they achieved a pe-
riocular EER cross-sensor performance of 15.5%. Despite the

poor performance of Gabor wavelets applied to the iris modal-
ity (34.4%), they achieved a 14.5% EER with the fusion of
the two modalities. [Alonso-Fernandez and Bigun| (2015) eval-
uated their Gabor-based periocular system and a set of four iris
matchers. They used five different databases, three in NIR and
two in VW range, observing that performance of the iris match-
ers was, in general, much better than the periocular matcher
with NIR data, and the opposite with VW data. This is in tune
with the literature, which indicates that the iris modality is more
suited to NIR illumination (Daugman, |2004), whereas the pe-
riocular modality is best for VW illumination (Hollingsworth
et al.l 2012; Woodard et all 2010b). With regards to the fu-
sion, despite the poor performance of the iris matchers with VW
data, its fusion with the periocular system resulted with impor-
tant performance improvements. This is remarkable given the
adverse acquisition conditions and the small resolution of the
VW databases used. They further extended the study with their
SAFE matcher (Mikaelyan et al.| [2014), and a SIFT matcher.
Here, the availability of more machine experts allowed to ob-
tain performance improvements through the fusion also with
NIR databases, something not observed in their previous stud-



ies. [Proencal (2014) proposed the fusion of a iris matcher based
on multi-lobe differential filters (MLDF), with a periocular ex-
pert that parameterizes the shape of eyelids, over VW data of
FRGC and UBIRIS v2 databases, with an average 20% of EER
improvement.

6.2. Sclera Modality

Some works have also made use of features from the sclera
region. (Oh et al.| (2014) proposed to combine periocular and
sclera features for identity verification, observing a significant
improvement in EER after the fusion using UBIRIS v1.

6.3. Face Modality

Smeraldi and Bigiin| (2002)) presented a face recognition ex-
pert based on Gabor filters applied to each facial landmark (eyes
and mouth), with a different classifier employed in each land-
mark. Face authentication was performed by fusion of the three
classifier’s output. This way, the face expert is really a fusion of
two eye (periocular) experts and one mouth expert. Miller et al.
(2010a) used LBP on the FRGC database, extracted both from
the periocular region and from the full face. Rather than the best
accuracy obtained (first sub-row in Table ED, the interest relies
on the impact of the input image quality, demonstrating that, at
extreme values of blur or down-sampling, periocular recogni-
tion performed significantly better than face. On the other hand,
both face and periocular under uncontrolled lighting were very
poor, indicating that LBPs are not well suited for this scenario.
Another study of the effect of non-ideal conditions was also
carried out by |Park et al.|(2011)). They masked the face region
below the nose to simulate partial face occlusion, showing that
face performance is severely degraded in the presence of occlu-
sion, whereas the periocular modality is much more robust. Jil-
lela and Ross|(2012)) studied the problem of matching face im-
ages before and after undergoing plastic surgery. The rank-one
recognition performance reported by the fusion of periocular
and face matchers (Rank-1: 87.4%) is the highest accuracy ob-
served in the literature with the utilized database, up to the pub-
lication of the study. As full face matchers, they used two COTS
systems: PittPatt and VeriLook. [Mahalingam et al.| (2014)) ex-
tracted features in different regions of the face (periocular, nose,
mouth), and in the full-face to study the impact of face changes
due to gender transformation. They found that the periocular re-
gion greatly outperformed other face components (nose, mouth)
and the full face. They also observed (not reported in Table )
that their periocular approach outperformed two Commercial
Off The Shelf full face Systems (COTS): PittPatt (by 76.83% in
Rank-1 accuracy) and Cognetic FaceVACs (by 56.23%).

7. Soft-biometrics,
surgery analysis

gender transformation and plastic

Besides the task of personal recognition, a number of other
tasks have been also proposed using features from the perioc-
ular region, as shown in Table E[ Soft-biometrics refer to the
classification of an individual in broad categories such as gen-
der, ethnicity, age, height, weight, hair color, etc. While these
cannot be used to uniquely identify a subject, it can reduce
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the search space or provide additional information to boost the
recognition performance. Due to the popularity of facial recog-
nition, face images have been frequently used to obtain both
gender and ethnicity information, with high accuracy (>96%,
for a summary see|Lyle et al.|(2012)). Recently, it has been also
suggested that periocular features can be potentially used for
soft-biometrics classification (Kumari et al.| [2012; [Lyle et al.|
2012, 2010; Merkow et al.,|2010). With accuracies comparable
to these obtained by using the entire face, it indicates the ef-
fectiveness of the periocular region by itself for soft-biometrics
purposes. Merkow et al.| (2010) addressed gender classification
using a database of 936 low resolution images collected from
the web (Flickr), reporting a 85% classification accuracy. [Lyle
et al| (2012) studied gender and ethnicity classification over
the FRGC and MBGC databases, with an accuracy of 89% or
higher in both classification tasks. In a previous paper, they also
showed that fusion of the soft-biometrics information with tex-
ture features from the periocular region can improve the recog-
nition performance (Lyle et al., 2010). [Kumari et al.[ (2012)
studied the problem of gender classification with images from
the FERET database. The reported classification accuracy is
of 90%. An interesting study by [Dong and Woodard (2011)
made use of shape features from the eyebrow region only, with
very good results over the MBGC/FRGC databases compris-
ing both NIR/VW data (96/97% of gender classification rate,
respectively).

Plastic surgery

Gender transformation

before  after before after

before  after before  after

Fig. 4. Samples of subjects before/after undergoing gender transformation
and plastic surgery. Images are from Mahalingam et al.|(2014) and Jillela
and Ross|(2012).

Other studies are related with the effect on the recognition
performance of plastic surgery or gender transformation, as pre-
sented in Section [6.3] (see Figure [ as well). Mahalingam et al.
(2014) studied the impact of gender transformation via Hor-
mone Replacement Theory (HRT), which causes changes in
the physical appearance of the face and body gradually over
the course of the treatment. A database of >1.2 million face
images from YouTube videos was built, with data from 38 sub-
jects undergoing HRT over a period of several months to three
years, observing that accuracy of the periocular region greatly
outperformed other face components (nose, mouth) and the full
face. Also, face matchers began to fail after only a few months
of HRT treatment. [Jillela and Ross| (2012) studied the match-
ing of face images before and after undergoing plastic surgery.
The work proposed a fusion recognition approach that com-
bines face and periocular information, outperforming previous
studies where only full-face matchers were used.

8. Conclusions and future work

Periocular recognition has emerged as a promising trait for
unconstrained biometrics after demands for increased robust-
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Table 5. Overview of existing works on soft-biometrics, gender transformation and plastic surgery analysis using periocular features. The acronyms of this
table are fully defined in the text or in the referenced papers. The following acronyms are not defined elsewhere: ‘SVM’=‘Support Vector Machines’.

[ Approach T Purpose T Features

| Database | Best accuracy ]

Merkow et al [{2010)

[ Gender classification | raw pixels, LBP + LDA-NN/PCA-NN/SVM |

Proprietary (936 VW images) [ Gender: 85% classification rate ]

’ Dong and Woodard|(2011) ‘ Gender classification

eyebrows shape + MD/LDA/SVM

‘ FRGC (800 VW images) ‘

Gender: 97%
MBGC (922 NIR portal images)

Gender: 96%

[ Pillela and Ross|{2012) Impact of Periocular: SIFT, LBP

plastic surgery

Face: VeriLook (VL), PittPatt (PP)

Plastic Surgery
(1800 VW images)

Rank-1: SIFT=48.1%, LBP=45.6%
SIFT+LBP=63.9%, VL=73.9%, PP=81.4%
VL+PP=85.3%, VL+PP+SIFT+LBP=87.4%

ICA + NN

Kumari et al.[{2012)

[ Gender classification |

[ FERET (200 VW images) | Gender: 90% classification rate ]

Lyle et al[{2012)

Gender/ethnicity
classification

LBP/HOG/DCT/LCH + ANN/SVM

‘ FRGC (4232 VW images) ‘

Gender: 97.3%, Ethnicity=94%
MBGC (350 NIR portal images)

Gender: 90%, Ethnicity=89%

[ [Mahalingam et al[{2014) Impact of gender

transformation Face: PittPatt, FaceVACS

Face parts: LBP, TPLBP, HOG

HRT (>1.2 million
VW images)

Periocular: EER=35.21%, Rank-1=57.79%
Nose: EER=41.82%, Rank-1=44.57%
Mouth: EER=43.25%, Rank-1=39.24%
Face: EER=38.6%, Rank-1=46.69%
PittPatt: EER=n/a, Rank-1=36.99%
FaceVACS: EER=n/a, Rank-1=29.37%

ness of face or iris systems, showing a surprisingly high dis-
crimination ability (Santos and Proencal 2013). The fast-
growing uptake of face technologies in social networks and
smartphones, as well as the widespread use of surveillance
cameras, arguably increases the interest of periocular biomet-
rics. The periocular region has shown to be more tolerant to
variability in expression, occlusion, and it has more capability
of matching partial faces (Juefei-Xu and Savvides| 2014). It
also finds applicability in other areas such as forensics analysis
(crime scene images where perpetrators intentionally mask part
of their faces). In such situation, identifying a suspect where
only the periocular region is visible is one of the toughest real-
world challenges in biometrics. Even in this difficult case, the
periocular region can aid in the reconstruction of the whole face
(Juefe1-Xu et al., [2014]).

This paper reviews the state of the art in periocular biomet-
rics research. Our target is to provide a comprehensive cov-
erage of the existing literature, giving an insight of the most
relevant issues and challenges. We start by presenting exist-
ing databases utilized in periocular research. Acquisition se-
tups comprise digital cameras, webcams, videocameras, smart-
phones, or close-up iris sensors. A small number of databases
contain video data of subjects walking through an acquisition
portal, or in hallways or atria. There are databases for par-
ticular problems too, such as aging, plastic surgery effects,
gender transformation effects, expression changes, or cross-
spectral matching. However, the use of databases acquired
with personal devices such as smartphones or tablets is lim-
ited, with recognition accuracy still some steps behind (Santos
et al., |2014). The same can be said about surveillance cam-
eras (Juefei-Xu and Savvides| 2012). New sensors are being
proposed, such as Light Field Cameras, which capture multi-
ple images at different focus in a single capture (Raghavendra
et al., 2013} Raja et al) [2014), guaranteeing to have a good
focused image. Since the periocular modality requires less con-
strained acquisition than other ocular or face modalities, it is
likely that the research community will move towards explor-
ing ocular recognition at a distance and on the move in more
detail as compared to previous studies (Nigam et al., [2015).

Automatic detection and/of segmentation of the periocular
region has been increasingly addressed as well, avoiding the
need of segmenting the iris or detecting the full face first (Ta-

ble [2). Recently, the use of eye corners as reference points to
define the periocular ROI has been suggested, instead of the
eye center, since eye corners are less sensitive to gaze varia-
tions and also appear in closed eyes (Padole and Proenca, 2012;
Proenca and Bricenol [2014; [Nie et al., [2014). We further re-
view the features employed for periocular recognition, which
comprises the majority of works in the literature. They can be
classified into global and local approaches (Figure [3). Some
works have also addressed the task of assessing if there are re-
gions of the periocular area more useful than others for recog-
nition purposes. This has been done both by asking to humans
(Hollingsworth et al., 2012) and by using several machine al-
gorithms (Smereka and Kumar, 2013} [Alonso-Fernandez and
Bigun, [2014), with both humans and machines agreeing in the
usefulness of different parts. Automatic segmentation of pe-
riocular parts can aid in avoiding those which are non-useful,
as well as other elements such as hair or glasses, that can also
deteriorate the recognition performance, as shown by |Proenca
et al.| (2014) in the first work which present an algorithm to
segment components of the periocular region. Since the peri-
ocular area appears in face and iris images, comparison and
fusion with these modalities has been also proposed, with a re-
view of related works also given (Table ). Fusion of multiple
modalities using ocular data is a promising path forward that is
receiving increasing attention (Nigam et al.| [2015) due to un-
constrained environments where switching between available
modalities may be necessary (Alonso-Fernandez et al., 2010).

Soft-biometrics is another area where the periocular modal-
ity has found applicability, with periocular features showing ac-
curacies comparable to these obtained by using the entire face
for the tasks of gender and ethnicity classification (Table [5).
The periocular modality is also shown to aid or outperform
face matchers in case of undergoing plastic surgery or gen-
der transformation. Another issues that are receiving increas-
ing attention is cross-modality (Jillela and Ross}, |2014])), cross-
spectral (Cao and Schmid, 2014; Sharma et al., 2014), hyper-
spectral (Uzair et al., 2015) or cross-sensor (Santos et al.,
2014) matching. The periocular modality also has the potential
to allow ocular recognition at large stand-off distances (Cao and
Schmid, |2014]), with applications in surveillance. Samples cap-
tured with different sensors are to be matched if, for example,
people is allowed to use their own smartphone or surveillance



cameras, or when new or improved sensors have to co-exist
with existing ones (cross-sensor), not to mention if the sensors
work in different spectral range (cross-spectral). Iris images
are traditionally acquired in NIR spectrum, whereas face im-
ages normally are captured with VW sensors. Exchange of bio-
metric information between different law enforcement agencies
worldwide also poses similar problems. These are examples
of some scenarios where, if biometrics is extensively deployed,
data acquired from heterogeneous sources will have to co-exist
(Alonso-Fernandez et al., [2010). These issues are of high in-
terest in new scenarios arising from the widespread use of bio-
metric technologies and the availability of multiple sensors and
vendor solutions. Another important direction therefore is to
enable periocular heterogeneous data to work together (Nigam
et al.,2015).
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