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a b s t r a c t 

Global warming and its resulting environmental changes surely are ubiquitous subjects nowadays and undis- 

putedly important research topics. One way of tracking such environmental changes is by means of phenol- 

ogy, which studies natural periodic events and their relationship to climate. Phenology is seen as the simplest 

and most reliable indicator of the effects of climate change on plants and animals. The search for phenological 

information and monitoring systems has stimulated many research centers worldwide to pursue the devel- 

opment of effective and innovative solutions in this direction. One fundamental requirement for phenological 

systems is concerned with achieving fine-grained recognition of plants. In this sense, the present work seeks 

to understand specific properties of each target plant species and to provide the solutions for gathering spe- 

cific knowledge of such plants for further levels of recognition and exploration in related tasks. In this work, 

we address some important questions such as: (i) how species from the same leaf functional group differ 

from each other; (ii) how different pattern classifiers might be combined to improve the effectiveness results 

in target species identification; and (iii) whether it is possible to achieve good classification results with fewer 

classifiers for fine-grained plant species identification. In this sense, we perform different analysis consider- 

ing RGB color information channels from a digital hemispherical lens camera in different hours of day and 

plant species. A study about the correlation of classifiers associated with time series extracted from digital 

images is also performed. We adopt a successful selection and fusion framework to combine the most suit- 

able classifiers and features improving the plant identification decision-making task as it is nearly impossible 

to develop just a single “silver bullet” image descriptor that would capture all subtle discriminatory features 

of plants within the same functional group. This adopted framework turns out to be an effective solution in 

the target task, achieving better results than well-known approaches in the literature. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

Environmental changes have emerged as an important question in

he global agenda [24,29] . This has spurred important research inter-

st in phenology, the science of studying recurrent life cycles events

nd its relationship to climate [8,10,31] . To increase the range of study

ites and species and the accuracy of phenological observations, dig-
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tal cameras have been successfully applied as multi-channel imag-

ng sensors, providing measures to estimate changes on phenological

vents, such as leaf flushing and senescence [1,26,27] . 

Previous work of our research group has monitored leaf chang-

ng patterns of a neotropical savanna (cerrado sensu stricto vegeta-

ion) based on daily acquired digital images [2] . We extracted image

olor information from the RGB (red, green, and blue) channels and

orrelated the changes in pixel levels over time with leaf phenology

atterns [2] . The analysis was conducted after we defined regions of

nterest (ROI) based on the random selection of plant species crowns

dentified in the digital image [26] . Time series associated with each

OI have been obtained, raising the need of using appropriate tools

or mining patterns of interest [3,4,6,28,30] . 

Fine-grained species identification in digital images is a key is-

ue for the phenological observation of tree crowns, especially in

http://dx.doi.org/10.1016/j.patrec.2015.10.016
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tropical vegetations where one single image may include a high num-

ber of species [2] . Usually, this task is very time consuming since it

has to be done in the field, first by matching each crown in the image

to the tree in the soil and then by identifying the tree at species level

[5] . In this sense, we have designed and deployed machine learn-

ing methods to find similar patterns in the digital images and then

we checked if they correspond to similar species or leaf functional

groups [5] . 

Our first studies have focused on the intraspecies analysis, i.e.,

on detecting different individuals of the same species [5] . However,

different species from the same leaf functional group may exhibit

similar phenological traits, confusing the classifiers as discrimina-

tive features among the classes are more subtle, hardening the iden-

tification process. Hence many questions arise when considering

interspecies interactions, i.e., the recognition of individuals from

different species belonging to the same leaf functional group [2]

spurring the need for the proper design and development of fine-

grained recognition algorithms to tackle the problem. Therefore, in

this paper, we aim at addressing the following questions: (i) how to

distinguish different species from the same leaf functional group us-

ing a pattern classification scheme for proper fine-grained decision-

making; (ii) how the individual responses of classifiers built upon

different phenological f eatures are correlated to each other; and

(iii) how to combine such phenological features so as to improve

the responsiveness of all plant species as it is unlikely that just

one phenological treat would be enough for complete and proper

identification. 

We start by evaluating the performance of classification models

built upon a single phenological feature. Thereafter we perform a cor-

relation analysis in order to understand the responsiveness of each

plant species regarding multiple phenological features. Based on the

observations made, we adopted a successful fusion framework [12] to

collect complementary features and better solve the multiclass clas-

sification problem. This kind of problem has never been addressed

in our studies before. Finally, we analyze the impact of increasing

the number of classifiers in the individual responses of each plant

species. 

The most important contributions of our work are: (1) A correla-

tion analysis between different time series-based classifiers for each

species. In this vein, we can identify correlations between classifiers

and relationship intra/inter species, which show to be very important

for the problem we are tackling in this paper; (2) The exploration and

proper custom-tailoring of a classifier fusion framework [12] to im-
Fig. 1. The time series acquisition process pipeline. (a) Sample image of the Cerrado savan

(c) Hemispherical image with the selected ROI’s species; (d) Channel representation are extr

series extracted from digital images. (For interpretation of the references to color in this figu
rove the effectiveness results in a new application (species recogni-

ion); (3) The exploration of this classifier fusion framework for com-

ining time series-based classifiers. Unlike the previous work of ours

12] , which has used visual properties (e.g., color, texture, and shape)

s input data to training base classifiers, our new proposal uses time

eries, a much different problem with its own intrinsic particulari-

ies and reduced information when compared to images; (4) Finally,

n this work, we have considered a multi-class classification problem

ifferently from the previous work. 

. Time series acquisition 

A digital hemispherical lens camera (Mobotix Q24) was set up in

n 18 m-high tower in a Cerrado sensu stricto , a neotropical savanna

egetation located at Itirapina, São Paulo State, Brazil [2,25] . Fig. 1

hows all steps of the time series acquisition process used in our

ork. 

First, we set up the RGB digital camera to take a daily sequence of

ve JPEG images (at 1280 × 960 pixels of resolution) per hour, from

:00 to 18:00 h (UTC-3). The present study was based on the analysis

f over 2700 images ( Fig. 1 (a)), recorded at the end of the dry season,

etween August 29 and October 3, 2011, day of year 241 to 278, during

he main leaf flushing season [2] . 

Next, the image analysis has been conducted by defining differ-

nt regions of interest (ROI), as described in [26] and defined by [2]

or our target species. Then, we analyzed 22 ROIs ( Fig. 1 (b)) obtained

rom a random selection of six plant species identified manually by

henology experts in the hemispheric image [2] : (i) three regions

ssociated with Aspidosperma tomentosum (green areas), (ii) four re-

ions for Caryocar brasiliensis (blue areas), (iii) two regions for Myrcia

uianensis (orange areas), (iv) six regions for Miconia rubiginosa (ma-

enta areas), (v) two regions for Pouteria ramiflora (cyan areas), and

vi) four regions for Pouteria torta (red areas). 

We analyzed each ROI in terms of the contribution of the primary

olors (R, G, and B), as proposed by [27] and described in [2] . Ini-

ially, we analyze each color channel and compute the average value

f the pixel intensity ( Fig. 1 (c)). After that, we compute the normal-

zed brightness of each color channel (RGB Chromatic coordinates)

 Fig. 1 (d)). The normalization of those values reduces the influence

f the incident light, decreasing the color variability due to changes

n illumination conditions [9,34] . Finally, by computing those values

long the whole period (August 28 to October 3, 2011), we obtained

ime series to use as input data for a learning method ( Fig. 1 (e)). 
na; (b) Different segmentation scales are computed and the coarse scale is selected; 

acted from ROI’s; (e) RGB chromatic coordinates are computed; (f) Phenological time 

re text, the reader is referred to the web version of this article.) 
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According to the leaf exchange data from the on-the-ground field

bservations on leaf fall and leaf flush at our study site, those species

ere classified on three functional groups [2,23] : (i) deciduous, A. to-

entosum and C. brasiliensis ; (ii) evergreen, M. guianensis and M. ru-

iginosa ; and (iii) semideciduous, P. ramiflora and P. torta . 

. Framework for time series-based classifier fusion 

The objective of adopting a classifier fusion approach is to exploit

he degree of agreement/disagreement among different classifiers,

oncept known as diversity and to improve the effectiveness results

n the target task. In this sense, we adapt a successful selection and

usion framework, originally proposed for multimedia recognition,

o be used as a combiner of times series-based classifier [12] . This

ramework selects the most suitable classifiers to be used in a meta-

earning approach. In this work, we define a classifier as a tuple con-

aining a simple learning method (e.g., k -Nearest Neighbors – k NN)

nd a description technique (e.g., a color channel from the RGB color

hannels). 

.1. Classifier fusion approach 

Fig. 2 illustrates the used framework [12] for plant identification.

irst, classifiers learn patterns from a training set ( T ) that contains

amples of time series. Next, |C| classification models are created.

hey are applied on a validation set V , resulting in a matrix of clas-

ifier outcomes M V , where | M V | = | V | × |C| and | V | is the number of

ime series extracted from a validation set V ( Fig. 2 (a)). 

Thereafter, in the selection of the most appropriate time series-

ased classifiers to be combined, M V is used to calculate different di-

ersity measures ( D ). These measures compute the degree of agree-

ent and disagreement all of |C| available classifiers [20] . 

The main objective of this selection process is to select a set C ∗ ⊂ C 
f classifiers that are more suitable to be fused/combined ( Fig. 2 (b)).

ote that a new matrix M 

∗
V 

⊂ M V is computed. Finally, given a new

ime series extracted from I , a fusion technique (e.g., Support Vec-

or Machines) uses the newly created matrix M 

∗
V to learn patterns

nd thus define the final class of I through a meta-learning approach

 Fig. 2 (c)). 
ig. 2. Time series-based classifier selection and fusion framework adapted from [12] . In (a),

sing data from training set T . In (b), the most discriminating classifiers are selected ( C ∗) by 

eta-level approach using any other classifier. In this particular example, both the SVM and 

ig. 3. The five steps for classifier selection are: (a) Computation of diversity measures from 

cores; (c) Selection of the top t ranked pairs of classifiers; (d) Computation of a histogram H th

lassifiers |C ∗| based on their occurrence in H and satisfy a defined threshold T . 
.2. Classifier selection approach 

Fig. 3 illustrates the adopted five-step approach for selecting clas-

ifiers based on diversity measures, previously introduced in [12] . 

First, set D of diversity measures are used to assess the degree of

greement among available classifiers in C by taking into account the

 V matrix previously computed. In this approach, five different mea-

ures have been used ( Correlation Coefficient p , Double-Fault Measure ,

isagreement Measure , Interrater Agreement k , and Q-Statistic [20,21] ).

hat step is represented by arrow (a) in Fig. 3 . Pairs of classifiers are

hen ranked according to their diversity score. Each diversity mea-

ure defines a different ranked list and, at the end of this step, a set

 of ranked lists is produced (arrow (b)). In the following, a novel set

f ranked lists R 

t is computed by selecting the top t pairs of classi-

ers from each ranked list in R (arrow (c)), and a histogram H that

ounts the number of occurrences of a classifier in all ranked lists of

 

t is computed (arrow (d)). Finally, the most frequent classifiers in H ,

hose accuracy is greater that a given threshold T , are combined by

 fusion approach (arrow (e)). T is a threshold defined in terms of the

verage accuracy among all classifiers using the validation set V . 

. Experimental protocol 

This section presents the experimental protocol used in this work.

.1. Dataset 

In this work, we have applied the same evaluation method used in

2] . It relies on the classification of time series extracted from pixels

ssociated with individuals of a same species. For that, we used the

lgorithm introduced by [15] to segment the hemispheric image into

mall polygons, obtaining 8849 segmented regions (SR). Then, we as-

ociated each SR with a single ROI aiming to label it. A labeled region

s created if there is at least 80% of overlapped area between an SR

nd a ROI. 

Finally, we extracted a time series from each labeled region using

he approach described in Section 2 . In this way, we built a dataset of

92 time series separated into six classes, one for each plant species:

. tomentosum (96), C. brasiliensis (346), M. guianensis (36), M. rubigi-

osa (195), P. ramiflora (50), and P. torta (169). 
 given a classification problem with training examples, different classifiers are trained 

taking into account diversity measures ( D ). Finally, in (c), classifiers are combined in a 

Majority Voting (MV) techniques can be used as the classifier fusion technique. 

the validation matrix M V ; (b) Ranking of pairs of classifiers by their diversity measures 

at counts the number of occurrences of each classifier; (e) Select the most appropriate 



104 F.A. Faria et al. / Pattern Recognition Letters 81 (2016) 101–109 

Table 1 

Confusion matrix. TP, TN, FP, and FN stand 

for true positive, true negative, false posi- 

tive, and false negative, respectively. 

Predicted 

Class A Class B 

Real Class A TP FN 

Class B FP TN 
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Fig. 4. Mean accuracy results for all hours and RGB channels using k NN-1 as learning 

method. 
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4.2. Evaluation measures 

To report the effectiveness of each method in the experiments, we

have used evaluation measures based on the confusion matrix: accu-

racy and average accuracy [32] . Given a confusion matrix as Table 1

shows, the measures can be calculated according to Eqs. (1–5) . 

Total = TP + FP + FN + TN (1)

Specificity = 

TN 

(FP + TN)
(2)

Sensitivity = 

TP 

(TP + FN)
(3)

Accuracy = 

TP + TN 

Total 
(4)

Average Accuracy = 

Specificity + Sensitivity 

2 

(5)

In the case of multi-class classification task with unbalanced

datasets, the use of Average Accuracy avoids that the evaluation of

learning methods are biased towards the majority class [32] . Since in

our experiments, we have used the 5-fold cross-validation protocol,

all reported results are in terms of Mean Accuracy or Mean Average

Accuracy. 

5. Results and discussion 

This section presents five different performed experiments and

discusses the obtained results. In Section 5.1 , we compare different

values for the k parameter of the k NN learning method that yields

better results in the target problem. Since it is impracticable to use

all and any learning method from the literature, we conduct a pre-

processing of simple classifiers. In Section 5.2 , we analyze the rela-

tionship between hours of the day and the six different plant species.

This experiments is essential to identify differences between species.

In Section 5.3 , a correlation analysis between available time series-

based classifiers is performed. Thus, we might measure the degree of

agreement/disagreement between involved classifiers. In Section 5.4 ,

we adapt the framework to combine different classifiers to consider

the use of complementary information provided by RGB channels.

Furthermore, we compare this framework to other well-known tech-

niques from the literature (e.g., majority voting [22] and bootstrap

aggregation [7] ). Finally, in Section 3.2 , we use the same frame-

work with classifier selection process to reduce the number of time

series-based classifiers used, while maintaining similar effectiveness

results. 

5.1. Finding the best k NN classifier 

We have used eight k -Nearest Neighbors ( k NN) methods [13] , us-

ing k ∈ {1, 3, 5, 7, 9, 11, 13, 15}. Such methods are simple and fast,

being suitable to be combined in a real-time recognition system. As

in this paper we rely on the presence of several descriptors, using
ll those learning methods might be costly. Therefore, we have con-

ucted a study to find the best parameter k that yields good results

n our approach. Through experiments, we observed that the best ef-

ectiveness performance was obtained for k = 1 . From now on, all the

xperiments reported in this work considers k NN-1 as base classifiers

nside the proposed framework. Fig. 4 shows the effectiveness results

f the RGB channels for each hour of the day on the validation set V . 

In these experiments, we observed that the best results were

chieved for red channel (R) in all hours. We also observe that all

lassifiers performed better in extreme hours 6, 7, 17, and 18. These

esults are used in the next section to guide the correlation analysis

etween all 39 available time series-based classifiers (3 channels ×
3 h = 39 classifiers). 

.2. Relation between hour and species 

In these experiments, we have analyzed the behavior of each

pecies ( A. tomentosum , C. brasiliensis , M. guianensis , M. rubiginosa , P.

amiflora , and P. torta ) throughout the day using the same validation

et V used in the previous section. For these species, we use the same

olor patterns employed for their regions in Fig. 1 (c). ( A. tomentosum

green, C. brasiliensis – blue, M. guianensis – orange, M. rubiginosa –

agenta, P. ramiflora – cyan, and P. torta – red). 

Figs. 5 , 6 , and 7 show the behavior of all species for each one of

hree different color channels (RGB). The x -axis refers to the hours of

ay ( 6 , . . . , 18 ), while the y -axis refers to the mean average accuracy.

s it can be observed, although all species have the same behavior

ith relation to the best results in the extreme hours, these behaviors

ight vary for each species. In Fig. 5 , notice that the C. brasiliensis

pecies (blue line) has a behavior more stable than the other curves.

n contrast, the M. guianensis species (orange line) has the highest

erformance decrease between ranges 7–8 and the highest increase

n the ranges 6–7 and 16–18. 

In Fig. 6 , we can observe that the curve for the C. brasiliensis

pecies is more stable over the time of day. The curve of the A. to-

entosum species (green line) differs from the other curves. It has

 “U-like” shape, which indicates that time series-based classifiers

ield better results for extreme hours. 

In Fig. 7 , we can see that the behavior of the curve of the P. ram-

flora species (cyan line) has the highest performance decrease be-

ween ranges 8–9. Furthermore, we can observe that there are differ-

nces between R and B color channels with relation to the best results

chieved at 6 and 18 h for all species. Classifiers using R color chan-

el at 18 h achieved better results than those at 6 h. The contrary
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Fig. 5. Mean accuracy results for all hours and R color channel using k NN-1 as learning 

method for each class. (For interpretation of the references to color in this figure text, 

the reader is referred to the web version of this article.) 
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Fig. 6. Mean accuracy results for all hours and G channel using k NN-1 as learning 

method for each class. (For interpretation of the references to color in this figure text, 

the reader is referred to the web version of this article.) 
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as observed for the G channel. In this case, the best results were ob-

erved at 6 h. Note also that the curves of the species M. guianensis

resents the lower mean average accuracy for all color channels. We

ight attribute these consistent difference to its leafing phenology:

. guianensis (orange line) is the only species reducing the percent-

ge of green over the period of study [2] . 

In summary, each species has a particular behavior with regard to

ifferent RGB color channels throughout the day. This phenomenon

ight be justified by scattering of solar radiation and canopy re-

ectance [33] . Moreover, the leaf biochemical contents (e.g., chloro-

hyll, water, and dry matter) and canopy architecture (e.g., leaf area

ndex, leaf angle distribution, and relative leaf size) might have im-

acted the spectral response of leaves [17] . 

This study might reinforce the importance of the R channel for

he identification of these plant species as pointed out in [11] . How-

ver, the G channel has shown also to be important for some species

e.g., M. guianensis , P. ramiflora , and P. torta ) for some hours of the day.

he difference in behavior of the time series-based classifiers led us

o consider their combination as a suitable alternative for improving

he classification results in plant identification systems. We therefore

erformed a correlation analysis between all those classifiers to guide

s in the time series-based classifier selection process. 
.3. Correlation analysis between time series-based classifier 

This section shows a correlation analysis of each pair of classi-

ers for all 39 available time series-based classifiers aiming at find-

ng which of them might be combined by the framework described

n Section 3 . 

The Correlation Coefficient ρ ( COR ) [20] has been used to assess the

orrelation of two classifiers c i and c j : 

OR(c i , c j ) = 

ad − bc √ 

(a + b)(c + d)(a + c)(b + d)
, (6)

here a is the percentage of time series that both classifiers c i and c j 
lassified correctly in a validation set V . Value b is the percentage of

ime series that c j hit and c i missed, c is the opposite of b . The value d

s the percentage of time series that both classifiers missed. The pairs

f classifiers with lower COR values have greater degree of comple-

entarity and are more likely to yield better results when combined.

ange of COR is in [ −1 , +1] . 

Fig. 8 presents the COR values for all possible combinations of

airs of classifiers considering the six classes. The lowest correlation

oefficients are closer to the purple color ( −1 ) and the highest coef-

cients are closer to the yellow color ( +1 ). Furthermore, in this fig-

re, there are seven important regions that have been highlighted and

hey are explained below. 

As we can observe in Fig. 8 (a), in region (1), there are few classi-

ers with high correlation between the channels R and G which are

loser to their extreme hours (16–18 h). However, outside of region

1), the classifier from channels R and G are less correlated with chan-

el B . We can see some points in purple, which means lower corre-

ation coefficients. Fig. 8 (b) shows a more homogeneous behavior of

he classifiers, since instances of class C. brasiliensis are not difficult

o be correctly classified. Furthermore, we can notice that there are

 few yellow strips meaning high correlation of the same classifier

ith all other classifiers. Fig. 8 (c) shows many purple points, which

ean a low correlation between almost all classifiers used in this

ork. This phenomenon can be explained by the difficulty of clas-

ifying instances of the class M. guianensis . In region (2), we found

he lowest correlation coefficient for all experiments. Fig. 8 (d) shows

 similar behavior to Fig. 8 (a) with coefficients more homogeneous.

e can observe in region (3) that classifiers of the same color channel

 are more correlated between them. However, in region (4), R and G
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Fig. 8. Correlation analysis considering all 39 available time series-based classifiers (3 channels × 13 h = 39 classifiers). The lowest correlation coefficients are closer to the purple 

color ( −1 ) and the highest coefficients are closer to the yellow color ( +1 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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are less correlated with B . Fig. 8 (e) shows the second most difficult

class to be classified: P. ramiflora . In regions (5) and (6), we found the

lowest correlation coefficients between almost all classifiers of R × G

and all classifiers of the color channels R and G with part of classifiers

of channel B (9–12 h). Finally, in Fig. 8 (f), which refers to the class

P. torta , we can notice that the classifiers achieve similar behavior to

Fig. 8 (a) and (b). In region (7), there are the less correlated classifiers

within Fig. 8 (f). 
.4. Time series-based classifier fusion 

In these experiments, 12 fusion techniques were compared: four

echniques that use the adopted framework [12] (FSVM- ALL -39,

SVM-R-13, FSVM-G-13, and FSVM-B-13), four majority voting tech-

iques [22] (MV- ALL -39, MV-R-13, MV-G-13, and MV-B-13), and

our bootstrap aggregation approaches [7] (BAGG-MERGE- ALL -39,

AGG-MERGE-R-13, BAGG-MERGE-G-13, and BAGG-MERGE-B-13).
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color in this figure text, the reader is referred to the web version of this article.) 

7  

1  

y  

a  

t  

m  

s  

a  

d

5

 

f  

|  

p

 

s  

w  

T  

i  
LL means that all color channels, hours, and features have been used.

 , G , and B refer to the color channels that compose the RGB channel.

urthermore, the number after a name (e.g., 13 in FSVM-B-13) refers

o amount of time series-based classifiers considered in the fusion

rocess. MERGE denotes a binding of the all available channels, hours,

nd feature vectors. 

The proposed framework aims at finding suitable combinations

f time series-based classifiers formed by descriptors and learning

ethods. We have used the implementation of those learning meth-

ds available in the WEKA [16] data mining library. All learning meth-

ds were used with default parameters which means we did not op-

imize them. 

Figs. 9 and 10 show the effectiveness results of all fusion tech-

iques considered in this work. Two evaluation measures have been

dopted, mean average accuracy ( Fig. 9 ) e mean accuracy ( Fig. 10 ).

alanced mean accuracy per class considers the mean accuracy of

ach class using the 5-fold cross validation protocol and the final ef-

ectiveness result is the average of these accuracies. Mean accuracy is

he principal diagonal from confusion matrix, which counts the num-

er of correct classification cases with respect to the total instances

sing the 5-fold cross validation protocol. 

As it can be observed, two of our approaches (FSVM- ALL -39 and

SVM-R-13) achieved the best results among all involved fusion tech-

iques. FSVM- ALL -39 approach obtained a mean average accuracy of
M
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8.66% and mean accuracy of 85.87% against the best baseline MV-R-

3 that yielded 73.02% and 83.18%, respectively. A fine-grained anal-

sis considering mean average accuracy showed that FSVM- ALL -39

pproach achieved better results in two classes ( M. guianensis and P.

orta ), FSVM-R-13 approach is the best for other two classes ( A. to-

entosum and M. rubiginosa ). Finally, MV- ALL -39 achieved better re-

ults in the classes C. brasiliensis and P. ramiflora . Thus, our approaches

chieved better results in four out of six possible classes from the

ataset used. 

.5. Time series-based classifier selection 

This section describes a behavioral analysis of the proposed

ramework using different numbers of time series-based classifiers

C ∗| for the six classes from the dataset. Fig. 11 shows this analysis

er class as well as all classes together. 

In these experiments, we can notice that the classes C. brasilien-

is , A. tomentosum , M. rubiginosa , and P. torta have a stable behavior

ith the increasing number of selected time series-based classifiers.

his fact cannot be observed in the classes M. guianensis and P. ram-

flora . The class M. guianensis achieved an increase of more than 10%

f mean accuracy in the range [3, 7]. However, the curve of the class P.

amiflora decreases more than 15% for the same ranges. Furthermore,

ote that the framework using only six classifiers achieves similar re-

ults to those observed when 39 time series-based classifiers are used

see brown line in Fig. 11 ). In summary, the investigation for mini-

izing the misclassification rate per class seems to be a promising

esearch venue and a classifier selection approach based on balanced

lasses might be a good solution to address this problem. 

Fig. 12 depicts the histogram H created in the selection process,

hile Fig. 13 shows the accuracy performances of all simple/non-

omplex classifiers using the validation set V . We highlight in gold

ars the six time series-based classifiers (see brown line in Fig. 11 )

hat have been selected by our selection process. In Fig. 12 , although

lassifiers k NN1-09G, k NN1-09B, and k NN1-12G have achieved the

igher frequency than k NN1-06R and k NN1-07G, our selection ap-

roach does not choose any of those classifiers as candidate for fu-

ion (gold bars). This is due to the policy of also considering the

ndividual accuracy performance of classifiers in the selection pro-

ess. As the accuracy performances of k NN1-09G, k NN1-09B, and

 NN1-12G are below than the employed threshold values (dark blue

ine, T = 61 . 97% ), these classifiers are not selected. Selected classi-

ers are k NN1-06R, k NN1-06B, k NN1-07R, k NN1-07G, k NN1-07B, and
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Fig. 12. Histogram H related to the occurrence of classifiers in the selection process. 

(For interpretation of the references to color in this figure text, the reader is referred to 

the web version of this article.) 
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Fig. 13. Average accuracy performances of all non-complex classifiers used in our ex- 

periments. The dark blue line defines the employed threshold ( T ) value. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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k NN1-18R. In these experiments, three selected classifiers use the R

channel, two classifiers use the B channel, and one classifier uses the

G channel. We can observe also a huge impact of the extreme hours

(06, 07, and 18) in the selection process. 

6. Conclusions 

In this paper, we proposed a time series-based classifier selec-

tion and fusion framework to address problems in fine-grained plant

identification tasks. We validated such framework with phenology

studies. Recalling the objectives of our work, we addressed some

very important questions, such as: (i) how species from the same

leaf functional group differ from each other; (ii) how different pat-

tern classifiers might be combined to improve the effectiveness re-

sults in target fine-grained species identification as just one classi-

fier or feature would not be discriminatory enough for the task; and

(iii) whether it is possible to achieve good classification results with

fewer classifiers for plant identification improving the efficiency of

the whole decision-making process. To answer such questions, we

have performed five different analyses: (1) Investigation of the best
alue for the k parameter of the k NN learning method that yields

etter results in the target problem; (2) An analysis of the relation-

hip between hours of the day and the six different plant species

onsidered in this study; (3) A correlation analysis measuring the

egree of agreement/disagreement between available time series-

ased classifiers; (4) Use of a classifier selection and fusion frame-

ork aiming at exploring complementary information provided by

ifferent descriptions and learning methods, thus improving the ef-

ectiveness results; (5) Investigation of the impact of using the same

ramework with classifier selection process to decrease the number

f time series-based classifiers used, while maintaining similar effec-

iveness results. 

The experiments performed in this work confirm that there are

ome differences in terms of classification performance depending

n the plant species considered, as well as, the correlation that exists

etween RGB channels and hours of the day using k NN-1 classifiers.

lso, in the experiments, it was possible to note the importance of

he red channel for plant species identification, in spite of the good

ontribution observed for the blue channel for some species (e.g., M.

uianensis , P. ramiflora , and P. torta ). Furthermore, the adopted frame-

ork achieved excellent results when compared with other well-

nown fusion techniques of the literature (Bootstrap Aggregation-

AGG [7] and Majority Voting-MV [22] ). This framework, extended

pon [12] , brings an essential and important property different from

hose techniques in the literature: it is highly flexible and paralleliz-

ble. Regarding flexibility, our adopted approach can use any descrip-

ion technique or learning methods as base classifier. In addition, the

ethod is able to use any learning method in the late fusion (meta-

earning process), such as a simple majority voting or more complex

echniques such as support vector machines (SVMs). As for paral-

elization, each combination of description and learning methods can

e used in different parallel approaches (e.g., thread, processor, and

PU) due the framework structure being designed independently (in

odules). With that, the more important modules are the training

lassifiers, the classifier selection, and the meta-learning. Further-

ore, other important advantage of the adopted approach is that it

onsiders each description and learning method as a single represen-

ation thus it does not incur in the common normalization problems

nd, consequently reduces the risk the “the curse of dimensionality”

hat may result of direct combination of features (e.g., by means of

oncatenating feature vectors). 

A fine-grained analysis using time series-based classifier selection

howed that the framework using fewer classifiers (i.e., six) achieved

imilar results to those observed when 39 time series-based classi-

ers are used. Therefore, our proposed method might be able to per-

orm real-time plant identification in different domains such as when

onitoring plants through intelligent autonomous vehicles (e.g., un-

anned aerial vehicles and drones). 

Another important contribution of this work is related to the use

f multiclass classification approaches, which was not used in previ-

us phenology work [5] . The main take-home message of our work is

hat the adopted framework might be a good solution to address com-

lex problems such as the ones involving phenology derived from se-

uential digital images and fine-grained recognition of plants from

he same functional leaf groups. This framework takes advantage of

ifferent and complementary information provided by RGB channels

nd combine them for a better decision-making process. In addition,

t achieves good effectiveness results with fewer classifiers, which is

aramount for efficient plant recognition. 

Future work may consider the use of the proposed framework in

emi-automatic plant identification tasks, in which users may pro-

ide relevance feedback that may tune the used classification mod-

ls for better fine-grained categorization that always includes hu-

ans (specialists) in the loop. Also, we may consider the use of the

roposed framework for real-time plant identification systems. Fur-

hermore, other vegetation indices might be studied and combined
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uch as Color Index of Vegetation Extraction (CIVE) [19] , Excess Green

ExG) [14] , and the Plant Phenology Index (PPI) [18] . Regarding the

eneralization, with the proposed approach in this work for dealing

ith time-series based problems, we believe that other application

omains, still in the realm of time series as input data, may include

rop monitoring, recognizing different plant growth rates and also

or plague control. Other applications also may tap on snowmelt and

omparison of species or different kinds of vegetation. 
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