
 

 

 

Testing Exchangeability for Transfer Decision

Citation for published version (APA):

Zhou, S., Smirnov, E., Schoenmakers, G., Driessens, K., & Peeters, R. (2017). Testing Exchangeability
for Transfer Decision. Pattern Recognition Letters, 88, 64-71. https://doi.org/10.1016/j.patrec.2016.12.021

Document status and date:
Published: 01/03/2017

DOI:
10.1016/j.patrec.2016.12.021

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 20 Apr. 2024

https://doi.org/10.1016/j.patrec.2016.12.021
https://doi.org/10.1016/j.patrec.2016.12.021
https://cris.maastrichtuniversity.nl/en/publications/29633a85-53cc-4b6a-b6b7-2d867e62f680


Pattern Recognition Letters 88 (2017) 64–71 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Testing exchangeability for transfer decision 

Shuang Zhou 

∗, Evgueni Smirnov , Gijs Schoenmakers, Kurt Driessens, Ralf Peeters 

Department of Data Science and Knowledge Engineering, Maastricht University, P.O.BOX 616, Maastricht, 6200 MD, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 23 March 2016 

Available online 16 January 2017 

MSC: 

41A05 

41A10 

65D05 

65D17 

Keywords: 

Instance-transfer learning 

Conformity prediction framework 

Exchangeability test 

a b s t r a c t 

This paper introduces a non-parametric test to decide whether to transfer data from a source domain to a 

target domain to improve the generalization performance of predictive models on the target domain. The 

test is based on the conformal prediction framework: it statistically tests whether the target and source 

data are generated from the same distribution under the exchangeability assumption. The experiments 

show that the test is capable of outperforming existing methods when it decides on instance transfer. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Instance transfer has received significant attention in the last

decade [19] . The goal is to improve the predictive models for a

target domain by exploiting data from a (closely) related source

domain. A thorough analysis of instance transfer [22] shows that

its effectiveness depends on the relevance of the source domain to

the target domain. As a result, a critical problem we have in prac-

tice is to decide whether we can transfer the source data while

training predictive models for the target one. Adequately address-

ing this problem guarantees that we avoid negative transfer when

adopting source data degrades the performance of the final models

[19] . 

The standard approach to the problem of deciding whether to

transfer source data has been proposed in a number of works all

based on the same principle [6,7,21,26] . This approach considers

the distance between the target and source probability distribu-

tions as the difference between the target and source domains.

Thus, the source data is transferred iff the distance between the

probability distributions is small enough. There are however two

major drawbacks of this approach. First, it is sensitive to the accu-

racy of estimating target and source probability distributions, since

the real distributions are usually unknown. When this accuracy de-

grades (for example when the data is limited in size or high di-

mensional), the approach can be misleading. Second, the bound

used to select or disregard source data is set by the user in an
∗ Corresponding author. 

E-mail address: shuang.zhou@maastrichtuniversity.nl (S. Zhou). 

S  

p

http://dx.doi.org/10.1016/j.patrec.2016.12.021 

0167-8655/© 2017 Elsevier B.V. All rights reserved. 
d-hoc fashion and the approach does not lend itself to making

tatistically sound decisions; e.g., to transfer only if the target and

ource probability distributions are similar with high probability.

his is because the distance values provided by the approach are

ery difficult to relate to the null hypothesis that “the target and

ource probability distributions are similar” in a statistical sense.

his can easily result in negative transfer. 

In this paper, we propose to avoid the aforementioned draw-

acks by using a non-parametric test to decide on transfer using

ource domain based on the conformal prediction framework [20] .

t tests whether the target data and the source data have been gen-

rated from the same distribution under the exchangeability as-

umption [2] and makes it possible to decide on transfer using an

nterpretable significance level. 

The essential part of the new test is a p -value function that can

e used to estimate the relevance of the target and source data in

 statistically sound way. For any target and source data the func-

ion returns a p -value related to the null hypothesis “the target and

ource data have been generated from the target distribution under

he exchangeability assumption”. The function can be instantiated

ependent/independent on/of the predictive models used. The va-

idity of the function is proven. 

The rest of the paper is organized as follows. Section 2 for-

alizes the classification task and instance transfer task, and pro-

ides an overview of related work. Our conformity-based test to

ecide on transfer from source data is introduced in Section 3 .

ection 4 provides an experimental comparison with existing ap-

roaches. Finally, Section 5 concludes the paper. 

http://dx.doi.org/10.1016/j.patrec.2016.12.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.12.021&domain=pdf
mailto:shuang.zhou@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.patrec.2016.12.021
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. Classification and instance transfer 

In this section we present classification tasks in the context of

nstance transfer learning and discuss past work. 

.1. Task definition 

Let X be a feature space and Y be a class set. A domain is de-

ned as a 2-tuple consisting of a labeled space ( X × Y ) and a prob-

bility distribution P XY over the labeled space 1 . We consider first a

omain 〈 (X × Y ) , P t 
XY 

〉 that we call a target domain. The target data

et T is a finite multi set of m T instances ( x t , y t ) ∈ X × Y drawn

rom the target distribution P t 
XY 

under the randomness assumption.

iven a test instance x m T +1 ∈ X, the target classification task is to

nd an estimate ˆ y m T +1 ∈ Y for the true class of x m T +1 according to

 

t 
XY 

. 

Let us consider a second domain 〈 (X × Y ) , P s 
XY 

〉 that we call a

ource domain. The source data S is a finite multi set of m S in-

tances ( x s , y s ) ∈ X × Y drawn from the source distribution P s 
XY 

un-

er the randomness assumption. Knowing that the target domain

nd the source domain are relevant, we define the instance-transfer

lassification task as a classification task with an auxiliary source

ata set S in addition to the target data set T . We note that the

lass of a new test instance is estimated according to the target

istribution P t 
XY 

. 

From the definition above it follows that instance transfer is

ensitive to the relevance of the source data S to the target data T .

ence, the problem of deciding whether we can transfer the source

ata in order to improve class estimation in the target domain is

mportant for its overall success. 

.2. Related work 

As it is mentioned in Section 1 , the standard approach of de-

iding whether to transfer source data consists of two stages. First,

he target and source probability distributions are estimated, and

hen the distance between the distributions is computed. Based on

he distance, the transfer decision is made. Below the main meth-

ds within this approach are described. 

By assuming that the underlying distributions are normal, the

istance can be estimated using the Mahalanobis distance, which

s a common statistical distance between an instance and a distri-

ution [8] . It measures how many standard deviations the instance

s away from the mean of the distribution. Given target and source

ata, the distance between these two sets can be estimated by av-

raging the Mahalanobis distance of each source instance to the

arget distribution (estimated from the target data). Although the

easure is widely used, it assumes a normal distribution of the

arget instances. In practice, this assumption does not often hold. 

Kullback–Leibler divergence (KL-divergence) is one of the most

idely used measures to compare probability distributions [14] .

iven target and source data, KL-divergence from the P s 
XY 

to P t 
XY 

s defined as the expectation of the logarithmic quotient of the es-

imated target and source densities, where the expectation is taken

.r.t. the target density. Some applications of KL-divergence can be

ound in [1,6,7,27] . In [6] , by assuming the independence between

eatures, the KL-divergence from P s 
XY 

to P t 
XY 

was computed as the

um of feature-level KL-divergences. In [27] , P s 
XY 

and P t 
XY 

were as-

umed to be mixtures of Gaussians. The KL-divergence was then

alculated based on two Gaussian mixtures estimated from T and

 . KL-divergence assumes that the probability densities can be esti-

ated precisely from the data. When the number of the measure-
1 For the sake of completeness the marginal distribution over X is denoted by P X , 

nd the conditional distribution over Y given X by P Y | X . 

p  

S  

O  

T  
ents is small and/or the data-space is highly dimensional the ap-

roximations can result in an inaccurate KL-divergence estimation.

The A -distance was introduced by [12] . Given target and source

robability distributions P t 
XY 

and P s 
XY 

, and a collection A of data

ets, the A -distance between P t 
XY 

and P s 
XY 

is defined as the upper

ound of the absolute difference of the probabilities of generating

ets A ∈ A w.r.t. P t 
XY 

and P s 
XY 

. The A -distance depends on the choice

f the sets collection A , and determining a good collection is an

pen problem. 

The discrepancy distance, proposed by Mansour et al. [17] , es-

imates the difference between the target and source conditional

istributions P t 
Y | X and P s 

Y | X from the perspective of a hypothesis

pace H . The key idea is that the target (source) classifier h t ∈ H

 h s ∈ H ) based on the target (source) data sets T ( S ) can be used to

pproximate the conditional target (source) distribution P t 
Y | X ( P s 

Y | X ).
herefore, the discrepancy distance is computed as the disagree-

ent between the target and source classifier h t and h s by labeling

nstances from the union of target and source data. One drawback

f using the discrepancy distance is that the difference between

he target and source domains is estimated only in terms of the

ifference in conditional distributions without taking into account

he difference between the marginal distributions. 

Since any joint distribution P XY can be given as the product of

arginal distribution P X and the conditional distribution P Y | X , the

ransfer cross validation framework (TrCV) [26] measures the dis-

ance between marginal distributions and conditional distributions

nd then combines them to indicate the joint distribution discrep-

ncy. More precisely, applying TrCV is a two-step process. First, a

ensity ratio weighting approach is used to assess the difference

n marginal distributions P t 
X 

and P s 
X 

. Second, a reverse validation

ramework is employed to quantify the discrepancy between con-

itional probabilities P t 
Y | X and P s 

Y | X . The distance between target

nd source joint distributions is then calculated as the product of

arginal discrepancy and conditional discrepancy. 

As it is mentioned in Section 1 , all these methods are sensitive

o the accuracy of distribution estimation, and do not support in-

tance transfer decision in a statistical sense. To avoid these prob-

ems, in the next section we propose our solution. 

. A conformity-based test for transfer decisions 

We propose a non-parametric statistical test to decide on in-

tance transfer from given source data. In the original problem for-

ulation, target and source data are generated under the random-

ess assumption. This assumption leads to a null hypothesis that

he joint data set T ∪ S was generated from the target probabil-

ty distribution P t 
XY 

under the randomness assumption. Thus, one

ould employ some of the randomness tests from the algorithmic

heory of randomness [5,18,25] . However, it is a well-known fact

hat those tests are incomputable [24] . 

To go around the computability problem of the randomness

ests we propose to employ the conformal prediction framework

20] instead. In this context we introduce a conformity-based test 

o decide on transfer from the source data. The key idea stays the

ame but under the exchangeability assumption of data generation

2] that treats the data-sets as finite sequences sampled from the

robability distributions. The null hypothesis then becomes that

he data sequence TS consisting first of target data sequence T and

ollowed by source data sequence S was generated from the target

robability distribution P t 
XY 

under the exchangeability assumption.

f the null hypothesis is accepted at some significance level, it im-

lies that at that level the target and source data sequences T and

 are relevant, and the source data sequence S can be transferred.

therwise, the target data sequence T should be used on its own.

his way we avoid probability-distribution estimations and provide
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2 T is a parameter of the p -value function t as well. However, for the sake of 

simplicity of the notation, it is skipped from the definition of t . 
a way to make the transfer decision in a statistical sense; i.e., we

overcome both drawbacks of the existing work. 

Below we describe the test in detail. We start with the ex-

changeability assumption, then introduce our p -value function and

the test, and, finally, provide properties and a computationally ef-

ficient approximation of the p -value function. 

3.1. Test derivation 

The exchangeability assumption is a weaker assumption than

the randomness assumption [2] . It holds for a finite sequence of

random variables iff the joint probability distribution of those vari-

ables is invariant under any variables’ permutation [10] . Apply-

ing the exchangeability assumption to decide to transfer instances

from S to T means that we need to decide whether the combined

data sequence TS has been generated by the target distribution P t 
XY 

under the exchangeability assumption. This is equivalent to testing

the hypothesis “the probability distribution of all the permutations

of the data sequence TS is uniform”. 

When m S = 1 , Shafer and Vovk [20] proposed such a test in the

context of conformal prediction. The test is based on instance non-

conformity scores as statistics for the null hypothesis “the distri-

bution of all the permutations of the data sequence TS is uniform”.

The nonconformity score α( x, y ) of an instance ( x, y ) ∈ TS is de-

fined as a score (result of a function) indicating how unusual that

instance is in the data sequence TS �{( x, y )}. Let ( X × Y ) ( ∗) repre-

sents the set of all sequences over ( X × Y ), an instance noncon-

formity function A is formally a mapping from ( X × Y ) ( ∗) × ( X ×
Y ) to R 

+ ∪ { + ∞} , indicating how unusual the instance ( x, y ) is for

the instances in the data sequence TS �{( x, y )}. We note that any

instance nonconformity function has to produce the same result

for an instance independently of the ordering of TS . Otherwise, the

instance will have | TS |! number of possible nonconformity values. 

There are several instance nonconformity functions [3] avail-

able. They are divided into those that depend on the predictive

models used and those that do not. Among the former there ex-

ist functions for Decision Trees, SVMs, k -NN predictors, AdaBoost

etc. 

Since in the transfer setting the source data S usually consists of

more than one element, we need to generalize the work of Shafer

and Vovk [20] and define a nonconformity function for data se-

quences of any length. Given the combined sequence TS and any

sequence U of some elements of T ∪ S , the nonconformity function

should return a value αU ∈ R 

+ ∪ { + ∞} indicating how unusual the

data sequence U is with respect to all subsequnces with size | U | of

the data sequence TS . 

Definition 1 (Sum sequence nonconformity function) . Given an in-

stance nonconformity function A , data sequence T and a data se-

quence U of some elements of T ∪ S , the sum sequence nonconfor-

mity function A 

∗ : (X × Y ) (∗) × (X × Y ) (∗) → R 

+ ∪ { + ∞} is defined

as 

A 

∗(T , U) = 

∑ 

(x,y ) ∈ U 
α(x,y ) , 

where α(x,y ) = 

{
A (T \ { (x, y ) } , (x, y )) , f or (x, y ) ∈ T 

A (T , (x, y )) , otherwise 

The sum sequence nonconformity function A 

∗ returns the same

nonconformity value for a data sequence U independently of the

ordering of T if this property holds for the instance nonconformity

function A . It is also independent of the ordering of U , which will

become important for computations later on. Since the instance

nonconformity function A can be model (in)dependent, the same

holds for A 

∗. 

Using an instance nonconformity function that estimates the

unusualness of the instance w.r.t. the target data sequence T , we
an employ the sequence nonconformity αU = A 

∗(T , U) to test the

ull hypothesis: “the distribution of all the permutations of the

ata sequence TS is uniform”. To design the test, we employ the

 -value function defined next. 

efinition 2 ( p -value function) . Given the data sequence T , a data

equence U of some elements of T ∪ S , and an integer n ≤ | U |, the

 -value function t : (X × Y ) (∗) × N → [0 , 1] equal to: 

(U, n ) = 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| 
|P(U, n ) | , 

here P(U, n ) is the set of all length n subsequences of U, L ( U,

 ) is the sequence of the last n elements of U, αV and αL ( U, n ) are

equence nonconformity scores returned by A 

∗( T, V ) and A 

∗( T, L ( U,

 )), respectively 2 . 

Given the combined data TS and n = m S , the p -value function

 ( TS, m S ) returns the proportion of length m S subsequences of the

equence TS whose nonconformity values are greater than or equal

o that of the source data sequence S . 

heorem 1. If the sequence TS is exchangeable, then 

 { t(T S, m S ) ≤ r} ≤ r 

roof. Let TS be an exchangeable sequence and let r ∈ [0,

]. Since t can only take on values j 
| P(T S,m S ) | , where j ∈

 1 , 2 , . . . , | P(T S, m S ) | } , we assume w.l.o.g. the same for r , i.e. r =
j 

| P(T S,m S ) | for the appropriate value of j . Then P { t ( TS, m S ) ≤ r }

quals: 

| { U ∈ P(T S, m T + m S ) : t(T S, m S ) ≤ r} | 
| P(T S, m T + m S ) | 

 

∣∣∣{ 

U ∈ P(T S, m T + m S ) : t(T S, m S ) ≤ j 
| P(T S,m S ) | 

} 

∣∣∣
(m T + m S )! 

 

∣∣{U ∈ P(T S, m T + m S ) : 
∣∣{V ∈ P(T S, m S ) | αV ≥ αL (T S,m S ) 

}∣∣ ≤ j 
}∣∣

(m T + m S )! 

Now let S j ( TS ) be the following subset of P(T S, m T + m S ) : U

 S j ( TS ) if and only if there are at most j (sub-)sequences V ∈
(T S, m S ) that have a nonconformity value αV ≥ αL (U,m S ) 

. Say that

here are k ( ≤ j ) such subsequences. For each of those k sub-

equences there are m T ! ways to extend them to a sequence of

ength m T + m S (by ‘prefixing’ them with an appropriate sequence

f the length m T ). This means that | S j (T S) | = k · m T ! ≤ j · m T ! with

 possible strict inequality if there are multiple sequences V that

ave identical nonconformity values. We have: 

 { t(T S, m S ) ≤ r} = 

∣∣S j (T S) 
∣∣

(m T + m S )! 

≤ j · m T ! 

(m T + m S )! 

= 

j 

(m T + m S ) · (m T + m S − 1) · . . . · (m T + 1) 

= 

j 

| P(T S, m S ) | = r 

hich completes the proof. �

Theorem 1 shows the validity of the p -value function t . We note

hat this theorem can be viewed as a corollary of Theorem 4.1 in

he work of [23] , which proves the validity of the p -value function

 using an online protocol. 
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We can now employ our p -value function t to design a

onformity-based statistical test for the null hypothesis that the

ombined data sequence TS has been generated by the target dis-

ribution P t 
XY 

under the exchangeability assumption. If the returned

 -value is greater than or equal to a user defined significance level

, the null hypothesis is accepted and the source data S is transfer-

ble. Otherwise, the null hypothesis is rejected and only the target

ata T should be used. 

Note that our conformity-based test can be dependent or inde-

endent on/of the predictive models used subject to the instance

onconformity function used. Model dependency is important as

his allows us to base the decision for instance transfer on the clas-

ifier that will be used in actual transfer (in analogy with feature-

election wrappers [13] ). 

.2. Computing p -values using the wilcoxon rank-sum test 

As mentioned in Section 3.1 , the sum sequence nonconformity

unction A 

∗( T, U ) is independent of the ordering of the sequence

 , so that the nonconformity score of a set can be defined equal

o the nonconformity score of any sequence of elements of that

et. Given that C(U, n ) is the set of all combinations of n elements

ut of sequence U and the cardinality of C(U, n ) is independent of

he order of U ( |P(U, n ) | = |C(U, n ) | × n ! ), we re-write the p -value

unction t as follows: 

(U, n ) = 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| 
|P(U, n ) | 

= 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| /n ! 

|P(U, n ) | /n ! 

= 

|{ V ∈ C(U, n ) | αV ≥ αL (U,n ) }| 
|C(U, n ) | (1) 

We note that the p -value function defined in this way exhibits

n analogy to the notion of Wilcoxon rank-sum test [15] . If we

ssign ranks from 1 to m T + m S to all instances in TS accord-

ng to their nonconformity scores in ascending order, the p -value

unction P ( TS, m S ) can be approximated using the Wilcoxon rank-

um test. In this setting, the nonconformity score αV of any set V

rom TS with size m S is replaced by the rank sum W that equals

o �( x, y ) ∈ V R ( x, y ) wher e R ( x, y ) is the rank of nonconformity score

( x, y ) of instance ( x, y ) ∈ V . Accordingly, αS is replaced by the sum

f ranks of all instances in S denoted by W S . In this way the prob-

bility P ( W ≥ W S ) that the rank sum of any m S instances is bigger

han that of the source instances is approximately equal to t ( TS,

 S ); i.e., the p -value function can be implemented using the rank-

um test. 

When | TS | > 30, the rank sum W is approximately normally dis-

ributed according to the law of large number. The expectation of

he rank sum is: 

(W ) = 

1 

2 

m S (m T + m S + 1) 

nd variance is: 

 ar(W ) = 

1 

12 

m T m S (m T + m S + 1) 

This implies that the probability P ( W ≥ W S ) and, thus, the p -

alue t ( TS, m S ), can be easily approximated from this normal dis-

ribution. 

.3. Analyzing the p-value function t

Assume that all the instances in the source sequence S are

orted in increasing order of the nonconformity values and S i is

 subsequence consisting of the first i instances of the ordered S .

or example, let us consider 3 target instances and 4 source in-

tances with corresponding nonconformity scores are 1,5,6,2,3,4,
nd 7. In this case t(T S 1 , 1) = 1 . 0 , t(T S 2 , 2) = 0 . 7 , t(T S 3 , 3) = 0 . 8

nd t(T S 4 , 4) = 0 . 54 . Thus, t ( TS i , i ) is not a monotonic function of

ndex i. 

In addition, we note that the function t can be modified to test

he null hypothesis that the data sequence ST was generated from

he source probability distribution P s 
XY 

under the exchangeability

ssumption. To draw this test we redefine the sum sequence non-

onformity function A 

∗. The new function computes the noncon-

ormity values w.r.t. the source sequence S ; i.e., the nonconformity

alue α( x, y ) of any instance ( x, y ) is computed by A ( S �{( x, y )}, ( x,

 )). In doing so, the value t ( ST, m T ) indicates the relevance of the

arget data to the source data and it helps in instance transfer by

howing how well the source data “covers” the target one. In this

ontext we note that the values t ( TS, m S ) and t ( ST, m T ) in general

re different due to different nonconformity values used and differ-

nt computations involved. Thus, the p-value function t is an asym-

etric measure of relevance between the target data and source data.

.4. Off-line testing and on-line testing 

Our conformity-based test is designed for off-line testing when

ll the source instances are available in advance. Still, it can be ex-

ended for on-line testing when the source instances arrive one by

ne [3] . In this setting upon arrival of a new source instance we

rst compute its nonconformity score (using the target data only)

nd then depending on the data size apply either the direct imple-

entation (see Definition 2 ) or the rank-sum implementation of

ur test. Hence, we test on-line whether the target data that stay

ntact and the source instances that have arrived so far have been

enerated from the target distribution under the exchangeability

ssumption. In this respect our test extension differs the on-line

est proposed in [10] that tracks the deviation from the exchange-

bility assumption in one data stream. 

. Experiments 

In this section we present our experiments with our

onformity-based test and related methods presented in

ection 2.2 . First, we describe the experimental setup, then

he instance-transfer classification tasks under study, and, finally,

he experimental results. 

.1. Experimental setup 

For our experiments we chose the Wilcoxon rank-sum test im-

lementation of the p -value function t (see Section 3.2 ). The sum

equence nonconformity function A 

∗ was implemented according

o Definition 1 . For the instance nonconformity function we chose

he general instance nonconformity function A G as defined in [20] .

 G maps target data T and an instance ( x i , y i ) to a nonconformity

alue 
∑ 

y ∈ Y ,y � = y i p y where p y is the score of class y ∈ Y for that

nstance produced by a nonconformity classifier trained on target

ata T . In our experiments we employed Random Forest [4] as a

onconformity classifier. 

For the instance-transfer classification tasks, we employed four

nstance-transfer classifiers: TrAdaBoost [7] , Dynamic-TrAdaBoost

1] , TraBagg [11] , and DoubleBootstrap [16] . All the classifiers used

upport Vector Machines (SVM) as base learners. 

The method of evaluation was a stratified holdout method on

he target data repeated 100 times. For the non-text data (text

ata), 10% (4%) of instances were randomly sampled from the tar-

et data for training and the remaining for testing. The smaller

ercentage for the text data was due to the fact that for bigger

ercentage instance transfer is no longer required. The generaliza-

ion performance of the instance transfer classifiers was evaluated

sing the Area Under the ROC Curve (AUC) [9] . 
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Table 1 

Landmine detection instance-transfer classification tasks. 

Datasets Description Size p -value 

Land mine T Mine 26 to 29 1799 

S1 Mine 16 to 20 2240 0 .465 

S2 Mine 21 to 25 2246 0 .446 

S3 Mine 6 to 10 2547 0 .274 

S4 Mine 11 to 15 2902 0 .237 

S5 Mine 1 to 5 3086 0 .174 

S6 Mine 1 to 5 by shifting the mean of feature 1 to 0 3086 0 .086 

S7 Mine 1 to 5 by shifting the mean of feature 2 to 0 3086 0 .024 
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Our conformity-based test was evaluated w.r.t. its effectiveness

in deciding whether to transfer source data. Rather than perform-

ing the test on all possible significance levels, we directly evaluated

the test p -value function t w.r.t. its capability of predicting success-

ful instance transfer. The capacity was defined as the Pearson’s cor-

relation coefficient between the p -values the function outputs for

source data sets and the AUCs of the instance-transfer classifiers

that employed those sets. Thus, the higher the capacity (correla-

tion) the better the function can indicate a successful transfer. In

this context we note that the five methods from Section 2.2 that

we use for comparison output values that indicate distances be-

tween probability distributions. That is why, for these methods the

capacity was defined as the negative Pearson’s correlation coeffi-

cient between the distances the methods output and the AUCs of

the instance-transfer classifiers. 

4.2. Instance-transfer classification tasks 

Four real-world data sets were employed in our experiments.

They are described below: 

• Landmine detection 

3 is a collection of data sets related to de-

tecting landmines in different geographical locations. It consists

of 29 data sets from 29 landmine fields. The 29 data sets have

different distributions due to various ground surface conditions.

For example, data sets 1 to 15 correspond to regions that are

relatively foliated while sets 16 to 29 correspond to regions that

have bare earth. In this context we derived target and source

data sets as follows. Data sets 26 to 29 were combined together

and used as the target data set. Data sets 16 to 20 and 21 to 25

were combined into two source data sets S 1 and S 2 with a high

relevance to the target one, while data sets 1 to 5, 6 to 10, 11 to

15 were combined into other three source data sets S 3 , S 4 and

S 5 with a lower relevance. To emphasize the negative effect of

irrelevant source data, we generated two additional source data

sets S 6 and S 7 from source data set S 3 . S 6 ( S 7 ) was generated

from S 3 by shifting the mean of the distribution of feature 1

(2) to 0. 

The target data set and a source data set defined together one

instance-transfer classification task. For all the tasks, the p -

values for the source data sets are given in the last column of

Table 1 . The tasks are sorted by the p -values in descending or-

der. 
• Wine quality 4 is a data set of in total 1599 red-wine and 4898

white-wine instances. Each instance is represented by 11 phys-

iochemical features (e.g. pH values) and a grade given by ex-

perts. In the experiments, red-wine instances were used as the

target data set and seven source data sets were sampled from

white-wine instances based on different conditions. The target

data set and a source data set defined together one instance-
3 http://www.cse.ust.hk/TL/ . 
4 https://archive.ics.uci.edu/ml/datasets/Wine+Quality . 

r  

f  

i  

i  
transfer classification task. The p -values for the source data sets

of all the tasks are given in the last column of Table 2 . 
• 20-newsgroups 3 is a data set of about 20,0 0 0 news documents

organized in a two-level hierarchy. The hierarchy consists of 7

top categories and 20 subcategories. For example, ‘comp’ and

‘sci’ are two top categories such that ‘comp’ has two subcat-

egories, ‘comp1’ and ‘comp2’, and ‘sci’ has two subcategories,

‘sci1’ and ‘sci2’. Five instance-transfer classification tasks were

defined as top-category tasks such that the target and source

data were drawn from different subcategories. The p -values for

the source data sets of all the five tasks are given in the last

column of Table 3 . 
• Reuters-21578 3 is a collection of data sets with text documents

organized in a hierarchical structure. Three instance-transfer

classification tasks were defined in the same way as those of

the 20-newsgroups tasks. The p -values for the source data sets

of all the three tasks are given in the last column of Table 4 . 

.3. Experimental results 

.3.1. Non-Text data 

Fig. 1 presents the results for the landmine-detection and wine-

uality instance-transfer classification tasks. It shows the corre-

pondence between the p -values of the source data sets and the

UC performance of the aforementioned instance-transfer classi-

ers. On the x-axis, S i (i = 1 , 2 , . . . , 7 ) represents the source data

ets from 1 to 7, sorted in descending order of p -values from left to

ight while the y-axis shows the average AUCs of the correspond-

ng classification models trained on T ∪ S . The performance of an

VM classifier trained on T alone is given as baseline. The plots

learly show that the instance transfer achieves better results on

he instance-transfer classification tasks associated with higher p -

alues. When the source data is irrelevant to the target data (i.e.

 -value is smaller than 0.1), these classifiers may result in negative

ransfer. 

We empirically compared our p -value function to the five meth-

ds discussed in Section 2.2 in terms of capability of predicting the

uccess of instance transfer. The results are provided in Table 5 . We

ighlight the highest number in each column. As shown in the ta-

le, our p -value function outperforms the other measures in most

f the experiments. 

.3.2. Text data 

Fig. 2 presents the results of our p -value function for the 20-

ewsgroups instance-transfer classification tasks. It shows the cor-

elation between the p -values of the source data and the AUC per-

ormance of the instance transfer classifiers. On the x-axis, the

nstance-transfer text classification tasks are again sorted descend-

ngly according the p -values. The y-axis shows the gain in AUC of

http://www.cse.ust.hk/TL/
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Table 2 

Wine quality instance-transfer classification tasks. 

Datasets Description Size p -value 

Wine T Red wine 1599 

S1 White wine that alcohol < 0.5 1540 0 .327 

S2 White wine that total sulphur dioxide > 0.2 1499 0 .286 

S3 White wine that alcohol < 0.5 and 0.16 < acid < 0.22 1499 0 .241 

S4 Random sample of white wine 1469 0 .208 

S5 White wine that total sulphur dioxide > 0.2 and 0.16 < acid < 0.22 1548 0 .199 

S6 Source data S5 by shifting the mean of the feature sulphates to 0 1548 0 .106 

S7 Source data S5 by shifting the mean of the feature alcohol to 0 1548 0 .053 

Table 3 

20-Newsgroups instance-transfer classification tasks. 

Datasets Tasks Sample Size p -value 

| T | | S | 

20-Newsgroups comp vs talk 4482 3652 0 .390 

rec vs sci 3961 3965 0 .343 

ci vs talk 3374 3828 0 .340 

rec vs talk 3669 3561 0 .320 

comp vs sci 3930 4900 0 .303 

Table 4 

Reuters-21578 instance-transfer classification tasks. 

Datasets Tasks Sample size p -value 

| T | | S | 

Reuters orgs vs people 1016 1046 0 .372 

orgs vs places 1079 1080 0 .272 

people vs places 1239 1210 0 .146 
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Fig. 1. AUCs of TrAdaBoost, Dynamic-TrAdaBoost, Trabagg, and DoubleBootstrap on 

non-text data. 

T

C

he instance-transfer classifiers w.r.t. non-transfer SVM classifier 5 .

ig. 2 (a)–(d) show that the AUC gain over SVM decreases with the

 -value of the source data. 

Fig. 3 presents the results for the Reuters-21578 instance-

ransfer classification tasks. Analogously, it shows the correlation

etween the p -values and the gain in AUC of the instance-transfer

lassifiers. As shown in those sub-figures, all those instance-

ransfer classifiers result in negative transfer for the “people vs

laces” task which associated with a very lower p -value (0.146).

his result shows that our p -value provides a good prediction for

egative transfer. The improvement for the “orgs vs people” task

s not significant, although it corresponds to a high p -value. That is

ecause the baseline classifier has already a good AUC which limits

he benefit of instance transfer. 

We again compared the p -value function with methods dis-

ussed in Section 2.2 . The Mahalanobis distance was excluded,

ince it produces inaccurate results for data having bigger num-

er of features than that of instances. The results are provided in
5 The use of AUC gain is due the fact that the instance-transfer text classification 

asks differ in the target data and the source data making AUCs on different tasks 

ncomparable. 

T  

f

able 5 

apacity to predict the success of instance-transfer classifiers for the Landmine and wine

Measures Landmine 

TrAdaBoost Dynamic TrAdaBoost TraBagg Double-

Conformity test ( p -value) 0 .933 0 .925 0 .991 0 .981 

KL-divergence 0 .804 0 .820 0 .940 0 .920 

Mahalanobis distance 0 .856 0 .792 0 .944 0 .882 

A -distance 0 .920 0 .784 0 .882 0 .810 

Discrepancy distance 0 .782 0 .886 0 .835 0 .882 

TrCV 0 .895 0 .821 0 .960 0 .889 
able 6 and they show that on most of these tasks our p -value

unction t outperforms the previous state of the art. 
 tasks. 

Wine 

bootstrap TrAdaBoost Dynamic TrAdaBoost TraBagg Double-bootstrap 

0 .936 0 .882 0 .811 0 .920 

0 .522 0 .864 0 .858 0 .801 

0 .572 0 .856 0 .789 0 .684 

0 .618 0 .682 0 .851 0 .790 

0 .920 0 .722 0 .740 0 .712 

0 .872 0 .764 0 .680 0 .782 
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Table 6 

Capacity to predict the success of instance-transfer classifiers for the 20-Newsgroups and Reuters-21578 tasks. 

Measures 20-Newsgroups Reuters-21578 

TrAda-Boost Dynamic TrAdaBoost TraBagg Double-bootstrap TrAda-Boost Dynamic TrAdaBoost TraBagg Double-bootstrap 

Conformity test ( p -value) 0 .884 0 .889 0 .855 0 .793 0 .914 0 .972 0 .999 0 .965 

KL-divergence 0 .271 0 .261 0 .164 0 .197 0 .334 0 .157 0 .441 0 .336 

A -distance 0 .569 0 .566 0 .714 0 .472 0 .664 0 .789 0 .894 0 .986 

Discrepancy distance 0 .864 0 .875 0 .670 0 .971 0 .774 0 .876 0 .954 1 

TrCV 0 .716 0 .714 0 .761 0 .620 0 .341 0 .506 0 .667 0 .857 

Fig. 2. AUC gain on the 20-Newsgroups instance-transfer classification tasks. 

Fig. 3. AUC gain on the Reuters-21578 instance-transfer classification tasks. 
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5. Conclusion 

We proposed a non-parametric test to decide on instance trans-

fer. The test is based on the conformal prediction framework

[20] and tests whether the target data and the source data have

been generated from the target distribution under the exchange-

ability assumption [2] . 
Our test overcomes several drawbacks of the existing meth-

ds for transfer decisions. More precisely, it does not employ

robability-distribution estimation and it provides decisions in sta-

istical sense. On the top of that, we emphasize two practical ad-

antages: 

• Our test is applicable under the exchangeability assumption

that is known to be a weaker assumption than the randomness

assumption. It broadens the scope of applicability. 
• Our test can be either dependent or independent on/of the pre-

dictive models used. The model dependency of the test is im-

portant for instance transfer. For example, we can do the test

using a classifier that latter will be used for instance transfer;

i.e., the decision for instance transfer depends is tailored to the

classifier used. 
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