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a b s t r a c t 

When a robot is learning it needs to explore its environment and how its environment responds on its 

actions. When the environment is large and there are a large number of possible actions the robot can 

take, this exploration phase can take prohibitively long. However, exploration can often be optimised by 

letting a human expert guide the robot during its learning. Interactive machine learning, in which a hu- 

man user interactively guides the robot as it learns, has been shown to be an effective way to teach 

a robot. It requires an intuitive control mechanism to allow the human expert to provide feedback on 

the robot’s progress. This paper presents a novel method which combines Reinforcement Learning and 

Supervised Progressively Autonomous Robot Competencies (SPARC). By allowing the user to fully control 

the robot and by treating rewards as implicit, SPARC aims to learn an action policy while maintaining 

human supervisory oversight of the robot’s behaviour. This method is evaluated and compared to Inter- 

active Reinforcement Learning in a robot teaching task. Qualitative and quantitative results indicate that 

SPARC allows for safer and faster learning by the robot, whilst not placing a high workload on the human 

teacher. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In the not too distant future robots will be expected to have

ocial skills, leaving the factory to interact with people in envi-

onments designed exclusively for use by humans [1] . Their users

ill not be academics or engineers but the elderly, therapists, chil-

ren or simply non-experts in technology and science. Each user

ill have specific needs that cannot be totally anticipated at the

obot’s design stage. Many researchers have argued that this issue

an be best addressed by having the user involved in generating

he behaviour [e.g. 2,3 ]. However, we cannot assume that users

ill have the technical knowledge required to make changes to the

ode controlling the robot. Therefore, we believe that robots need

o have a mechanism allowing a human to teach the robot in an

asy, natural and efficient manner. 

One way to provide a robot with such learning capability is to

se machine learning. Classic machine learning is often designed

y experts to be used by experts, its interface being often too

omplex for people not involved in the design process [4] . Many

ethods also suffer from practical issues: Deep Learning [5] re-

ies on having large datasets to train networks, while Reinforce-
∗ Corresponding author. 
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ent Learning [6] uses extensive and costly exploration to gather

ata points used for learning. As we aim at allowing a non-expert

nd-user to personalise the robot’s behaviour, complex interfaces

re not desirable, large dataset are not available and random ex-

loration can lead to undesired actions by the robot. This suggests

wo main challenges: how to empower the user with the ability

o teach the robot and how to gather safe training experiences for

he robot. A solution aiming to solve these two challenges is in-

eractive machine learning [4,7,8] . In this framework, the human is

art of the machine learning process. By providing ground truth

abelling or guiding the agent during exploration to the interesting

arts of the environment, the human can bootstrap and guide the

earning. Furthermore, the human can provide more information

han simply labelling the samples, bringing further improvements

o the learning [9,10] and if enough control is provided, the hu-

an teacher can also prevent the robot from making undesirable

r potentially dangerous errors. 

In this paper, we present a novel approach to combine rein-

orcement learning with interactive machine learning following the

upervised Progressively Autonomous Robot Competencies (SPARC) 

ethod proposed in [11] . By giving control of the robot’s actions to

 teacher, we aim to maximally use the human’s knowledge and

ransfer it to a robot in a quick, safe and efficient manner. This

ethod is compared to Interactive Reinforcement Learning (IRL), de-

cribed in [12] , using a study involving 40 participants interacting
e learning in human-robot interaction, Pattern Recognition Letters 
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with both approaches in Sophie’s Kitchen, the environment used to

demonstrate IRL. 

The reminder of the paper is organised as follows.

Section 2 presents different approaches used to teach robots

in an interactive fashion. We then describe the scope of the study,

including our hypotheses ( Section 3 ) and methodology ( Section 4 ).

Results are presented in Section 5 and are discussed in Section 6 .

We also propose guidelines for designing robots which interac-

tively learn from people. Finally, we conclude by summarising the

main results and the guidelines in Section 7 . 

2. Related work 

In human-robot interaction, the expected behaviour of the

robot is often solely known by the users: for therapies, thera-

pists are the experts and they know how the robot is supposed

to behave when interacting with patients. For assistive robots in

homes, each user has his own desires and preferences concerning

the robot’s behaviour. Consequently, these users have to be able to

adapt the behaviour of the robot in a way which suits them with-

out requiring technical skills. One approach to allow non-technical

persons to teach a robot an action policy is Learning from Demon-

stration [13,14] . In this framework, a human provides a robot with

demonstrations of the expected behaviour and the robot learns the

correct action policy. This methods is often used for teaching mo-

tor trajectories to a robot, but is also applicable to high level action

policy learning in robotics [15] . The conventional approach consists

of a set of demonstrations from the teacher followed by additional

learning without supervision until reaching an appropriate action

policy. However, human-robot interactions are not a static process,

the learning should happen during all interactions and be interac-

tive: the user should at all times be able to correct the robot when

it selects a suboptimal action. 

In interactive machine learning a human is included in the learn-

ing loop, allowing him to provide input during the learning pro-

cess, this approach has received increased attention over the last

decade. One of the main domains being extensively researched is

active learning [16] . Active learning has been used in a range of

fields: from medical image classification [17] to robotics [18] . In

this framework, an agent has to classify points in a dataset and

an ‘oracle’ is present and available. The oracle, often a human,

can provide ground truth labelling, but its use has a cost (time

or money for example) and consequently should be minimised. As

such, the conventional challenge of active learning is to find how

to optimise the use of the oracle to improve the learning. Multi-

ple approaches have been tested, such as requiring labels for the

points with the higher uncertainty or which categorisation would

provide the best improvement of the learning. 

However, as pointed out by [19] , one of the main limits of ac-

tive learning is that the robot is in control of the interaction: the

robot takes initiative to request training data from the user, regard-

less of what the human wants the robot to do, potentially leading

to frustration or incomprehension on the human side. For this rea-

son, methods have been developed to give the initiative back to the

human, placing the human in a teaching role. For example, when

set in a reinforcement learning framework, the human teacher can

provide additional feedback [12,20] and actively decides to reward

or not to reward a specific action. 

In human robot interactions, the robot’s actions can have a real

impact on the world and some actions, if executed at an incorrect

moment, can create discomfort for the user or even cause phys-

ical or psychological harm. These errors can be the result of an

incorrect action policy or a sensor failure for example, but they

have to be prevented. When using a robot in real human-robot in-

teraction applications, a safeguard should therefore be present to

prevent the robot from executing undesirable actions, especially
Please cite this article as: E. Senft et al., Supervised autonomy for onlin

(2017), http://dx.doi.org/10.1016/j.patrec.2017.03.015 
hen working with vulnerable users, where some actions would

ave severely negative effects. It is on this basis that the concept of

upervised autonomy was introduced [21] : a safeguard is provided

y a human supervising the robot in a semi-autonomous setup.

he robot is mainly autonomous, but a human teacher has enough

ontrol over the interaction to step in at any time to correct the

ction about to be executed by the robot. This approach ensures

hat only desired actions will be executed by the robot whilst not

elying completely on a human to control the robot as with Wiz-

rd of Oz [22] . The challenge is then the incorporation of robot

earning into this scheme to facilitate progressive performance im-

rovement: this approach can be combined with interactive ma-

hine learning to let the robot learn from its errors without requir-

ng the robot to actually make them. At the same time, the human

s used to bootstrap the learning with their knowledge, but also to

nsure that the robot behaviour is always appropriate. This would

llow the robot to improve its behaviour over time, while reducing

he frequency of human interventions, having the robot learning

ithout needing to face the consequence of its actions. 

An analogous system is predictive texting on mobile phones: as

 user types a message, possible words are suggested, but the user

as full control over which word to select. All the while, the algo-

ithm learns: it adopts new words, spellings and tunes its predic-

ive models to suit the user’s particular language use and prefer-

nces. We propose a similar mechanism for Human-Robot Interac-

ion, and in this context we introduced the Supervised Progressive

utonomous Robot Competencies (SPARC) [11,23] . 

By combining interactive machine learning and supervised au-

onomy, SPARC provides an agent with online learning whilst keep-

ng the control of the agent’s actions in the user’s hand. This

ethod based on a suggestion/correction mechanism allows the

obot to adapt its behaviour to the user whilst ensuring, due to the

resence of the human teacher, that the actual actions executed

y the robot are suited to the current interaction. This approach

s especially useful in context where the cost of having the robot

aking errors is high, such as when interacting with vulnerable

opulation. 

. Scope of the study 

Following on from our earlier research on using people to teach

n action policy to a robot during interaction [11] , we seek to

valuate SPARC when combined with the widely used learning

aradigm of Reinforcement Learning (RL) [6] . We compare this ap-

roach to an alternative method combining interactive machine

earning and reinforcement learning: IRL [12] . To this end we

ested both learning methods in the environment initially used by

homaz and Breazeal and described in Section 4 . 

.1. Interactive Reinforcement Learning 

IRL implements the principles presented in [12] . In IRL the hu-

an teacher can provide positive or negative feedback on the last

ction executed by the robot. The robot combines this with en-

ironmental feedback into a reward which is used to update a Q-

able: a table with a Q-values (the expected discounted reward) as-

igned to every state-action pair and used to select the next action.

hree additions to the standard algorithm have been proposed and

mplemented by Thomaz and Breazeal and are used here as well:

uidance, communication by the robot and an undo option. 

The guidance emerged from the results of a pilot study where

articipants assigned rewards to objects to indicate that the robot

hould do something with these objects. With the guidance, teach-

rs can direct the attention of the robot toward certain item in

he environment to indicate the robot that it should interact with

hem. 
e learning in human-robot interaction, Pattern Recognition Letters 
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Fig. 1. Presentation of different steps in the environment. (a) initial state, (b) step 

1: the bowl on the table, (c) step 3: both ingredients in the bowl, (d) step 4: ingre- 

dients mixed to obtain batter, (e) step 5: batter poured in the tray and (f) step 6 

(success): tray with batter put in the oven. Step 2: one ingredient in the bowl has 

been omitted for clarity. 
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The robot can communicate its uncertainty by directing its gaze

oward different items in the environment with equally high prob-

bility of being used next. The aim of this communication of uncer-

ainty is to provide transparency about the robot’s internal state,

or example indicating when a guidance should be provided. 

Finally, after a negative reward, the robot tries to cancel the

ffect of the previous action (if possible), resulting in a undo be-

aviour. As shown in the original paper, these three additions im-

rove the performance on the task. 

.2. SPARC 

SPARC (Supervised Progressively Autonomous Robot Competen-

ies) uses a single type of input similar to the guidance present in

RL. However with SPARC, it is used to control the actions of the

obot. The robot communicates every of its intentions (i.e the ac-

ion it plans to execute next) to its teacher. The teacher can either

ot intervene and let the robot execute the suggested action or he

an step in and force the robot to execute an alternative action.

his combination of suggestions and corrections gives the teacher

ull control over the actions executed by the robot. This also makes

he rewards redundant: rather than requiring the human to explic-

tly provide rewards a positive reward can directly be assigned to

ach action executed by the robot as it has been either forced or

assively approved by the teacher. 

.3. Differences of approaches 

Unlike IRL, SPARC offers full control over the actions executed

y the robot. SPARC changes the learning paradigm from learn-

ng from the environment’s response to learning from the users

references. We use an expert in the task domain to evaluate the

ppropriateness of actions before their execution and we use this

valuation and control provided to the expert not to rely on ob-

erving negative effect of an action to learn that this action should

e avoided, but rather what the best action is for each state. Even

n a non-deterministic environment such as HRI, some actions can

e expected to have a negative consequence. The human teacher

an stop the robot from ever executing these actions, preventing

he robot from causing harm to itself or its social or physical envi-

onment. 

Another noticeable difference is the way in which the robot

ommunicates with the user: in IRL, the robot communicates its

ncertainty about an action and with SPARC its intention of exe-

uting an action. 

It should also be noted that the quantity of information pro-

ided by the user to the robot is similar for both IRL and SPARC:

n SPARC the user can offer the whole action space as commands

o the robot, but removes the need for explicit rewards. While in

RL, the teacher can guide the robot toward a subset of the ac-

ion space but has to manually provide feedbacks to evaluate the

obot’s decisions. 

.4. Hypotheses 

Three hypotheses are tested in this study: 

• H1: Effectiveness and efficiency with non-experts . Compared to

IRL, SPARC can lead to higher performance, whilst being faster,

requiring fewer inputs and less mental effort from the teacher

and minimising the number of errors during the teaching when

used by non-experts. 

• H2: Safety with experts . SPARC can be used by experts to teach

an action policy safely, quickly and efficiently. 

• H3: Control . Teachers prefer a method in which they can have

more control over the robot’s actions. 
Please cite this article as: E. Senft et al., Supervised autonomy for onlin

(2017), http://dx.doi.org/10.1016/j.patrec.2017.03.015 
. Methodology 

.1. Task 

The task used in this study is the same as [12] : Sophie’s

itchen, a simulated environment on a computer where a virtual

obot has to learn how to bake a cake in a kitchen. As the source

ode was not available, the task was reimplemented to stay as

lose as possible to the description in the paper and the online

ersion of the task. 1 

The scenario is the following: a robot, Sophie, is in a kitchen

ith three different locations (shelf, table and oven) and five ob-

ects (flour, tray, eggs, spoon and bowl) as shown in Fig. 1 a. Sophie

as to learn how to bake a cake and the user has to guide the

obot through a sequence of steps while giving enough feedback

o the robot can learn a correct series of actions. As presented in

ig. 1 , there are six crucial steps to achieve a successful result: 

1. Put the bowl on the table. 

2. Add one ingredient to the bowl (flour or eggs). 

3. Add the second ingredient. 

4. Mix the ingredients with the spoon to obtain batter. 

5. Pour the batter in the tray. 

6. Put the tray in the oven. 

The environment is a deterministic Markov Decision Process,

efined by a state, a set of actions (move left, move right, pick up,

rop and use), a deterministic transition function, absorbing states

success or failure) after which the simulation is restarted in its

nitial state and an environmental reward function (+1 for success

nd −1 for failure and −0.04 for every other step to penalise long

equences). Different action policies can lead to success, but many

ctions end in a failure state, for example putting the spoon in the

ven results in a failure. As argued by Thomaz and Breazeal, this

nvironment provides a good setup to evaluate teaching methods

o a robot due to the large number of possible states (more than

0,0 0 0), the presence of success and failure states and the sparse

ature of the environmental reward function which increases the

eed for a teacher to aid the learning. More details on the envi-

onment are available in the original paper. 
http://www.cc.gatech.edu/ athomaz/sophie/WebsiteDeployment/ . 

e learning in human-robot interaction, Pattern Recognition Letters 
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4.2. Implementation 

In this experiment two systems are tested: IRL and SPARC. The

underlying learning algorithm is strictly identical for both system,

only the way of interacting with it is different: participants have

more control in SPARC, implicitly reward action rather than ex-

plicitly and evaluate the intention of the action rather than its re-

sults. The learning algorithm (see Algorithm 1 ) is a variation on

Algorithm 1: Algorithm used in SPARC. 

while learning do 

a = action with the highest Q[ s, a ] valuelook at object or 

location used with a while waiting for correction (2 

seconds) do 

if received command then 

a = received commandreward, r = 0 . 5 

else 
reward, r = 0 . 25 

end 

end 

execute a , and transition to s ′ Q(s t , a t ) ← 

Q(s t , a t ) + α(r t+1 + γ ( max 
a 

Q(s t , a )) − Q(s t , a t )) 

end 

Q-learning, without reward propagating. 2 This guarantees that any

learning by the robot is only due to the teaching by the human,

and as such provides a lower bound for the robot’s performance.

By using Q-learning, the performance of the robot would be higher.

4.2.1. Interactive Reinforcement Learning 

We have implemented IRL following the principles presented in

[12] . The user can use the left click to display a slider in order to

provide rewards. The guidance is implemented by right-clicking on

objects: it directs the robot’s attention to the object if facing it (a

click on objects in different locations has no effect). Following the

guidance, the robot will execute the candidate action involving the

object. The action space is not entirely covered by this guidance

mechanism: for example, it does not cover moving from a location

to another. This guidance if used correctly, limits the exploration

for the current step to the part of the environment evaluated as

more interesting by the user without preventing the robot to ex-

plore in further steps. The robot can communicate its uncertainty

by looking at multiple objects having similarly high probability of

being used. 

Some modifications were required to the original study due to

the lack of implementation details in the original paper, one of

them being the use of a purely greedy action selection instead of

using softmax, due to the absence of parameters descriptions. The

reliance on human rewards and guidance limits the importance of

autonomous exploration, and thus, the greediness of the algorithm

should assist the learning by preventing the robot to explore out-

side of the guided policy. Additionally, as the human teacher can

vary the rewards provided to the system, they have full control of

the convergence or divergence of the algorithm. 

4.2.2. SPARC 

SPARC uses the gaze of the robot toward objects or locations to

indicate which action the robot is suggesting to the teacher. Sim-

ilarly to the guidance in IRL, the teacher can use the right click
2 In Q-learning the update function is Q(s t , a t ) ← Q(s t , a t ) + α(r t+1 + 

γ ( ma x 
a 

Q(s t+1 , a )) − Q(s t , a t )) . 

d  

d  

Please cite this article as: E. Senft et al., Supervised autonomy for onlin

(2017), http://dx.doi.org/10.1016/j.patrec.2017.03.015 
f the mouse on objects to have the robot execute the action as-

ociated to this object in the current state and this has been ex-

ended to also cover locations. With SPARC, the command covers

ll the action space: at every time step, the teacher can specify, if

esired, the next action executed by the robot. If an action is not

orrected, a positive reward of 0.25 is automatically received (as

t has the implicit approval from the teacher) and if the teacher

elects another action, a reward of 0.5 is given to the correcting

ction (the corrected action is not rewarded). That way, actions ac-

ively selected are more reinforced and participants can still have

ive higher rewards when using IRL. This system allows for the use

f reinforcement learning with implicit reward assignation, which

implifies the Human-Robot Interaction. 

.3. Experimental design 

Participants are divided into 2 groups and interact first either

ith IRL or SPARC as shown in Fig. 2 . Before interacting, partic-

pants receive an information sheet explaining the task (describ-

ng the environment and how to bake a cake) and one explaining

he system they are interacting with. Then they interact for three

essions with the assigned system. Each session is composed of a

raining phase and a testing phase. The training phase is composed

f as many teaching episodes as the participant desires, a teach-

ng episode ends when a success or failure state has been reached

hich returns the environment to the initial state. In the same way

s in the initial experiment by Thomaz and Breazeal, participants

an decide to terminate the training phase whenever they desire

y clicking on a button labelled ‘Sophie is ready’, however it is

lso terminated after 25 min to impose an upper time limit to the

tudy. After the end of a training phase, the robot will run a test-

ng phase where the participant’s inputs are disabled and which

tops as soon as a ending state is reached or the participants de-

ide to stop it (for example if the robot is stuck in a loop). This

esting phase is used to evaluate the performance of the partic-

pants for this session. The interaction with a system consists of

hree repeated independent sessions with their own independent

raining and testing phases to observe how the interactions evolve

s participants are getting used to the system. 

After participants completed their three sessions with the first

ystem, they are asked to interact for three more sessions with

he other system. This way, every participant interacts three times

ith each system (IRL and SPARC) and the order of interaction is

alanced. Additionally, a demographic questionnaire is given be-

ore the first interaction, a first post-interaction questionnaire after

he interaction with the first system, a second identical one after

he interaction with the second system and a final post-experiment

uestionnaire at the end of the experiment. All information sheets

nd questionnaires can be found online. 3 

This experimental design prevents the risk of having an order-

ng effect by having a symmetry between conditions. Both condi-

ions having an identical experimental procedure only with the or-

er of interaction varying. 

.4. Participants 

A total of 40 participants have been recruited using a tool pro-

ided by the university to reach a mixed population of students

nd non-student members of the local community. All partici-

ants gave written informed consent, and were told of the option

o withdraw at any point. All participants received remuneration

t the standard U.K. living wage rate, pro rata. Participants were

istributed randomly between the groups whilst balancing gen-

er and age (age M = 25.6, SD = 10.09; 24F/16M). Participants were
3 http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/esenft/experiment2.html . 
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Fig. 2. Participants are divided into two groups. They first complete a demographic questionnaire, then interact for three independent sessions (with a training and a testing 

phase each) with a system (IRL or SPARC). After a first post-interaction questionnaire, participants interact for another three sessions with the other system before completing 

the second post-interaction questionnaire and a final post-experiment questionnaire. 
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ostly not knowledgeable in machine learning and robotics (aver-

ge familiarity with machine learning M = 1.8, SD = 1.14; familiarity

ith social robots M = 1.45, SD = 0.75 - Likert scale ranging from 1

o 5). 

In addition to naive non-expert users, an expert user (one of the

uthors) interacted five times with each system following a strictly

ptimal strategy in both cases. These results from the expert are

sed to evaluate hypothesis 2 and show the optimal characteristics

f each system (IRL and SPARC) when used by trained experts such

s therapist in a context of assistive robotics. 

.5. Metrics 

.5.1. Objective metrics 

We collected three metrics during the training phase: the num-

er of times a participant reached a failure state while teaching,

hich can be related to the risks taken during the training and the

eaching time (from 0 to 25 min) and the number of inputs pro-

ided during the training, which can be seen as the effort s invested

n the teaching. The testing phase being only a single run of the

aught action policy ending as soon as the robot reaches an ending

tate (failure or success) or if stopped by the participants. We only

se the performance achieved during this single test as evaluation

f the success of training. As not all participants reached a suc-

ess during the testing phase, we used the six key steps defined in

ection 4.1 as a way to evaluate the performance ranging from 0

no step has been completed) to 6 (the task was successfully com-

leted) during this testing run: for example a testing where the

obot puts both ingredients in the bowl but reaches a failure state

efore mixing them would have a performance of 3. 

.5.2. Subjective metrics 

The post-interaction and post-experiment questionnaires pro-

ide additional subjective information to compare with the objec-

ive results from the interaction logs. Two principal metrics are

athered: the workload on participants and the perception of the

obot. 

Workload is an important factor when teaching robots. As

oboticists, our task is to make the teaching of the robot as unde-

anding as possible, meaning that the workload for user should be

inimal. Multiple definitions for workload exist and various mea-

ures can be found in the literature. Due to its widespread use in

uman factors research and clear definition and evaluation crite-

ia, we decided to use the NASA-Task Load Index (TLX) [24] . We

veraged the values from the 6 scales (mental, physical and tem-

oral demand, performance, effort and frustration) to obtain a sin-

le workload value per participant for each interaction. So we have

wo measures for each participant, after interaction with the first

ystem (IRL or SPARC) and after the interaction using the other sys-

em. 
Please cite this article as: E. Senft et al., Supervised autonomy for onlin
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Finally, the perception of the robot has been evaluated in the

ost-interaction and post-experiment questionnaires using sub- 

ective questions (measured on a Likert scale), binary questions

which robot did you prefer interacting with) and open questions

n preference and naturalness of the interaction. 

. Results 

Most of the results are non-normally distributed. Both ceiling

nd floor effects can be observed depending on the conditions and

he metrics. For the teaching time, some participants preferred to

nteract much longer than others, resulting in skewed data. Like-

ise for the performance: often participants either reached a suc-

essful end state or did not hit any of the sub-goals of the task

nding often in two clusters of participants: one at a performance

f 6 and one at 0. Similarly, some participants who interacted a

ong time with the system did not complete any step, while others

ould achieve good results in a limited time. Due to the data being

ot normally distributed, non-parametric statistical tests have been

sed. We use a combination of Friedman test for one way com-

arison with repeated measures, Wilcoxon rank sum test for be-

ween subject comparisons and the Wilcoxon signed rank test for

ithin subject pairwise comparisons. Additionally, as each inter-

ction consists of three sessions, a Bonferroni correction has been

pplied to pairwise comparison between sessions. A similar correc-

ion was used when comparing between systems to account of the

wo different groups. To apply the Bonferroni correction, we multi-

ly the p-values by the correcting factors, which allows us to keep

 global significance level at p = . 05 . 

Initial results of the first interaction of the participants have

een reported in [25] . 

.1. Effectiveness and efficiency with non-experts 

Four objective metrics (performance, teaching time, number of

nputs used and number of failures) and one subjective metric

workload) have been used to evaluate the efficiency of IRL and

PARC. 

.1.1. Performance 

Fig. 3 presents the performance of participants during the in-

eraction. In the first three sessions participants interacted with ei-

her IRL or SPARC, and swapped for the remaining three sessions.

here is a significant difference of performance between systems;

 Friedman test shows a significant difference between systems

uring the first three sessions ( χ2 = 50 . 8 , p < .001) and during

he next three sessions ( χ2 = 36 , p < .001). Similarly, a significant

ifference in performance is noted within participants (Group 1:
2 = 37 . 9 , p < .001 - Group 2: χ2 = 55 . 3 , p < .001). So in all the

ases, participants interacting with SPARC achieved a significantly

igher performance than those interacting with IRL, regardless of
e learning in human-robot interaction, Pattern Recognition Letters 
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Fig. 3. Comparison of the performance for the six sessions (three with each sys- 

tem, IRL and SPARC, with interaction order balanced between groups). A 6 in per- 

formance shows that the taught policy leads to a success. The circles represent all 

the data points (n = 20 participants per group), the black horizontal line the median 

and the top and bottom of the boxes the first and third quartiles. The learning is 

consistently better when using SPARC. 
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Fig. 4. Comparison of the teaching time (in minutes) for all the interactions. Par- 

ticipants spent less time teaching the robot when using SPARC than IRL. 

Table 1 

Medians of the teaching time. In the first three sessions, group 

1 interacted with IRL and group 2 with SPARC and participants 

interacted with the other system for the next three sessions. 

˜ X 1 ˜ X 2 ˜ X 3 ˜ X 4 ˜ X 5 ˜ X 6 

Group 1 16 .3 7 .44 6 .17 3 .97 2 .45 1 .53 

Group 2 8 .97 3 .57 2 .49 9 .36 5 .18 3 .01 
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Fig. 5. Comparison of the number of inputs used during the teaching phases. 
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Fig. 6. Comparison of the number of failure states reached during the teaching pro- 

cess. Due to the ability to stop the robot from executing a suggested action, there 

are fewer failure states when using SPARC. 
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the order in which they interacted ( p < .05 for all pairwise com-

parison). No difference of performance has been observed when

using Wilcoxon signed rank test on the three repetitions between

participants when interacting with the same system, so interacting

for a second or third session with the same system does not have

a significant impact on participants’ performance. 

It must be noted that in our study, only a limited number of

participants managed to teach the robot to complete the task using

IRL, this observation will be discussed in more details in Section 6 .

5.1.2. Teaching time 

The teaching times for all the interactions are shown in Fig. 4 .

Regardless of the order in which they used SPARC or IRL, partici-

pants needed significantly less time to teach the robot when using

SPARC than with IRL (Friedman test between participants for the

first three sessions: χ2 = 9 . 77 , p = 0 . 0018 - next three sessions:

χ2 = 20 . 2 , p < .001). Pairwise comparison also show significance

( p < .05) except for sessions 3 and 5 which can be explained by

the floor effect observed when teaching with SPARC and a poten-

tial loss of motivation when using IRL. 

Additionally, when interacting multiple times with the same

system, participants interacted significantly less in the second in-

teraction with a system than during the first one (cf. Table 1 ) and

only for SPARC the teaching time significantly decreases again be-

tween the second and the third session. 
Please cite this article as: E. Senft et al., Supervised autonomy for onlin
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.1.3. Number of inputs 

The number of inputs used in both system is presented in Fig. 5 .

or IRL, this represents every time a participant provided guidance

r a reward to the robot, and for SPARC every time a participant

rovided a command. The number of inputs used is lower when

eaching with SPARC than with IRL (Friedman test between partic-

pants for the first three sessions: χ2 = 11 . 7 , p < .001 - next three

essions: χ2 = 11 , p < .001). However with pairwise comparisons

nly session 2 ( p = . 008 ) and session 4 ( p < .001) present a signif-

cantly different number of inputs used. 

.1.4. Number of failures 

Fig. 6 shows the number of failures observed with both sys-

ems for every session. In all the interactions, participants inter-

cting with SPARC faced fewer failures during the training of the

obot than those interacting with IRL (Friedman test between par-

icipants for the first three sessions: χ2 = 47 . 8 , p < .001- next

hree sessions: χ2 = 41 . 8 , p < .001 - within participants in group

: χ2 = 56 . 6 , p < .001 - group 2: χ2 = 20 . 7 , p < .001 - all pair-

ise comparison: p < .002). 

.1.5. Workload 

The average workload felt by participants after each interaction

ith a system is shown in Fig. 7 . As the workload data is normally

istributed, a student t-test has been used. Participants interacting

ith IRL first reported an average workload of 12.9 ( SD = 2.33), with

PARC first this was 8.95 ( SD = 3.02). With SPARC after having inter-

cted with IRL the reported workload was 7.44 ( SD = 3.33) and with

RL after SPARC it was 13.9 ( SD = 2.85). We found a significant dif-

erence between the reported workload when interacting with IRL

r SPARC regardless of the order of interaction. This was also ob-

erved between participants (interaction with system 1, indepen-

ent t-test: t(38) = 4 . 63 , p < .001 - system 2, independent t-test:

(38) = −6 . 5 , p < .001 - Group 1, paired t-test: t(19) = 9 . 82 , p <

001 - Group 2, paired t-test: t(19) = −6 . 8 , p < .001). Regardless

f the interaction order, participants rated SPARC as having a lower

orkload than IRL. 
e learning in human-robot interaction, Pattern Recognition Letters 
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Fig. 7. Comparison of the workload experienced by participants. SPARC was per- 

ceived as having a lower workload. Results being normal, student t-test has been 

used for the comparisons. 

5

 

p  

t  

r  

f  

S  

w  

i  

i  

a  

t  

p  

t  

s  

s  

r

 

t  

s  

e  

s  

u  

p  

i  

t  

w

5

 

o  

c  

t  

a  

b  

b  

u  

t  

 

r  

l  

t  

t  

S  

h  

Table 2 

Results of an expert interacting 5 times with each system fol- 

lowing an optimal strategy. Both IRL and SPARC reached a suc- 

cess during all the testing phase, but the time required to teach 

SPARC was significantly shorter, and unlike IRL, not a single fail- 

ure was reached during the training with SPARC. Data following 

a normal distribution, student t-test has been used. 

IRL M(SD) SPARC M(SD) t (8) p 

Perf. 6 (0) 6 (0) NA NA 

Time (mn) 4 .5 (0.67) 0 .60 (0.03) 13 .1 < .001 

# of Fail. 3 .2 (0.84) 0 (0) 8 .55 < .001 
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.1.6. Validation of the hypothesis 

The objective data (performance, teaching time, number of in-

uts and number of failures) show that despite spending a shorter

ime interacting with SPARC and using less inputs, participants

eached a higher performance than with IRL whilst facing fewer

ailures during the teaching. Additionally, when interacting with

PARC, participants’ time required to teach the robot decreased

ith successive sessions, without affecting the performance. This

ndicates that after the first session, participants understood the

nteraction mechanism behind SPARC and consistently managed to

chieve a high performance whilst requiring less time to teach

he robot the task. On the other hand, when interacting with IRL,

articipants’ performance remains low over the session, and their

eaching time decreases between session 1 and 2 but not between

ession 2 and 3. This might be due to a loss of motivation after ses-

ion 1 where often participants did not succeed to teach the robot,

educing the desire to further interact in successive sessions. 

The results suggest that teaching the robot using SPARC allows

he robot to achieve a higher performance than with IRL, in a

horter time, without requiring more inputs, while making fewer

rrors when teaching. These objective results are also supported by

ubjective measures: the workload on the teacher is lower when

sing SPARC than when using IRL. For these reasons, H1 (‘Com-

ared to IRL, SPARC can lead to higher performance, whilst be-

ng faster, requiring fewer inputs and less mental effort from the

eacher and minimising the number of errors during the teaching

hen used by non-experts.’) is supported. 

.2. Safety with experts 

To evaluate the safety offered by SPARC and IRL, an expert (one

f the authors) interacted five times with each systems. In both

ases, the expert followed a strictly optimal strategy. This shows

he expected behaviours in optimal conditions, the best metrics

chievable. Results of the interactions are presented in Table 2 . In

oth cases, the expert successfully taught the robot (as indicated

y a performance of 6), which indicates that both systems can be

sed to teach a robot an action policy. However the time required

o teach the robot with IRL is significantly higher than with SPARC.

Additionally, when using IRL, even an expert cannot prevent the

obot from reaching failure states during the training due to the

ack of control over the robot’s action. This is prevented when in-

eracting with SPARC, due to the full control and clear communica-

ion, the teacher can ensure that only desired actions are executed.

o with sufficient knowledge, an expert can teach the robot to be-

ave safely without having to explore undesired states. This has
Please cite this article as: E. Senft et al., Supervised autonomy for onlin
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eal world applications, as random exploration is often impossible

r undesirable, SPARC offers a way for the teacher to stop the robot

rom executing actions with negative consequences. 

Similar results have been observed with the non-expert partici-

ants: in their last interaction with SPARC, both groups had a me-

ian of 0 failures for a performance of 6, meaning that more than

alf of the participants taught the robot the task without ever hit-

ing a failure state. These results support H2 (‘SPARC can be used

y experts to teach an action policy safely, quickly and efficiently’).

.3. Control 

One of the main differences between the two methods is the

ay in which the concept of teaching is approached. With IRL an

xploratory individual learning approach is followed: the robot has

reedom to explore, and it can receive feedback on its actions and

ints about actions to pursue next from a teacher. This is to some

xtent inspired by how children are taught, where the learning

rocess can be more important than the achieved results. This is

upported by the behaviours observed by Thomaz and Breazeal:

heir participants gave motivational rewards to the robot, just as

ne would to do to keep children motivated during learning, de-

pite the absence of effect or use in classical reinforcement learn-

ng. 

The post-experiment questionnaire included the open question:

which robot did you prefer interacting with and why?’. Almost all

he participants (38 out of 40) replied that they preferred inter-

cting with SPARC. Half of all the participants used vocabulary re-

ated to the control over the robot actions (‘control’, ‘instruction’,

command’, ‘what to do’ or ‘what I want’) to justify their prefer-

nces without these words being used in the question. Further-

ore, multiple participants reported being frustrated to have only

artial control over the robot’s actions with IRL, they would have

referred being able to control each action of the robot. 

To the question ‘which interaction was more natural?’, 10 par-

icipants rated IRL as being more natural, using justifications such

s: ‘The robots thinks for itself’, ‘Some confusion in the [IRL] robot

as obvious making it more natural’, ‘More like real learning’, ‘Be-

ause it was hard to control the robot’ or ‘People learn from their

istakes faster’. But despite acknowledging that IRL is more natu-

al, closer to human teaching, participants still preferred teaching

sing SPARC. This suggests that when humans teach robots, they

re focused on the results of the teaching: can the robot do the

ew task requested. This relates to the role of robots, they often

nteract in human-centred scenario where they have to complete

 task for their users. And due to the absence of life-long learn-

ng for robots today, it is not worth investing time and energy to

llow the robot to improve its learning process or explore on its

wn. These comments from the participants show support for H3

‘Teachers prefer a method providing more control over the robot’s

ctions.’). 
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6. Discussion 

Despite not being originally designed to be used in combina-

tion with Reinforcement Learning, SPARC does achieve good re-

sults. This shows that principles covered by SPARC (control over

the robot’s actions, communication and evaluation of intentions

and automatic execution of proposed actions) are agnostic to the

learning algorithm and promote efficient teaching. Furthermore,

SPARC achieves a higher performance, in a shorter time and fac-

ing less failures than IRL, whilst requiring a lower workload from

the human teacher (supporting H1). Finally, when used by ex-

perts, SPARC demonstrates that teaching can be safe and quick: the

full control over robot’s action in the teacher’s hands ensures that

only desired actions will be executed (validating H2). These results

show an interesting feature of teaching; as robots mainly inter-

act in task oriented, human-centred environments, human teach-

ers seem to prefer direct approaches focused on commands rather

than letting the robot explore on its own (partial support for H3). 

6.1. Comparison with original interactive reinforcement learning 

study 

Unlike in the original experiments evaluating IRL [12] , in the

study presented in this paper most of the participants did not

succeed in teaching the robot the full cake baking sequence us-

ing feedback and guidance. In the Thomaz and Breazeal [12] study,

the participants were knowledgeable in machine learning (M = 3.7,

SD = 2.3 - range: 1 to 7), but the population in the current study

was drawn from a more general public having little to no knowl-

edge of machine learning (M = 1.8, SD = 1.13 - range: 1 to 5).

This can explain why a much larger number of participants did

not achieve success with IRL in this study whereas Thomaz and

Breazeal only reported 1 participant out of 13 failing the task. In

our study, 12.5% of the participants and the expert did manage to

train the robot using IRL. This seems to be largely due to partic-

ipants not consistently rewarding correct actions, preventing the

reinforcement learning algorithm from learning. This is why im-

plicit rewards –every action allowed by the teacher is positively

rewarded– tend to work better than explicit ones. This is con-

sistent with [26] who note that feedback is not well suited for

teaching an action policy from scratch, but better for fine tuning.

For teaching the basis of the action policy, they recommend using

demonstrations, the method used by SPARC. 

6.2. Advantages and limitations of SPARC 

In the SPARC implementation for this study, SPARC reproduces

actions selected by the teacher. So one can argue that no learn-

ing algorithm is required, instead the actions could just be blindly

reproduced by the robot. However SPARC combined with reinforce-

ment learning does provide advantages: due to the Q-Table, all the

loops in the demonstration are removed when the robot interacts

on its own and it provides a way to deal with variations in teach-

ing. It also allows the robot to continue from any state in the tra-

jectory. And finally, due to the suggestion/correction mechanism,

the teacher can leave the robot to act on its own as long as it at-

tempts correct actions, and the human to intervene only when the

robot is about to execute an incorrect action. 

Over the 79 successful trials using SPARC, participants used 47

different strategies to teach the robot the task of baking a cake.

This shows how SPARC, as a single control mechanism, allows

for different action policies to be learnt depending on the person

teaching the robot. With SPARC the robot can adapt its behaviour

to the human it is interacting with, profiling the user to find the

desired way of behaving. 
Please cite this article as: E. Senft et al., Supervised autonomy for onlin
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However SPARC also has limitations in the current implemen-

ation, related to the quality of the human supervised guidance. If

he teacher allows an action to be executed by mistake (through

nattention or by not responding in time), this action will be rein-

orced and will have to be corrected later on. This might lead to

oops when successive actions are cancelling each other (such as

ove left, then right). In that case, the teacher has to step in and

anually guide the robot to break this cycle. Furthermore, due to

he automatic execution of actions, the teacher has to be attentive

t all times and ready to step in when a wrong action is suggested

y the robot. 

In this version, SPARC has been applied to a scenario where a

lear strategy with optimal actions is present. The interaction also

akes place in a virtual environment with a discrete time. Real HRI

re stochastic, happen in real time and often there is no clear strat-

gy known in advance. However, we argue that human experts

n the application domain can know what type of actions should

e executed when, and which features of the environment they

sed for their decision. As this knowledge can not be available to

he robot’s designers, robots should be able to learn from a do-

ain user in an interactive fashion. In the current implementation,

PARC mainly receives inputs from a teacher at predefined discrete

imes and still does not use the human knowledge to it’s fullest:

he learning algorithm is still simple and with limited inputs, but

s described in Section 6.4 , we are working on improving SPARC to

uit real-world HRI. 

Nevertheless, we argue that SPARC allows for easy and safe

eaching due to the presence and control by the teacher. And the

uggestion/correction mechanism with automatic execution of ac-

ions allows for a smooth teaching process where the workload on

he teacher can decrease over time as shown in [11] . The workload

f the teacher when starting is relatively high, when the robot has

o information on which actions to take yet, and decreases over

ime requiring only limited intervention by the teacher. 

.3. Recommendations for designing interactive machine learning for 

uman-robot interactions 

From observing the participants interacting with both systems,

e derived four recommendations for future designs of interactive

earning robot. Although the study here used a simulated robot,

e believe these to be also relevant for real-world, physical instal-

ations. 

.3.1. Clarity of the interface 

Algorithms used in machine learning often need precisely spec-

fied inputs and outputs and require an internal representation of

he world and policies. These variables are often not accessible

o a non expert: the weights of a neural network or the values

n a Q-table are not easily interpreted, if at all. The inner work-

ngs of the machine learning algorithms are opaque, and people

nly have access to input and output of the black box that is ma-

hine learning. As such, care needs to go into making the input

nd output intuitive and readable. For example, in this study (fol-

owing Thomaz and Breazeal’s original study), the communication

etween the robot and the teacher occurred through the environ-

ent: using clicks on objects rather than buttons on a graphical

ser interface. This design decision has important consequences as

articipants first have to familiarise themselves with the interface:

ow to interpret the robot’s behaviour, what actions are available

or each state and what is the exact impact of the actions? This

ack of clarity leads to a high number of failures and high teach-

ng time during the first session in our study. So we argue that to

void this precarious discovery phase for the teachers, roboticists

ave to design interfaces taking into account results from the Hu-

an Factors community as advocated by [27] . 
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.3.2. Limits of human adaptability 

Human-Robot Interaction today is facilitated by relying on peo-

le adapting to the interaction, often making use of anthropomor-

hisation [28] . Roboticists use people’s imagination and creativity

o fill the gaps in the robot’s behaviour. However, human adaptiv-

ty has its limits: in our study, often participants adopted one par-

icular way of interacting with the system and they hold on to it

or a large part of the interaction. For example, participants clicked

n an object requiring two actions to interact with, assuming that

he robot had planning capabilities which it did not. Or when the

obot was blocked in some cycles (due to constant negative reward

n IRL or due to a loop created and not stopped with SPARC), par-

icipants kept on trying the same action to break the loop, without

eally exploring alternatives. For these reasons, if robots are to be

sed with a naive operator, they need a mechanism to detect these

incorrect’ uses and either adapt to these suboptimal human inputs

r they need to inform the user that this type of input is not sup-

orted and clarify what human behaviour is appropriate instead. 

.3.3. Importance of keeping the human in the learning loop 

Other methods have been used to provide a robot with an ac-

ion policy, for example [29] argue that instead of having a hu-

an teach the robot, interactive behaviours can be extracted from

bserving human experts interacting and by using big data ma-

hine learning techniques on these observations. This approach has

hown some promise [30] , but we argue that an action policy for

uman-robot interaction should be able to be modified online by

 human. Furthermore, the presence of a human in the loop can

llow the machine learning to deal with sensor errors or imper-

ect action policies. An expert supervising the robot should also be

ble to prevent the execution of specific actions or force the ex-

cution of others. This was one of the important points we con-

idered when proposing SPARC: there is no distinction between a

eaching and a testing phase, they are merged into a single phase.

he teacher can correct the robot when needed and let it act

hen it behaves correctly. Participants used this feature of SPARC

n this study: many participants corrected SPARC only when re-

uired rather than forcing every action, 37.5% of the participants

ven let the robot complete the task without giving a single com-

and before starting the test to be sure that the robot is ready.

o SPARC has been used as a tool to provide online learning to a

obot whilst keeping the teacher in control, but reducing the need

f intervention over time. 

.3.4. Keeping people in control 

Most of the scenario where a robot has to learn how to inter-

ct with humans are human-centred: the robot has to complete

 task to help a human (such as in socially assistive robotics). In

hese scenarios, the goal of the learning is to ensure that the robot

an complete the task assigned to it, not to provide the robot with

ools to learn more efficiently in further interactions. Similarly, par-

icipants in our study did not desire to have the robot exploring on

ts own and learn from its experience, they wanted to be able to

irect the robot. Furthermore, a lack of control over the robot’s ac-

ions can lead to frustration and loss of motivation for the teacher.

his human control is especially critical when the robot is designed

o interact with other people as undesired actions can have a dra-

atic impact, such as causing harm for the interaction partners or

ystanders. For these reasons, we argue that when designing an in-

eractively learning robot for Human-Robot Interaction in human-

entred scenario, it is critical to keep the human in control. 

However, a drawback of Interactive Machine Learning is that

he human can prevent the algorithm from converging if feedback

s not provided correctly. This was also a limitation in the origi-

al study [12] , as participants can break a converged policy or not
Please cite this article as: E. Senft et al., Supervised autonomy for onlin

(2017), http://dx.doi.org/10.1016/j.patrec.2017.03.015 
reate the gradient of Q-Values required for convergence with Q-

earning. 

It should be noted that this control does not mean that the

obot cannot learn and become autonomous. We take stronger in-

piration from Learning from Demonstration, using human input

ore efficiently to guide the learning, speeding it up and making

t safer, especially in the early stages of the learning. The human is

n control mainly when the robot is prone to making exploratory

istakes, and can prevent them before they occur, but once the ac-

ion policy is appropriate enough, the teacher can leave the robot

o learn mostly on its own and refine its action policy with limited

upervision from a human. 

.4. Future work 

We are currently working on a new experiment in which

eople interacting with a robot in a continuous time and non-

eterministic environment. In this experiment, the teacher is able

o send commands to the robot, provide rewards and identify fea-

ures in the environment they consider important. The learning

lgorithm will take these inputs into account and combine them

ith interaction metrics to learn. An approach could be to use the

ctor-critic paradigm: the critic being an objective evaluation of

he action results (environmental rewards), and the actor using re-

ults from the critic and teacher’s guidance to update the action

olicy. 

. Conclusion 

SPARC has been proposed to address the problem of providing

 robot with adaptive behaviour whilst guaranteeing that the be-

aviour expressed by the robot remains suitable for task at hand.

o achieve this, a suggestion and correction system has been used

o allow a teacher to be in control of the robot at all times whilst

ot having to manually select every single action. This approach

as been combined with reinforcement learning and was com-

ared to IRL, where the operator manually provides feedback and

uidance to the learning agent. The results from a user study in-

olving 40 participants show that SPARC can be used to let naive

articipants successfully teach an action policy. While doing so

PARC requires less teaching time and limits undesired actions dur-

ng the teaching phase when compared to IRL. Additionally, the

orkload on users was lower when using SPARC. Based on these

esults and other observations, we propose four guidelines to de-

ign interactive learning robots: (1) the interface to control the

obot has to be intuitive, (2) the limits of human adaptability have

o be taken into account (robots should detect deadlocks in hu-

an behaviours and adapt their way to be controlled or inform

he human about it), (3) the operator should be kept in the learn-

ng loop and (4) teachers should stay in control of the robot be-

aviour when interacting in sensitive environment. The first two

oints can be seen to apply to all robot teaching methods, and

hould be addressed at the time of designing the interface. By def-

nition, SPARC aims to address these last two points: maintaining

he performance of an adaptive system by remaining under pro-

ressively decreasing supervision. 
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