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Exploiting line metric reconstruction from non-central circular panoramas
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ABSTRACT

In certain non-central imaging systems, straight lines are projected via a non-planar surface encap-
sulating the 4 degrees of freedom of the 3D line. Consequently the geometry of the 3D line can be
recovered from a minimum of four image points. However, with classical non-central catadioptric
systems there is not enough effective baseline for a practical implementation of the method. In this pa-
per we propose a multi-camera system configuration resembling the circular panoramic model which
results in a particular non-central projection allowing the stitching of a non-central panorama. From a
single panorama we obtain well-conditioned 3D reconstruction of lines, which are specially interest-
ing in texture-less scenarios. No previous information about the direction or arrangement of the lines
in the scene is assumed. The proposed method is evaluated on both synthetic and real images.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

In central imaging systems any projection ray intersects a sin-
gle point usually known as optical center. In the last decade,
the need of a wider field of view increased the development
of new imaging systems known as omnidirectional systems al-
lowing complete panoramic images. For a better understanding
of the images most of these systems were sought to be central
(e.g. the paracatadioptric system, the hypercatadioptric system
Baker and Nayar| (2001)), multicamera systems with common
optical center Kim et al.|(2008))). The advantage of central sys-
tems is that they also allow using previous standard algorithms.
However, some of the proposed omnidirectional systems were
non-central by construction (e.g. conical catadioptric systems,
spherical catadioptric systems). In these systems, rays do not
intersect in a single optical center, hence they can not be defined
by a direction vector and require richer descriptions like the
generalized camera model |Grossberg and Nayar| (2001) based
on Pliicker lines [Pless| (2003)); Miraldo et al.| (2011) and [Lee
et al.| (2015). Although the higher complexity is a disadvan-
tage, the properties of line projections in non-central systems
can turn this disadvantage into an advantage.
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The projection surface of a 3D line in central systems is a
plane. All lines lying in this plane share the same line-image
because only two of the four degrees of freedom (DOF) of the
3D line are preserved in the projection. Hence, the only way to
recover the direction of the lines and depth up to scale from a
single view is imposing additional constraints like dominant di-
rections or perpendicularity Ramalingam and Brand|(2013). By
contrast, in non-central cameras the projection surface of a line
encapsulates the four degrees of freedom of the 3D line. Hence,
the geometry of a 3D line can be recovered from a single projec-
tion (see Fig. [T). In particular, four points on a line-projection
(except some degenerate cases) define four projecting rays pro-
viding four independent constraints for computing the complete
geometry of the line [Teller and Hohmeyer| (1999). Unfortu-
nately, this approach is difficult to implement in practice. The
quality of the extracted 3D line depends on a magnitude we call
the effective baseline of a set of rays which is related with the
distances between the four defining skew rays. This effective
baseline is too small when using non-central catadioptric sys-
tems, so for exploiting this property in practice the system has
to be large, [Lee et al.| (2015).

The motivations of using line-features in non-central systems
are numerous. As in central systems, line-features are use-
ful for reconstructing texture-less scenarios. Besides, in non-
central systems metric reconstruction of 3D lines can be recov-
ered from a single panoramic view and no assumption about
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Fig. 1. Top: Line projection in a circular panoramic image with R. = 0.5m
(Non-central). The line-projection (in green in Top-left) corresponds to the
ruled projection surface (Top-right) intersecting only two lines not being
projecting rays: the red line and the revolution axis of the system. Bottom:
Line projection in a circular panoramic image with R. = Om (A central
spherical panoramic image). The line-projection (in green in Bottom-left)
corresponds to a planar projection surface (Bottom-right) which is going
to be the same projection surface for any 3D line contained in the plane.

the direction or the arrange of the 3D lines is needed. In addi-
tion, considering sequences of images, long lines can be seen
along large fragments of the sequence reducing the drift in pose
estimation.

1.1. Previous work

The geometry of non-central systems has previously been
studied for computer vision applications. The back projection
of different non-central catadioptric systems is introduced in
Swaminathan et al.| (2006). Contrary to the back projection
case, the forward projection of non-central systems does not
necessarily have a closed form solution. Polynomial solutions
for the forward projection models in axial non-central catadiop-
tric systems based on quadric mirrors are compiled in|Agrawal
et al.[(2011). In|Lopez-Nicolas and Sagiiés| (2014) the epipolar
geometry of conical catadioptric systems and its corresponding
calibration are presented.

Another way to obtain non-central images are images gen-
erated from moving cameras without common viewpoint. The
epipolar geometry is studied for the case of linear pushbroom
camera in |Gupta and Hartley| (1997) and for the case of non-
central circular panorama in [Menem and Pajdlal (2004). A
multi-camera system can be also tackled as particular case of
a non-central system. |Lee et al.| (2015) propose a new method
to solve the pose estimation in a multi-camera system repre-
sented by a set of ray bundles in a non-central description using
Pliicker coordinates.

As previously said, in a non-central image the geometry
of 3D lines can be recovered from a single line projection.
The fundamentals of this approach are exposed in [Teller and
Hohmeyer| (1999) where it is shown that two lines are the inter-
section of four generic lines. In|Gasparini and Caglioti (2011)
this approach is exploited to compute 3D lines from 4 rays in
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non-central catadioptric systems. Different computation meth-
ods are considered and the degeneracies and singular configura-
tions are studied. In|Lanman et al.| (2006) the approach is used
with spherical catadioptric mirrors, and in addition two non-
central systems are used for reconstruction. Work in [Swami-
nathan et al.| (2008)) extends the approach to planar curves.
In Bermudez-Cameo et al.| (2014b) the approach is derived to
the case of conical catadioptric systems obtaining both the 3D
line and the mirror geometry. To improve the accuracy in re-
construction using catadioptric systems some approaches have
been proposed: considering only horizontal lines Pinciroli et al.
(2003); (Chen et al,| (2011) , exploit cross-ratio properties by
Perdigoto and Araujo| (2012), imposing constraints like paral-
lelism or perpendicularity by |Bermudez-Cameo et al. (2014a)
or imposing prior information about the gravity direction by
Bermudez-Cameo et al|(2016). Using off-axis systems (Cagli-
oti et al.|(2007) allows avoiding the degeneracies caused by the
revolution symmetry. As application, the pose of non-central
catadioptric systems is estimated in an image sequence Miraldo
et al.| (2015) using known 3D lines.

1.2. Open issues

The underlying difficulties of line-image fitting and the low
accuracy with current non-central systems have left a consid-
erable list of open issues involving non-central 3D line recon-
struction. That includes automatic line-image extraction, line-
image tracking, visual odometry and calibration.

1.3. Contributions

In this paper, we rediscover the circular panoramic imaging
system as a non-central system, Menem and Pajdlal (2004), and
we propose it through a multi-camera configuration as a way
to have enough effective baseline for a practical application of
3D line reconstruction from a single non-central line projec-
tion |Gasparini and Caglioti| (2011). We present a new method
for automatic line extraction valid for the proposed non-central
system. The result is a metric reconstruction of lines-based
scenarios from a single panorama without making assumptions
about the direction or the arrangement of the lines. The non-
central circular panoramic system is compared with other cata-
dioptric non-central systems to evaluate the proposed system
advantages. We also propose a multi-camera architecture for
obtaining an approximation of a circular panorama without the
disadvantages of a moving camera. The extraction method is
then particularized to the multi-camera case. The methods are
tested on realistic simulated scenarios and on real images.

2. Non-central circular panorama model

In this section, we describe the projection model of non-
central circular panoramas. A circular imaging panoramic
projection, Menem and Pajdlal (2004); |Gasparini and Caglioti
(2011), is a projection model with symmetry of revolution in
which any projecting ray intersects both an axis of revolution
and a circle of a given radius R. (see Fig. [2). A camera configu-
ration fulfilling this constraint is a linear sensor turning around
an axis of revolution. The resulting image of this system is a
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Fig. 2. Non-central circular imaging projection system. Projecting rays in-
tersect a circle of radius R, and the vertical axis. The image coordinates of
a pixel (J, i) are linearly related with the azimuth angle ¢ and the elevation
angle ¢ of the corresponding ray =.

panoramic image in which the axis of coordinates are a scaled
representation of two angles ¢, ¢ which are the spherical co-
ordinates of the direction vector of each projecting ray. The
forward and back projection models of a circular panoramic
system have analytical solution and its computation is not time
consuming.

2.1. Back projection model

Consider the angles ¢ and ¢, which are related with the image
coordinates (j, ) as follows (see Fig. ,
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where (M,05, Beolumns) are the dimensions of the panorama and
(@inis Pena) and (Pii, Peng) are the limits of the field of view of
the imaging system. The back projection model can be de-
scribed by the definition of each projecting ray with Pliicker
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2.2. Forward projection model

Given a 3D point in homogeneous coordinates X =
(x1, x2, x3, xo)T the forward projection is computed as follows

X3

¢ = atan2 (xp,x1), ¢ =arctan ——  (3)
- /x% + x% — xR,
. @ = Qini : ¢ — Pini
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3. Line estimation in non-central systems

First we present the procedure for 3D line estimation in non-
central systems. Secondly we present the expression for the
line-image in non-central circular panoramas. Using Pliicker
coordinates, the intersection between lines is described by the
side operator (we use the same notation as in [Pottmann and

;
Wallner (2001)). A given line L = (1T,F) € P5 (where 1 € R?
and I € R%) intersects a ray E € P if

side(L,E)=L"WE =1"¢+1¢ =0 (5)
033 D33
here W = .
Where ( J LN NG )

Since a 3D line has four degrees of freedom we need at least 4
equations to solve for L. If four projection rays from a 3D line
provide four independent constraints we can compute the 3D
line from the system of equations |Teller and Hohmeyer| (1999)

AL =0, (6)

where A; = ( AN ) is the A; row of the matrix A.

Pliicker coordinates is an over-parametrized representation
of a line in P> and the solution of @ is a one-dimensional sub-
space of P3: L = Lo + AL, described by two elements of P3, L
and L; which can be computed using Singular Value Decompo-
sition. Imposing the Pliicker identity (I'l = 0) we obtain the in-
tersection with the Klein Quadric |[Pottmann and Wallner (2001)
which results in two solutions. One of them is the sought 3D
line. If the system is axial the other solution is the axis of revo-
lution. In some degenerate cases four rays do not provide four
independent equations |Gasparini and Caglioti|(2011)): when the
projection surface is a plane (the line is coplanar with the axis
of revolution or coplanar with the plane containing the circle)
or when the projection surface is a regulus.

3.1. Line-image in non-central circular panorama

Deriving (§) for circular panoramic systems the homoge-
neous expression for the line-image on the panoramic image
becomes

cosqﬁ(l_l cosg+ 1, singo) + ...
sing (I3 + R (I sing — l cos 9)) = 0 (7)

which allows estimating the line-image from four image points
(@i, i), i = 1.4. Due to the symmetry of revolution of the
system (&3 = 0), I3 is not present in and the solution is an
element of P*. In this case the null space gives one solution and
Pliicker identity (I'T = 0) gives [; = — 1/l

Equation (/) also allows a parametric répresentation express-

ing ¢ in terms of ¢ (see Fig. [I)):

- (l_l cosg+1 singa)
tan¢ = = . (8)
I3+ R. (I; singp — [ cos @)

Since we know the location of the 3D line we can also com-
pute its vanishing points by projecting the direction onto the
image.
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Fig. 3. Distance to a line-image. (a) Distance to a line projection on the
image. (b) Distance between a ray M and a 3D line L.

(a) (b)

Fig. 4. Region around a line projection defined by a given distance. (a)
Metric distance > from ray to line. (b) Proposed metric distance on the
image.

4. Distance from points to line-images

In this section we propose a distance measurement to evalu-
ate when an image point belongs to a line-image. It also can be
used to optimize the line estimation in an optimization scheme.
Depending on the used distance we will reach different results.

The Euclidean metric distance in E* is the minimum Eu-
clidean distance between two 3D lines (the 3D line and the
projecting ray generated from an image point). This distance
is defined as in[Pottmann and Wallner| (2001} :

l,‘Ti‘ + l‘Ti,'
g o= UL
[IL; < 1]l

€))

When determining if a point lies on a line-image in a
RANSAC or in a Hough transform scheme this distance tends
to give higher reward to lines which are close to the origin. This
effect induces errors in the extraction process.

To avoid this effect the metric distance E? from point to line-
image can be used. This is performed by using the method
of Lagrange multipliers to obtain the point of the line-image
X. which is closer to the given point x and computing the Eu-
clidean distance between them (see Fig. [3{a)). However, ex-
cept for some particular cases Bermudez-Cameo et al.| (2014b),
this approach does not have a closed form solution and needs
to be solved iteratively. We propose in this paper to compute
the points on the 3D lines (X and Xj,) which have the mini-
mum metric distance d,z3 in E? (see Fig. b). Then, instead
of using distance in E3 we propose to project both points and
compute the metric E? distance on the image. The advantage
is that this computation has a closed form and can be used in
any non-central system in which the forward projection has a
closed solution. Notice that the projection of the closest point
in the 3D space X, is not exactly the same as the closest point
X. on the image.

Fig. 5. Multi-camera system with 6 cameras arranged in a circle.

To compute these closest points we have to compute a third
line passing through both lines and with direction orthogonal
to the directions of both 3D lines (see Fig. [3|b). Given a line

T
L = (lT,l_r) and other line M = (mT,ﬁlT) representing the
projection ray of a given point on the image we want to compute

a third line N = (nT,ﬁT) which intersects both lines and is
orthogonal to L and M. To enforce the orthogonal constraint we
define n = 1 x m. The intersections are imposed using the side
operator (5). Finally, we obtain a third equation by imposing N
to be a line with the Pliicker constraint. The result is a system

of three linear equations

Mdxm+1'i=0, m Adxm)+ma=0, A Ixm)=0

(10)
which is solved for i obtaining
T ' -TTaxm
= m' —m' (1 x m) (11)
Ixm)' 0

Once we have computed the line N, we can compute the in-
tersection between N and L by using the meet operator obtain-
ing the points

o= = TEat)
that are projected on the image using the forward projection
model. Then, the metric distance E? between the projections is
computed. In Fig. 4] we compare the region defined by a given
distance using the metric distance E* from ray to line and the
proposed metric distance [E? on the image.

Regarding the linear system (6) the intuitive expected be-
haviour is that using an optimization procedure with (9 or the
proposed metric distance E? on the image can improve the re-
sults, but at the end the effective baseline of the rays is deter-
mining in the quality of the results. In particular, the further
the line the lesser the effective baseline, and in this case the
optimization not necessarily improves the result.
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Fig. 6. Comparison in accuracy reconstructing lines using different non-central systems. Top: Direction error in degrees. Bottom: Distance error in meters.
P for circular panoramic system. M6 and M24 for a multi-camera having 6 and 24 single fisheye cameras, respectively. S for spherical catadioptric system.

5. Non-central circular panoramas from Multi-Camera
system

In this section, we propose to model a multi-camera sys-
tem as a non-central circular panoramic imaging system and
we discuss their similarities and differences. We also compare
and evaluate the accuracy of 3D line reconstruction on different
non-central camera systems.

A non-central circular panorama can be obtained using an
off-centred rotating camera where only the central column of
the image is used to stitch the panoramic image. However, this
set-up has the synchronization difficulties of a moving camera
especially if the whole system is in motion. Instead, it is possi-
ble to approximate this configuration with an array of cameras
arranged in a circle. With this configuration the coordinates

T\ T T
of the projecting ray E = (fT,fT) of a point X = (XT, xo)

through a camera i with optical center C; = (c,-T, 1) is

§=x-x0¢),  £=(¢iXx) 13)

Consider the projection of point X in Fig. 5] The angular
coordinates of point X in a non-central panorama (g, ¢) can be
approximated by the azimuth and elevation angle of the corre-
sponding projecting ray in a conventional camera (¢c, ¢¢). This
approximation is done in non-overlapped columns covered by
the set of cameras. Then, the non-central circular panorama
and the proposed multi-camera panorama are equivalent in the
columns corresponding with the azimuth of the cameras focal
axis (e.g. point X, in Fig. [5). The rest of the panorama is only
perfectly equivalent if the scene is at infinity (e.g. point X; in
Fig. [5). From a practical point of view, only a small part of
the center columns of the image is extracted for composing the
panorama so the needed bandwidth to acquire the whole set of
images reduces considerably. The multi-camera panorama is
finally stitched using alpha blending.

5.1. Multi-camera vs. circular panorama

The whole system is non-central because the projecting rays
do not intersect in a single view-point. However, the proposed
multi-camera system is locally central and therefore rays from
a single camera can only provide two independent equations
to fit a line. This local centrality must be taken into account
when getting random points lying on a line projection on the
panoramic image.

Consider a random picking of four rays from the panoramic
image. Three cases correspond to valid configurations: each
ray is picked from a different camera ([1+1+1+1]), two rays
are from the same camera and the two other rays are from two
different cameras ([2+1+1]), lastly two rays are selected from
two different cameras ([2+2]). The other two cases correspond
to non-valid configurations: for rays from a single camera ([4])
and three rays from one camera and one ray from another cam-
era ([3+1]).

There is another difference between the multi-camera sys-
tem and the circular panoramic imaging system. The circular
panoramic system is axial meaning that all the projecting rays
intersect the same rotation axis. When computing a 3D line
from 4 rays we obtain two solutions, one of them is the sought
line and the other is the axis of revolution. However, a multi-
camera system is not axial and therefore there is not a single
line intersecting the projecting rays which would help to dis-
criminate the correct solution. For the case in which we take 2
rays from two cameras one of the solutions must intersect the
line defined by the two optical centres, therefore it must lie in
the horizontal plane passing through all the optical centres. In
other case, we have to use an additional criterion to distinguish
between both solutions. In particular, we include both solutions
as hypothesis in the RANSAC scheme. Only the correct so-
lution has supporting points on the image, whereas the other
solutions are directly rejected in the extraction process.

5.2. Accuracy of 3D lines in non-central systems
In this section we evaluate the accuracy of the proposed sys-
tem for single-view 3D line extraction in comparison to non-
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Fig. 7. Line extraction in non-central circular panorama. (a) Procedure flowchart. (b,c) Examples of extracted line-images in green and supporting points
in red. (d,e) 3D reconstruction (in red) obtained from the back projection of the supporting points of the line-images to the extracted 3D lines.

central catadioptric systems. We assume the points of the im-
age belong to a given line projection. The geometric limitations
of reconstructing 3D lines from a single line projection in non-
central systems are given by the relation between the size of
the system and the depth of the line (assuming the line is long
enough). That means that in most known non-central systems
this limitation prevents the practical usage of this method, be-
cause the estimated 3D lines are too noisy. However, it also
depends on the system type. In this analysis we are considering
random lines with a depth up to 3 meters. The length of the
lines is 20m. Four different systems are compared:

e A spherical catadioptric system composed of a spherical
mirror with a radius of 1.2 m and a perspective camera lo-
cated at 1.8 m from the center of the sphere. The resolution
of the camera is 4096x4096 pixels.

e A circular panoramic imaging system defined by a cir-
cle of radius of 0.3 m. The image has a resolution of
4000x8000 pixels.

e Two cases of the proposed multicamera system. The first
one is composed of 6 fisheye cameras located in a circle
of radius 0.3m. The second one is composed of 24 fish-
eye cameras in a circle of radius 0.3 m. In both cases the
cameras have a resolution of 768x1024 pixels.

Once the points of the random lines are projected on the cor-
responding images, we add Gaussian noise of a given 0. We
variate the value of o from 0 to 1 pixel. In Fig. [f| we compare

the results. Fig. [6] Top depicts the distribution of the direc-
tion error (degrees) of the estimated 3D lines with respect to
the ground truth. Fig. [6| Bottom shows the distribution of the
distance error. Both the circular panoramic system and multi-
cameras clearly outperforms in terms of accuracy the classical
catadioptric non-central systems despite having smaller sizes
(0.3 mvs 1.2 m).

6. Line-extraction in non-central panoramas

The extraction of line projections in non-central systems is
still an open topic. In this section we present our proposal for
extracting lines in non-central circular panoramas also used in
the multi-camera panoramas obtained from real images.

First the panoramic image is preprocessed using a Rolling
Guidance Filter proposed by [Zhang et al. (2014)) to reduce tex-
tured patterns but conserving the edges. Then, the edges in
the image are extracted using Canny detector. After that, we
propose a split and merge approach. First, edges are stored in
connected components. To reduce the complexity of the line
extraction we first estimate locally central approximations of
the line projection. The goal is obtaining consistent segments
of line-image fitting planes that locally describe the projection
surface (see Fig.[7|(a)). A greedy multi-model RANSAC is ex-
ecuted on each connected component obtaining a set of central
segments. As input for this central RANSAC we use central ap-
proximations obtained from the direction of the real projection
rays (defined by (2) in the case of the non-central panorama
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Fig. 8. Reconstruction of a non-Manhattan scene from a non-central cir-
cular panorama. (a) Perspective view of the scenario and (b) non-central
panorama. 3D reconstruction: (c) Top view. (d) Orthografic view.

and by (I3) when using a multi-camera system). For merg-
ing the central segments we are interested on the connectivity
among them. In the non-central panorama the locus of the op-
tical center is a circle. The orthogonal space to the collection
of projecting rays is then a family of toroidal surfaces. The
connectivity map is obtained by discretizing the torus in a set
of tangent planar patches where neighbours are projected using
orthographic mapping (see Fig. [7|(a)). Then the local connec-
tivity of the segments is estimated with a Delaunay triangula-
tion. The resulting sparse connectivity matrix is a composition
of these local connections. Then, the connectivity of the central
segments is exploited to generate a collection of hypotheses in
a USAC framework, by Raguram et al.| (2013). A set of differ-
ent combinations of three segments is randomly generated. All
the combinations not satisfying the connectivity are removed.
Then, the remaining hypotheses are evaluated. Each hypothesis
is tested using the distance presented in Section 4] and taking
into account the effective baseline of each set of rays. To mea-
sure the effective baseline of a set of n rays we use a function z
depending on the metric distances d;; € E? between the defin-
ing rays (unless degenerate cases projecting rays are skew in
circular panoramic systems)

-1
(Ol
st=m[zzf] : (14)

i=1 j=i+1 Y

This function increases when the distances between rays in-
crease but also avoids that any individual distance d;; turns to
zero. The results of the extraction method are the 3D lines and
the corresponding edges supporting the line-images that are di-
rectly related with the 3D points on the 3D line (see Fig.
(b-e)).

Table 1. Error distribution in line-image extraction.

Scenario angqlar error (degs) dept.h error (m)
median o median loa

Horizontal | 0.948 1.180 0.028 | 0.036

Slanted 0.954 1.105 0.091 | 0.126

7. Experimental evaluation

To evaluate the proposed extraction method we have per-
formed experiments with synthetic and real images. Synthetic
images have been generated using a spin-off version of Pov-Ray
called Mega-Pov which allows to define the non-central circu-
lar panoramic camera as a parametric camera. The scenario
is a modification of a publicly available synthetic scenario [H
The synthetic panoramas have resolutions of 4096x2048 pix-
els and the radius of the generation circle is R, = 0.5m. In
Fig. [7] (b,c) we show some examples of extracted lines from
synthetic panoramas. The extracted line-images are depicted in
green and the edge points supporting the line-image in red. The
corresponding 3D reconstruction is shown in Fig. (/| (d) where
the ground truth is coloured in blue and the reconstructed seg-
ments are depicted in red. One degenerate case is when the
line lies in a plane passing through the axis of revolution of the
system (the projected line-image is a straight 2D line). The fur-
ther a line is from this degeneration the better conditioned it is.
Then, horizontal lines are better conditioned than slanted lines.
In Fig. [/|(c,e) we show a similar example having slanted lines
after rotating the camera 50 degrees. In Table. [I] we show a
comparison between the extraction error in both scenarios (hor-
izontal and slanted). Given the error array e; the standard devia-
tion o is robustly estimated using the median absolute deviation
(oo = 1.4286 median |e; — median (¢;))).

Just to illustrate that we are not imposing or using Manhattan
conditions or dominant directions in Fig. [§|we present an exam-
ple of reconstruction of a non-Manhattan scenario of a parking
with a singular roof. In this particular example the defining
points of the line-images have been manually selected showing
that there is a limit on the accuracy of the reconstruction which
is directly related with the effective baseline of the system and
not related with the extraction procedure. In Fig. [§] (c,d) we
show the fitting and reconstruction of 3D lines of the roof. We
can see accuracy in 3D reconstruction decreases in further lines
despite being correctly fitted on the image.

7.1. Experiments with real images

The real panoramas have been composed using a rotating oft-
axis fisheye camera (uEye UI-148xSE-C with lens Lensagon
CF5M1414) with radius R, = 0.5m. In Fig[0|we show examples
of line-image extraction and 3D reconstruction from panoramic
images of 4096x1570 pixels. The panorama presented in Fig.
[9)(a) has been composed from a stream of 180 images covering
each one a step size of 2 degrees and having 40x1920 pixels.

Uhttp://hof.povray.org/office-13.html The Office - J. Vives-Piqueres, 2004
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Fig. 9. Line extraction in non-central real panorama in a corridor. (a,b) Examples of extracted line-images in green and supporting points in red. (c,d) Top
view of the obtained 3D reconstruction (in red). The green cross represents the camera location.

In contrast, the panorama shown in Fig. E] (b) has been stitched
from a stream of 20 images covering each one 18 degrees of
field of view with 360x1920 pixels. For evaluating the recon-
struction we have measured the environment. The width of the
corridor measured with a laser electronic distance meter (EDM)
is 3.20 m. From the circular panorama shown in Fig. [9](a) we
obtain a measure of 3.16 m.

8. Conclusions

In this paper, we propose a non-central system for 3D re-
construction of lines from single panoramas without assump-
tions about the direction or arrangement of the lines (such as
Manhattan world). We compare our configuration with other
known non-central cameras concluding that (in contrast with
other non-central systems) our configuration has enough effec-
tive baseline to perform 3D reconstruction of a real scenario
with typical dimensions. This result opens new possibilities for
real applications. We also present a new method for automatic
extraction of line-images from non-central circular panoramic
images. To the best of our knowledge this is the first algorithm
able to obtain an automatic extraction of line-images from non-
central images. The proposal was tested with realistic synthetic
images and with real images.
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