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Highlights

o We show that discriminative visual representation can help
zero shot learning

e Supervised discriminative representation learning on seen
classes can be transferred partly to unseen classes

o Comparing with Large Margin, aggregated representation
may be more informative in zero shot learning.
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ABSTRACT

Zero-shot learning (ZSL) aims to recognize classes whose samples did not appear during training.
Existing research focuses on mapping deep visual feature to semantic embedding space explicitly
or implicitly. However, ZSL improvements led by discriminative feature transformation is not well
studied. In this paper, we propose a ZSL framework that maps semantic embeddings to a discrimi-
native representation space, which are learned in two different ways: Kernelized\Linear Discriminant
Analysis (KLDA) and Central-loss based Network (CLN). KLDA and CLN can both force samples
to be intra-class aggregation and inter-class separation. With the learned discriminative representa-
tions, we map class embeddings to representation space using Kernelized Ridge Regression (KRR).
Our experiments show that both KLDA+KRR and CLN+KRRysurpass state-of-art approaches in both

recognition and retrieval task.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional recognition systems require theusands of la-
beled images for each class to achieve good recognition perfor-
mance (Deng et al., 2010). Recently; the need of fine-grained
recognition (Deng et al., 2013) grows rapidly. Therefore, the
number of different objects become extremely large, and label-
ing becomes neither economical nor practical.

Learning with labeled,data.is not how humans learn to un-
derstand the world. When facing’zero-shot tasks, humans can
deduce and analyze from related knowledge. For instance, as-
suming one person has never seen a panda before, after reading
“bear like animal, with large, distinctive black patches around
its eyes, over the ears, and across its round body”. He can
recognize “panda’yas he saw a panda for the first time, even
after being briefly perplexed because facing an “unseen” class.
Zero-shot learning imitates the process how humans recognize
objects that he had never seen.

ZSL divides categories into two disjoint sets: seen classes
and unseen classes. At train stage, only labeled instances from
seen classes are available. Without labeled examples, ZSL
learns classifiers for unseen classes by transferring knowledge
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Fig. 1. Zero shot learning problem. Each class has a template (denoted by
a star), To classify an unseen image, we assign it a label that corresponds to
the nearest template in feature space. However, this is hard due to we only
have access to seen templates at train stage. Side semantic information is
needed to determine where an unseen template locates.

from the seen classes. Fig. 1 shows ZSL problem. Without
seen samples, it seems to be impossible to infer images that do
not reside on seen manifold. However, we can exploit multi-
modal information to assign labels to unseen classes because
images are not the only information source. We can take ad-
vantage of side information to learn unseen classifiers. One of
most commonly used side information is called semantic em-



bedding, which contains semantic information like similarity
relationships between classes. Semantic embeddings are usu-
ally easily obtained, therefore we always have full access to all
classes embeddings. ZSL then can be achieved by resorting to a
common semantic embedding space in which seen and unseen
classes are related(Al-Halah et al., 2016).

Most existing ZSL approaches utilize attributes (Farhadi
et al., 2009; Lampert et al., 2009; Parikh and Grauman, 2011)
and word2vec representations (Mikolov et al., 2013; Mikolov,
Tomas et al., 2013; De Boom et al., 2016) as semantic spaces.
In semantic embedding spaces, each class name can be repre-
sented by a vector in a supervised way based on a pre-defined
attribute ontology, or an unsupervised way based on vast unan-
notated text corpus.

Given a semantic embedding space, we can measure the sim-
ilarity between classes by calculating their distances. ZSL as-
sumes that the spatial relationship between classes in seman-
tic embedding space is similar to the spatial relationship in vi-
sual feature space. Several existing ZSL approaches (Akata
et al., 2013; Frome et al., 2013; Romera-Paredes and Torr,
2015; Zhang and Saligrama, 2015) learn a projection func-
tion from visual features space to semantic embedding space.
At test stage, the inference of an unseen image is performed
by first mapping image visual feature to semantic embedding
space, then measuring the similarities of projections with un-
seen classes in this embedding space.

However, major projection based approaches still have sev-
eral shortcomings. Firstly, Visual features can be suboptimal
for zero shot tasks as they were learned designed from multi=
shot recognition task. Secondly, the V — S mapping (mapping
from visual feature space to semantic embedding space) maps
n samples to one embedding vector. As image number is far
beyond class number, this mapping can be inefficient and noisy.
Thirdly, (Zhang et al., 2017) shows that inferring atest image in
visual space instead of semantic embedding space may lead to
suboptimal results due to hubness (Dinu‘et al.;,2014) problem.

In this paper, we focus on learning, discriminative zero
shot visual representation to tackle“ptoblems mentioned above.
Specifically, we add a preprocessing stage before training stage.
At preprocess stage, we reduice, visual-feature dimension into
a representation space in, a semi-supervised learning manner.
Samples within this representation space have high inter-class
variation and low intra-class variation. After dimension reduc-
tion, each seen class averages over all images within that class
to obtain a “template”, i.e., we simplify “n images correspond-
ing to one ¢lass” relationship to “one template correspond to
one class”. At train stage, a nonlinear regression was learned
on train data to infer class “template” in representation space
using semantic embeddings as inputs. At test stage, as one test
sample arrives, we first reduce its dimension to representation
space, we calculate its similarities to unseen class templates to
decide which class it belongs to.

To better conduct ZSL, (Xian et al.) argue that in standard
ZSL experiment setting, some unseen classes appear before test
stage. Standard ZSL experiment setting extract image features
from Deep Neural Networks, which is pre-trained on ImageNet
dataset. In this setting, several test classes are among Ima-
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geNet classes. This may violate zero shot learning definition
that unseen classes should not appear before test stage. There-
fore, standard experiment setting may lead to flawed conclu-
sions. One way to calibrate experiment setting is to readjust
seen/unseen split to follow zero shot definition. With adjusted
seen/unseen split in (Xian et al.), flawed factor was eliminated,
we may better analysis the underlying ZSL factors. We fol-
low both experiment settings to conduct our experiments. Our
analysis shows that Large Margin and Aggregated are two key
factors in ZSL.

Our contributions are mainly three-folds: 1) We verify that
supervised discriminant training on seen classes can benefit un-
seen classes. 2) We disclose that Aggregated visual represen-
tation works even better than LargeMargin representation in
zero shot recognition problem 3)"We conduct extensive exper-
iments on four major benchmatk datasets, which validate the
superiority of our approach-oyer state-of-the-art approaches on
zero-shot recognition and retrieval task.

The structure of the paperis as follows. Section 2 introduce
related work, Sections 3 define DZSL model and detail how we
to train this model. Section 4 discuss the performance of our
model, includingrtraditional experiment train/test class split and
newly proposed train/test class split. Section 5 analyze experi-
ment conducted on large scale datasets and Section 6 concludes
this work.

2.. Related Work

The pioneer work in ZSL can be traced to (Larochelle et al.,
2008), where it verified that when test images belong to some
classes that are not available at training stage, a machine learn-
ing system can still figure out what a test image is. Due to
the importance of zero-shot learning, the number of proposed
approaches has increased steadily recently. The number of new
zero-shot learning approaches proposed every year was increas-
ing.

Existing approaches differ in how they transfer knowledge
between seen and unseen classes. Most existing approaches are
grouped into similarity based and projection based approaches.

Methods based on compatibility functions include ALE
(Xian et al., 2016) SJE (Akata et al., 2015) LatEM (Xian et al.,
2016). Each of these approaches learns a bilinear compatible
function of visual space to semantic space. This compatible
function represents how well a sample is compatible with a
class label. The learning procedure force correct labeling to
have a higher compatible score. The advantage of this approach
is to take into account the characteristics of large margin. How-
ever, the shortcomings are: do not make full use of space in the
neighborhood information.

Similarity based approaches represents unseen classes as a
mixture of seen classes proportion includes SSE (Zhang and
Saligrama, 2015), SynC (Changpinyo et al., 2016a) and GZSL
(Chao et al., 2016). SSE represents each class as a linear com-
bination of Seen class. SynC and GZSL extract the effective
information of the Seen class of the embedding space - a set of
basis, representing the categories as the coordinates of the set of
basis in the embedding space. And assume that in visual space,
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Fig. 2. Visual features and semantic embeddings are closely related. Given visual features, a more aggregated representation.can be learned by n(x) = v.
With the help of Kernel Ridge Regression (KRR), semantic embedding can be mapped to representation space by y(ac) ~%.. We denote class center in
representation space as a class template. Samples with a class are distributed around its template. This property can be advantageousfor recognition and

and retreival for nearest search.

this group of basis can effectively represent seen and unseen
categories. These approaches take advantage of the rich seen
class information, reducing the computational complexity, but
did not reveal the key factors to improve the accuracy of ZSL.

Recently, matrix decomposition was found to have nice prop-
erties as not only did it represents a linear transformation but
also can it be viewed to maintain common information in a
decomposed sub matrix. Methods based on matrix decompo-
sition assume sample matrix X and label matrix Y has lin-
ear relationship. Therefore decompose based approaches op-
timized |[Y — WTX]|r , in which W can be decomposed in var-
ious ways. ESZSL (Romera-Paredes and Torr, 2015) decom-
pose W = VTS, where V is intrinsic to all images and S'is
class-dependent.

Moving one step further, (Qiao et al., 2016) decompose, the
matrix V= WIW, . By regularization to suppress.the noise i
word embedding. However, this approach requites embedding
to be interpretable, which is difficult to achieve in practical ap-
plications. MFMR (Xu et al., 2017) decomposes the matrix
W via matrix three decomposition and manifold regularization,
which addressed the domain shift problem. Matrix Decompo-
sition based approach has clear physical meaning. However,
these approaches depict transformations between visual space
and semantic linearly, this may ignore nonlinear characters re-
sides on datasets.

Methods based on Jarge margin mechanism includes SSE
(Zhang and Saligramay, 2015), JLSE (Zhang and Saligrama,
2016) and SJE (Akata et'al., 2015). These approaches force
(x) to have a large margin. However, the large margin mecha-
nism is only.one factor among many decisive factors. We show
that centralized feature is more powerful as it forced centralized
visual representation.

Usually, Standard zero shot experiment setting forbid seen
classes to appear at test stage. In reality, one cannot assume that
one image purely comes from unseen classes. Seen classes and
unseen classes will both appear at test time. To solve this prob-
lem, DeVise (Frome et al., 2013) ConSE (Norouzi, Mohammad
et al., 2014) SynC (Changpinyo et al., 2016a), GZSL (Chao
et al., 2016) applied generalized zero shot learning setting us-
ing ImageNet dataset (Deng et al., 2009). Recently, (Xian et al.)
shows that standard setting may be noisy when analysis reasons

of the performance of zero shot learning.

3. Method

3.1. Problem statement

let S = {1,2,3,"%, S} denotes a set of classes that contains
S seen classes, and U = {S + 1,5 +2,---,5 + U} denotes
another set of Classes that contains ¢, unseen classes. This two
sets.are disjoint, e.g S N U = (. each class in the two sets can
be represented by a m-dimensional semantic embedding vector
(e.gmattributes) a;, where a; and is embedding vectors for i-th
class. Training samples are denoted by{(x},y)}",, where n, is
the number of train samples, Xls denotes i-th train sample which
is a d-dimensional feature vector.

3.2. General Framework

The main idea of our approach is shown in Fig. 2. At train-
ing stage. Firstly, we learn a discriminative visual representa-
tion using train data in seen classes. Then, we learn a projection
from semantic space to representation space. Comparing with
projectioning visual representation to semantic space. This ap-
proach has two major advantages: 1) Inferring class in visual
representation space directly; 2) Efficient computation.

Let class Cy has n; samples, mapping from semantic embed-
ding space to visual representation space is a one-to-many map-
ping. As the number of visual samples is much larger than the
number of semantic embeddings, learning a projection from vi-
sual space to semantic embeddings space may require much
more computational resources. More importantly, for larger
data sets like ImageNet, mapping in the former way become
incomputable. We simplify this mapping to a one-to-one map-
ping by resorting to “template”. Our approach represents a class
in visual representation space as a “class template” vector v,.
a “template” can be viewed as a standard sample of a class.
Therefore, it’s reasonable to use the statistical mean of all sam-
ples as the template. We take the statistic average as following

Eq. (1).

Ve=— ) X (D
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Fig. 3. Modified deep convolution network. We add an FC layer which contains ¢’ neuron units between last fully-connected layer and softmax layer. The
propose of this layer is to reduce feature dimension in a aggregated way. Addition to softmax loss, a central loss is added to supervise aggregated feature

learning.

When one test sample arrives, the test sample finds its nearest
template in the visual representation space and assign the tem-
plate’s label to this sample. Intuitively, this approach is similar
to the effect of mapping feature space to semantic space, but the
amount of computation will be much smaller.

3.3. Visual representation transformation

It is expected that visual features contain less noise and more
information. This requires us to learn a transformation of vi-
sual features. (Changpinyo et al., 2016b) used PCA to.obtain
visual representations, PCA reduced the noise level in visual
features. However, PCA transform features in an unsupervised
way. Unsupervised feature transformation does(not make full
use of label information. Therefore, labels information leaves
room for improvement.

Supervised feature transformationHardoon et/ al. (2006);
Baudat and Anouar (2000); Wen et/al.,(2016) utilized labels
information to obtain supervised viSual representations, which
achieve intra-class aggregation, and inter-class separation char-
acteristics. We refer this two character as Large Margin and
Aggregated. In this paper)we consider two different fea-
ture transformation method, KILDAHardoon et al. (2006) and
CLN(Wen et al., 2016). KLDA and CLN exploit labels infor-
mation in different manners; we found that the common factor
in both transformations improved ZSL performance while the
comparison betweensthis two methods prompt us Aggregated
feature might be ' more powerful in ZSL.

3.3.1. KLDA repsentation transformation

As a first option, we use KLDA to transform visual features.
Different from regular KLDA, in ZSL, KLDA was conducted
on seen classes but the learned transformation was used on
both seen and unseen classes. With transformed features, the
template can be obtained by Eq. (2). Comparing with PCA,
KLDA has the properties of Large Margin and Aggregated.
Our experiments show that such properties are also effectively
transferred to the unseen classes. In a traditional classification

task, KLDA may leadito.better discriminative transformation.
However, in/ZSE"problem, this discriminative power remains
unclear. Our ‘expecriment in section 4.1 shows that even only
trained ‘on, seen classes, KLDA based representation achieve
better performance compared with PCA.

K(x1,x¢)
_ T K(XZ’ Xt)
y(x,) = (A7) : ) (2)

K(an > X)

Here K(x;, x;) is the inner product of x; and x; in nonlinear
transformation space. A* can be computed by Eq. (3)

A* = eigvecs((z K;I- llj)KJT-)_lM),

J=1

‘ (3)
M= ()" (M, - M)M; - M.)"),
j=1

Note that M can be computed follow (Mika et al., 1999).
eigvecs(:) is a operator that extract first k eigenvectors of its
input matrix. For dimension reduction propose, k is set to be
equal to d’. After dimension reduction, our template can be
computed by Eq. (4).

1
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3.3.2. Centralized repsentation transformation

As an alternative of KLDA, we proposed CLN based feature
transformation. CLN utilizes neural networks to learn aggre-
gated representation by combining softmax loss with a central
loss function by punishing data samples whose representation
are far away from their corresponding ‘““class center” in repre-
sentation space. A ‘“class center” is the statistical average of
all samples’ feature within one class. Combined loss punishes
not only the classification error, but also the samples deviation



Table 1. Statistics of different datasets, where “*/*”” in columns represents image number in ST-1 setting/ image number in ST-2 setting. Parenthesis in

Train/Test split column means ST-1(ST-2) classes split.

Dataset information Train stage Train stage Test stage
(ST-1/ST-2) (ST-1/ST-2) (ST-1/ST-2)
dataset Detail Att Classes Train/Test Classes Split Total Seen Unseen  Seen Unseen
AWA  coarse 85 50 40/10 30K 24295/19832 0/0 0/2580 6180/5685
aPY  coarse 64 32 20/12 11K 12695/5932 0/0 0/1764  2644/7924
CUB fine 312 200 150/50 30K 8855/7057 0/0 0/4958  2933/2967
SUN fine 102 717 707/10(645/72) 15K 14140/10320 0/0 0/1483  200/1440

from class centers. Optimizing combined loss function, we can
obtain aggregated representation.

Specifically, we add an additional fully-connected(FC) layer
after last fully-connected layer on deep convolution network.
To simplify models, this additional layer does not contain acti-
vation function. This additional FC layer has d’ units, where d’
is the dimension of the space that we transform to. Note that d’
can be tuned as a hyperparameter. The modified network was
shown in Fig. 3. In our modified deep convolution network,
representations are supervised by softmax loss combined with
central loss, The combined loss function was given in Eq. (5)
as

L=Ls+2ALc,
WIz; +by; m
) M 2 ,
- Sy S
In Eq. (5),z; = f(x,-) where f(x;) means to use the activas

tion of our additional fully-connected layer as representation of
x;. We optimize last FC layer’s parameters W while keeping
other layers frozen. A denotes a trade-off between softmax loss
and central loss. ¢,, € R?s denotes the center of y;-th'¢lass in
representation space. Supervised by the combined loss func-
tion, ¢,, will be updated as representation/changes each train
iteration. To avoid mini-batch perturbation in‘centers updating
process, an hyper-parameter @ was introduced to damp the up-
dating process. The training processsused Algorithm 1.

Algorithm 1: Visual representation learning algorithm
Input : training data X, y
Output: FC layer parameters W and class centers
cylyi =4,2,--- ,n
Result: Additional CLN that transform features to
aggregated representations
1 Initiallizenetwork with pre-trained GooglLeNet
parameters. Anitialize ¢,, and W. Set hyperparameters A
and o

2 1«0
3 while not converged do
4 te—t+1
5 Compute joint loss by £ = L + AL
i 1_ oL
6 Update additional FC layer by W*' = W' — u' - 5%
7 | Update centers by ¢! = ¢, — - Ac),
8 end

3.4. Predict template from semantic embeddings

After obtained discriminative représentations by KLDA or
CLN. We conduct ZSL with a regression model. For each class
¢, we learn a mapping ¥ (-) thatay(ag)’~ v.. This mapping can
be modeled as a small data regression-problem as each sam-
ple in this problem correspond to one‘class and class number is
small. Benefited from ,small‘data-Character, we make full use
of Kernel tricks to achieve non-linearity without much compu-
tation overhead. In this paper, we use Kernel Ridge Regression
(Saunders et alg; 1998)'model.Given training templates and se-
mantic embeddings, we learn d’ kernel ridge regressors with
RBF kernel, eachof them predicts one dimension of v, from
their corresponding semantic representations. We learn a re-
gressor by solving Eq. (6).

mm—Z(yn W= 6(x,))? + —w Wi

(6)
L et T T T T
= —(B; K'Kg;i — 26 Ky; i) + —p; Kgi.
=min (5 K Kfi - 25, K'yi +y y)+N/31K/3
This problem can be solved in closed-form Eq. (7)
Bi = @+ K) ;. (7)

Note that i = 1,2,--- ,d’, K is the kernel matrix computed
using RBF-kenerl. A is a hyper-parameter to be tuned. The
resulting Y(-) = (Wig(), W2g(-),- - ,Wa ()", where w; =

SN Bud(Xn) is computed using i-th regressor.

4. Experiment

Datasets Our experiment uses 4 popular datasets:

Animals with Attributes (AwA) (Lampert et al., 2009)
aPascal-aYahoo (aPY) (Farhadi et al., 2009) Caltech UCSD
Birds (CUB) (Wah et al., 2011) SUN Attribute (SUN) (Patter-
son et al., 2014).

AWA is a dataset consist of 50 categories of animal images,
each category is represented by 85 numeric attribute values.
aPY has 32 categories including animals and common objects,
each category has 64 attributes for each class. CUB consists of
200 different species of birds, thus we can explore fine-grained
knowledge transfer. SUN has a vast number of 717 categories
that each contains 20 images. Train/test category split in 4
datasets varies in different evaluation protocols.

We adopt two different evaluation protocol. Standard set-
ting (ST-1) is popular in previous research (Akata et al., 2013;



Table 2. Zero-shot recognition task comparison on all datasets using GoogLeNet features. In this table, & means partial results are obtained from out
implementation, while §means results were cited from original paper. **’ means results were obtained using VGG features. -’ means no avaible results
yet. Within each column, the best is in red and the 2nd best is in blue. We measure top-1 accuracy in %.

approach AWA \ APY \ CUB \ SUN \ Average
DAPi# (Lampert et al., 2014) 60.5 - 39.1 445 -
ALE# (Akata et al., 2013) 53.8 - 40.8 538 -
ConSE§(Norouzi, Mohammad et al., 2014) | 63.3 - 36.2 51.9 -
ESZSL§(Romera-Paredes and Torr, 2015) 64.5 17.1 34.5 18.7 33.7
SSE-INT# (Zhang and Saligrama, 2015) | 71.5% 44.2% 30.2% 82.2% 57.0
SSE-ReLUi (Zhang and Saligrama, 2015) | 76.3* 46.2  304* 825 58.9
JSLE% (Zhang and Saligrama, 2016) 73.0 483 354 780 58.7
SynC-ova§(Changpinyo et al., 2016a) 69.7 342 534 780 58.8
SynC-structi (Changpinyo et al., 2016a) 729 3877 545  80.0 6145
MFMR§(Xu et al., 2017) 76.6 41.8 462 815 61.5
MFMR-Joint§(Xu et al., 2017) 793 478 514  83.0 65:3
PCA+SVR§(Changpinyo et al., 2016b) 78.6 388 5443 81.0 63.2
KLDA+KRR 793 464 584 830 66.5
CLN+KRR 81.0 449 58.6 “84.0 67.1
, CuB
09— I —
! 25 30 as 40 45
. aPY 1 SUN
lsse o iy o
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Fig. 4. Class-level recognition accuracy comparison, where y-axis denote accuracy and x-axis denotes the indexes of unseen classes in the corresponding

datasets. SSE act as baseline method as it achieved state of the art.

Romera-Paredes and Torr, 2015; Zhang and Saligrama, 2016;
Chao et al., 2016; Changpinyo~et al., 2016a). Recently, a
new setting (ST-2)(Xian-et al.), was proposed to overcome the
weakness in ST-1. ST-2 was proposed because ST-1 may vi-
olate zero shot problemsetting. ST-2 show that ImageNet 1K
classes contain some unseen classes within AwA, aPY, CUB
and SUN. Extracting deep features uses deep convolution net-
work pre-trained on ImageNet and therefore violate zero shot
problem setting. After eliminating pre-trained class out of un-
seen classes, ST-2 evaluate zero shot performance more fairly.
Therefore, the major difference between ST-1 and ST-2 is the
train/test split. We conduct the experiment under both ST-1 and
ST-2 protocol. Statistics of all datasets were shown in Table 1.

Semantic embeddings For AwA and aPY datasets, we di-
rectly utilize the provided class-level continuous attribute vec-
tor. For CUB and SUN datasets which have image-level at-
tribute vector, thus, we generate class-level attribute vector by
averaging attribute vectors over all images within one class.

Visual features (Akata et al., 2015) shows that deep features
lead to better class separation than handcrafted features (Zhou
et al., 2016, 2017). We use deep features extracted from deep
CNNs. In this paper, we use 1024-dim GoogLeNet (Szegedy
et al., 2015) and 2048-dim ResNet (He et al., 2016) features for
AWA, CUB and SUN dataset available from (Changpinyo et al.,
2016a) and extracted aPY features using Caffe (Jia et al., 2014).

Implementation details In our experiments, we address two
variants of ZSL approach: KLDA-KRR and CLN-KRR. Hyper-
parameters in the two approaches are worth investigation: For
KLDA-KRR model, d’,y are tuned for KLDA model, vy, is
tuned for RBF-kernel in KRR, A is tuned for regression reg-
ularization. Similarly, for CLN-KRR model,a,d’, A and y are
going to be tuned. In CLN-KRR model, we update the network
with Gradient-based approach. Gradient-based approach up-
date model with mini-batch data. Within one mini-batch, Our
model update template position of each class by averaging over
samples within each class. For datasets who has a large class
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Fig. 5. t-SNE visualization for our discriminative representations for unseen ¢lasses in AWA dataset.

number, samples in mini-batch may not enough to update tem-
plate correctly. Therefore, batch size may affect the center up-
dating performance.

We report the averaged performance results over 10 runs of
experiment with the optimal parameters chosen on each dataset.
All the experiments are conducted on a PC equipped with 8-
core 3.3GHz CPUs and 64GB RAM. Furthermore, two 1080-Ti
GPUs was used as we accelerating CLN training with tenser-
flow (Abadi et al., 2016).

We conduct experiments on three tasks: zero shot recognition
under ST-1 setting, zero shot retrieval under ST-1 setting and
zero shot recognition under ST-2 setting. Zero,shot retrieval
under ST-2 setting was not studied due to the lack of jrelated
research.

4.1. Performance comparison

Our evaluation under ST-1 setting compared our approach
with 10 existing ZSL approaches. ;We not only refer to the
published results but also re‘implemented SSE, JSLE, SynC,
MFMR with provided implementation codes. Details were
shown in Table 2. Our’KLDA+KRR and CLN+KRR perform
best among all datasets except/for aP&Y dataset. JSLE outper-
form our methods as JSEE-uses transductive experiment set-
ting which exploits the distribution information from unseen
classes. Note that ousresults of JSLE are lower than reported in
the original papemas we use GoogLeNet(Szegedy et al., 2015)
features instead of VGG-19(Simonyan, Karen and Zisserman,
Andrew, 2014) features to reproduce results. CLN perform best
on average, centralized representation forbid samples to dis-
tribute all over the representation space. Instead, CLN repre-
sentations cluster tightly around its “template”, therefore yields
good performance.

4.2. Detail Analysis

To better understand the performance of our model for recog-
nition, we also conduct class level accuracy comparison in Fig.

4. Here (and in“the following experiments) we only consider
SSE as the baseline-approach because it achieves the state-of-
the-art, Over the four datasets on average. In general, KLDA
and CLN helpsimprove the performance on individual classes
as‘they'maximized inter-class separation.

In few cases, however, we observe samples that are misclas-
sified; such as class 11, “bag” class in aPY dataset and class 1,
“Persian cat” in AWA dataset. Most misclassified “bag” images
were mis-classified to “monkey” and “statue”. Have a close
view of the images, one can see that misclassified “bag” im-
ages are mostly persons with bags and our model recognize
them as something humanlike (in our experiment,“statue” and
“monkey”) instead of “bag”.

AwA dataset did not provide origin images due to intellec-
tual property reason. In order to gain some insight of this
dataset, we analyze our model using t-SNE(Maaten and Hin-
ton, 2008) visualization. We compared KLDA+KRR with
CLN+KRR in Figure 5. Corresponding to recognition results,
CLN based model perform better due to it learned more ag-
gregated features. CLN based representations entangled less
between classes than KLDA based representations.

In order to gain some insight of zero shot recognition, A sam-
ple wise analysis on aPY dataset also conducted. We analysis
True Positive (TP) and False Positive (FP) prediction for each
unseen class, the results were shown in Fig. 6.

Animal categories are quite confusing, “goat”, “donkey” and
“zebra” are usually confused with each other. Monkeys resem-
ble human a lot, therefore many “monkey” images are recog-
nized as “statue”. On the other hand, almost no images are mis-
classified as “buildings” and “jetski” due to this two classes are
quite discriminative comparing with other categories. Note that
similar categories can always be confusing while distinct cate-
gories can be recognized easily, ensembling fine-grained clas-
sifier with coarse-grained classifier might improve ZSL perfor-
mance.
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Fig. 6. Recognition result of images. Each row corresponds to one prediction category. Images with wrong predicted label-was given correct label under

its image. Green boundbox means correct.

Table 3. Retrieval performance comparison (%) in terms of mAP, Best re-
sults were highlighted in bold fonts. Within each column, the best is in red
and the 2nd best is in blue.

Method AWA APY CUB SUN Ave.
SSE-INT 46.3 15.4 4.7 589 313
SSE-ReLU 42,6  14.1 3.7 446 262
JSLE 66.5 327 239 765 499
SynC-ova 643 296 304 721 491
SynC-struct 654 305 343 743 511
KLDA-KRR 68.30 3554 3559 7421 53.36
CLN-KRR  71.36 45.29 47.29 8233 61.56

4.3. Retrieval Analysis

Zero shot retrieval is another important task*which is not well
studied. We use a semantic embedding vector-as a query to
retrieve test images. Retrieval task uses.mean average precision
as the performance index. Our approaches compared with the
state of the art zero shot retrieval“approaches including SSE,
JSLE, SynC. Table 3 lists retrieval.results in terms of mAP for
All datasets using VGG-19 features.

We can see that our approach achieved 53.36% and 61.56%
on average compared with the best counterpart of SynC-struct
which has a mAP of 51.1%. This again validates that our ap-
proach learned more effective representations. CLN based ap-
proach obtained even better retrieval performance. The superior
performance.is due‘torthat Aggregated character was success-
fully transfetred onstest samples.

4.4. Recognition Results on ST-2 Setting

As discussed in (Xian et al.), standard experiment setting can
be flawed. For example, in aPY dataset, 7 test classes monkey,
wolf, zebra, mug, building, bag, carriage are among ImageNet
1K classes. ST-2 exchange theses flawed “pre-trained” unseen
classes with train classes that are not “pre-trained”. We follow
this setting when we conduct ST-2 recognition experiment.

For comparison purpose, we follow the feature-extraction
process in (Xian et al.), which utilize 2048-d ResNet features

boundbox means similar but wrong. Red boundbox means totally. wrong.

Table 4. Zero shot recognition-result on ST-2 experiment setting. Within
each column, the'best’is'in red and the 2nd best is in blue. We measure
top-1 accuracy in %. references are not offered here due to limited space,
please refer to Related Work.

Method | AWA | APY | CUB | SUN
DAP 441 338 400 399
CONSE  [456 269 343 388
CMT 395 280 346 399
SSE 60.1 340 439 515
LATEM | 551 352 493 553
ALE 599 397 549 58.1
DEVISE | 542 398 520 56.5
SIE 65.6 329 539 537
ESZSL 582 383 539 545
SYNC 540 239 556 563
CLNTKRR | 682 448 58.1_ 60.0

for recognition. Our method performs best on all datasets.
Among second best approaches, SJE, ALE and DeVISE used
large margin mechanism to improve performance. This exper-
iment again proved that learning discriminative representations
can be advantageous in zero shot learning.

5. Conclusion

In this paper, we described a simple yet effective representa-
tion learning approach for ZSL. Our approach outperforms the
state-of-the-art approaches on 4 standard datasets. The main
idea of our approach was to leverage supervised information
on train data to learn a discriminative representation to achieve
class separation. Both Kernerlized Discriminant Analysis and
Central-loss neural network based approach was developed to
exploit the supervised information that can be transferred to un-
seen data. Extensive evaluations validated the efficiency of our
framework on the conventional ZSL problem. In the future, we
plan to improve this work by utilizing the hashing techniques
Shen et al. (2016, 2017a,b); Yang et al. (2015); Luo et al. (2017)



to address the large-scale zero-shot recognition problem.
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