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a b s t r a c t 

Feature selection concerns the task of finding the subset of features that are most relevant to some spe- 

cific problem in the context of machine learning. By selecting proper features, one can reduce the com- 

putational complexity of the learned model, and to possibly enhance its effectiveness by reducing the 

well-known overfitting. During the last years, the problem of feature selection has been modeled as an 

optimization task, where the idea is to find the subset of features that maximize some fitness function, 

which can be a given classifier’s accuracy or even some measure concerning the samples’ separability in 

the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming 

(GSGP) in the context of feature selection, and we experimentally showed it can work properly with both 

conic and non-conic fitness landscapes. We observed that there is no need to restrict the feature selection 

modeling into GSGP constraints, which can be quite useful to adopt the semantic operators to a broader 

range of applications. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Machine learning techniques have been the forerunner of sev-

ral advances in Computer Science and application-driven areas,

hich range from medical image understanding to video summa-

ization, just to name a few. Deep learning techniques are now

n the spotlight, since they have obtained outstanding results in a

umber of applications, with performance quite near to the human

evel. 

However, even the most accurate approaches may have their

erformance (i.e., effectiveness and/or efficiency) degraded due to

he high dimensionality of the datasets. In this context, feature se-

ection arises to mitigate that problem by selecting the subset of

he most representative features, which is somehow modeled as

n optimization problem. A common approach is to select the sub-

et of features that maximize some classifier’s recognition rate, the

o-called wrapper approaches . On the other hand, one can use any

ind of fitness value that measures the quality of the feature space,

uch as its separability or compactness. 

A number of works modeled the problem of feature selec-

ion as a nature-inspired-based optimization task. Nakamura et al.

21] and Rodrigues et al. [30] proposed the Binary Bat Algorithm
∗ Corresponding author. 
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or feature selection purposes, being the optimization problem

uided by the accuracy of the Optimum-Path Forest (OPF) [24–

6] classifier over a validating set. [11] were one of the first to

ntroduce the term swarm feature selection , where the well-known

article Swarm Optimization (PSO) was used to select features in

he context of hyperspectral remote sensing image classification.

on-wrapper approaches can be referred to as well, such as the

ork by [22] , which employed evolutionary optimization for fea-

ure construction in benchmarking datasets and symbolic learning.

A Binary Cuckoo Search approach was proposed in context of

heft detection in power distribution systems [29] , and the Binary

lower Pollination Algorithm was also presented for feature se-

ection purposes and compared against PSO, Harmony Search and

irefly Algorithm [31] . Evolutionary-oriented optimization tech-

iques have been also used to find out the most representative

eatures. [38] , for instance, used Genetic Algorithms together with

eural Networks for feature selection purposes. Genetic Program-

ing (GP) [17] was also employed for the very same purpose,

ither representing classifiers instanced with different subsets of

eatures [19,28] or using a two-stage approach [7] . Even further,

rammatical Evolution was also employed under the context of

eature construction and selection [12] . 

Surprisingly, there are a few works that attempted at using GP

or feature selection purposes only. Since the idea of using Genetic

rogramming to select features is plausible and quite simple, we

ropose here to use only logical operators at the function nodes,

https://doi.org/10.1016/j.patrec.2017.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.10.002&domain=pdf
mailto:papa@fc.unesp.br
https://doi.org/10.1016/j.patrec.2017.10.002
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Fig. 1. Offspring generated by means of the semantic crossover defined in Eq. (1) . 

Fig. 2. Tree-like representation concerning the following expressions: (a) T AND M , 

and (b) T OR M . 
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1 By logic function we mean an “OR” or “AND” operator, for instance. 
being the terminal nodes encoded by binary vectors that represent

randomly chosen features (‘1’ = feature selected, and ‘0’ the oppo-

site situation.) This approach concerns our baseline for comparison

purposes, being the OPF classifier used to guide the optimization

process. As far as we are concerned, that is the first time such sort

of approach is used for feature selection purposes. 

However, the main contribution of this work is related to the

Geometric Semantic Genetic Programming (GSGP) technique [20] ,

which encodes the semantic (meaning) of individual trees when

performing mutation and crossover operations. GSGP has been em-

ployed to a number of problems very recently, such as electoral

redistricting problem [6] and real-life applications [35] . One strong

point of geometric semantic operators concerns their ability in in-

ducing unimodal fitness landscapes on some problems where one

knows the matching between the input and the output data. How-

ever, as far as we are concerned, GSGP has never been considered

in the context of feature selection up to date, which turns out to be

the main contribution of this paper. Additionally, we showed GSGP

can also work well in situations where the assumption of unimodal

fitness landscapes is not guaranteed in the context of feature selec-

tion. 

Therefore, the main contributions of this paper are twofold: 

• to introduce GSGP in the context of feature selection; and 

• to show feature selection can be addressed by GSGP in non-

unimodal fitness landscapes. 

This paper is an extension of the work by [32] , which firstly

introduced GSGP for feature selection purposes. 

The remainder of the paper is organized as follows.

Sections 2 and 3 present the theoretical background related

to GSGP and the proposed approach for feature selection

purposes, respectively. Section 4 describes the methodol-

ogy, and Section 5 discusses the experimental results. Finally,

Section 6 states conclusions and future works. 

2. Geometric semantic genetic programming 

Genetic Programming [17] is an evolutionary-based optimiza-

tion algorithm that models each solution as an individual, which

is usually represented as a tree composed of function and terminal

nodes. The function nodes encode the arithmetic operators used

over the terminal nodes in order to evaluate the trees, and the ter-

minal nodes represent constant values. At each iteration, specific

operations over the current population are performed to design the

next generation of individuals, being the most used ones: (i) mu-

tation, (ii) crossover and (iii) reproduction. Mutation and crossover

aim at allowing a greater variability to the population of individ-

uals, while reproduction tries to maintain the best ones to the

next generation. In short, mutation operations change each indi-

vidual without considering others, i.e., given a mutation point, we

can simply generate a new random subtree at that point, while

crossover switch branches between two distinct trees. 

Geometric Semantic Genetic Programming introduces the con-

cept of semantic operators [20] , which can encode the meaning

of the programs (individual trees/solutions) during the convergence

process. On the other hand, standard GP ignore the knowledge

about a problem and manipulate the solutions only considering

their syntax. In order to cope with this problem, [20] proposed

four geometric semantic operators, being two of them related to

binary-constrained optimization problems, which is the case of

feature selection. Roughly speaking, each possible solution is en-

coded by a binary array that basically turns on (i.e., the decision

variable takes the value ‘1’) or off (i.e., the decision variable takes

the value ‘0’) a given bit that corresponds to the presence or ab-

sence of some specific feature. 
Let T 1 and T 2 be two logic functions 1 , such that T 1 , T 2 : {0,

} n → {0, 1}. A geometric semantic crossover operator over T 1 and

 2 outputs the following offspring boolean function: 

 3 = (T 1 OR T R ) AND ( T R OR T 2 ) , (1)

here T R is a randomly generated boolean function. Fig. 1 depicts

 graphical representation of the offspring function T 3 . The boolean

unction T R can be any tree generated at random that contains only

ogic function nodes. 

Notice that Eq. (1) is a geometric semantic operator when the

tness function used to guide the optimization problem is based

n the Hamming distance [20] . A similar definition is also applied

o the geometric semantic mutation operator, which states that a

iven parent function T : {0, 1} n → {0, 1} is a semantic mutation

perator when the fitness function is based on the Hamming dis-

ance [20] . 

The geometric semantic mutation operator outputs the follow-

ng boolean offspring T M 

: 

 M 

= 

{
T AND M with probability 0.5 

T OR M otherwise, 
(2)

here M stands for a random minterm of all input variables. Fig. 2

epicts the above formulation in a tree-like structure. 
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Fig. 3. How to use Genetic Programming in the context of feature selection prob- 

lem. 
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2 https://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/ . 
3 Notice these values have been empirically chosen. 
4 https://github.com/jppbsi/LibOPT . 
5 https://github.com/jppbsi/LibDEV . 
6 https://github.com/jppbsi/LibOPF . 
. Problem modeling 

Feature selection aims at finding the subset of features that

aximizes some fitness function, such as the classifier’s effective-

ess or some quality measure of the feature space. Each possible

olution is represented as a binary string, where the symbol ‘1’

eans that a given feature is turned on, and the symbol ‘0’ stands

or the opposite situation. Concerning Genetic Programming-based

eature selection, each terminal node encodes that binary string,

hile the function nodes encode logical functions, such as logical

ND, OR, and XOR (exclusive OR), for instance. Fig. 3 depicts an

xample of an individual concerning the problem of feature selec-

ion. 

In the above example, the terminal nodes encode a binary

tring concerning a problem with 8 features with some standard

ogical operators. Notice that any other operator with output con-

trained in {0, 1} can also be used. Since logical operators are usu-

lly quite fast to be computed, the process of evaluating a given

ree is pretty much standard, thus not requiring a high computa-

ional burden. The only restriction concerns the total number of

ndividuals’ evaluation: since we have 2 n possible solutions for a

roblem with n features, to employ GP for feature selection makes

ense when n → ∞ , thus becoming unfeasible to compute all the

 

n possible configurations of features. 

The evaluation of a given individual (tree) outputs a final binary

tring, which is then usually employed to map the original dataset

o a new one composed of the selected features only. Later, a clas-

ifier is trained over that modified dataset for the further classifi-

ation of the remaining samples. 

. Methodology 

We propose to model the problem of selecting suitable features

y means of a meta-heuristic optimization task. As aforementioned

n Section 1 , feature selection stands for selecting the most repre-

entative features of a given problem, thus reducing its complexity

nd dimensionality. Roughly speaking, the proposed approach aims

t selecting the set of features that minimizes the classification er-

or of some supervised classifier over the validation set (i.e. the

o-called wrapper approach). This procedure is hereinafter called

Experiment A”. 

Although one can use any supervised pattern recognition tech-

ique, we opted to use the Optimum-Path Forest (OPF) classi-

er [24,25] , since it is parameterless and fast for training. The

PF is a graph-based technique that models the problem of pat-

ern recognition as a graph partition task, where the nodes encode

he feature vectors extracted from the samples, and a complete
raph connects them all. The arcs are weighted by the distance

mong samples, and a reward-competition process takes place by

hoosing some key samples from each class called prototypes . Such

pecial nodes try to conquer the remaining samples by offering

hem optimum-paths according to some path-cost function, and

he whole process ends up partitioning the graph into optimum-

ath trees, each one rooted at a prototype node. 

However, “Experiment A” does not guarantee a unimodal fitness

andscape, since the fitness function is not based on the Hamming

istance. In order to fulfill such requirement, we designed the “Ex-

eriment B”, where four datasets with a reasonable amount of fea-

ures were chosen to validate GSGP under unimodal fitness land-

capes in the context of feature selection. Roughly speaking, the

ain idea is to find the best subset of features as the one that

aximizes the OPF accuracy over a validation set. The best subset

s considered among all possible subsets, say 2 n , where n stands

or the number of features. Finally, the best subset is taken as our

old standard, and the fitness function now aims at minimizing

he Hamming distance between the current solution and that gold

tandard. Further, we computed the OPF accuracy over a test set

sing the subset of features selected by the optimization procedure

o evaluate the robustness of the feature selection process. 

.1. Datasets 

Table 1 presents the datasets employed in this work. We con-

idered 24 datasets with different number of samples, classes and

eatures to validate the proposed approach under distinct scenar-

os. The datasets were downloaded from the LibSVM project 2 , be-

ng already processed for missing numbers and nominal features

re quantized. 

Since the optimization process is guided by the results over the

alidating set, we partitioned the training sets of all datasets in

0% to compose the validating set, and the remaining 50% to be

art of the new training set. 

.2. Experimental setup 

In this work, we compared Geometric Semantic Genetic Pro-

ramming against five approaches for feature selection purposes,

ay that: 

• Bat Algorithm (BA); 
• Firefly Algorithm (FA); 
• Genetic Programming (GP); 
• Particle Swarm Optimization (PSO); and 

• Baseline OPF classification (i.e., no feature selection has been

applied). 

In order to provide a statistical analysis by means of Wilcoxon

igned-rank test [37] , we conducted a 2-fold cross-validation with

5 runnings for both experiments (Experiment “A” and Experi-

ent “B”). We employed 15 agents over 25 iterations for conver-

ence considering all techniques and experiments. Table 2 presents

he parameter configuration for each optimization technique 3 . In

egard to the source-code, we used the optimization library Li-

OPT [27] 4 , and the development library LibDEV 

5 . Concerning the

PF classifier, we used the LibOPF library 6 . 

With respect to BA, we have the minimum and maximum fre-

uency ranges, f and f max , respectively, as well as the loudness

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/jppbsi/LibOPT
https://github.com/jppbsi/LibDEV
https://github.com/jppbsi/LibOPF
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Table 1 

Datasets considered in the work. 

# Training Set # Testing Set # Features # Classes 

Adult [34] 1605 30,956 122 2 

BASEHOCK [18] 997 996 4862 2 

COIL20 [4] 770 770 1024 20 

DNA [15] 20 0 0 1186 180 3 

Gisette [10] 60 0 0 10 0 0 50 0 0 2 

Isolet [10] 3899 3898 617 26 

Letter [15] 15,0 0 0 50 0 0 16 26 

Lung [2] 102 101 3312 5 

Madelon [14] 20 0 0 600 500 2 

MPEG7_BAS [25] 700 700 180 70 

MPEG7_Fourier [25] 700 700 126 70 

Mushrooms [33] 4062 4062 112 2 

ORL [5] 200 200 1024 40 

PCMAC [18] 972 971 3289 2 

Pendigits [1] 7494 3498 16 10 

Protein [36] 17,766 6621 357 3 

Scene [3] 1211 1196 294 6 

Segment [15] 1155 1155 19 7 

SenseIT [8] 78,823 19,705 100 3 

Sonar [13] 104 104 60 2 

Splice [23] 10 0 0 2175 60 2 

USPS [16] 7291 2007 256 10 

Vehicle [15] 423 423 18 4 

Yeast [9] 1500 917 103 14 

Table 2 

Parameter configuration. 

Technique Parameters 

BA f min = 0 , f max = 2 , A = 0 . 5 , r = 0 . 5 

FA γ = 1 . 0 , β0 = 1 . 0 , α = 0 . 2 

PSO c 1 = 1 . 7 , c 2 = 1 . 7 , w = 0 . 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Trade-off between the number of selected features and accuracy over Seg- 

ment dataset. 
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o  
parameter A , and pulse rate r . Considering FA, we have α for com-

puting the randomized parameter, as well as attractiveness β0 and

the light absorption coefficient γ . Finally, PSO defines w as the in-

ertia weight, and c 1 and c 2 as the control parameters. In regard

to GSGP and GP parameters, we employed the following configura-

tion: 

• tree generation: GROW [17] with minimum-depth equal to 2

and max-depth equal to 5; 
• reproduction rate: 0.3; mutation rate: 0.3; crossover rate: 0.4; 
• function nodes: AND (logical and), OR (logical or), XOR (logical

xor) and NOT (logical not); 
• terminal nodes: we used 1,0 0 0 random generated numbers

within the interval of each decision variable to compose the

terminal nodes. 

5. Experiments 

In this section, we present the results concerning the aforemen-

tioned methodologies. Section 5.1 presents the results concern-

ing “Experiment A”, i.e. feature selection guided by OPF accuracy,

while Section 5.2 presents the results regarding “Experiment B”, i.e.

the idea is to minimize the Hamming distance between the best

current solution and the gold standard. 

5.1. Experiment A 

Table 3 presents the mean accuracy results over the test

set considering the OPF classifier. The best results according to

Wilcoxon statistical test are in bold. Once can observe GSGP ob-

tained very competitive results in all datasets, being the top tech-

nique in 11 out 24 datasets. From this viewpoint, one can observe
SGP is quite suitable to be employed for feature selection prob-

ems even when one can not hold the unimodal fitness landscape

ssumption. Although baseline OPF achieved the best accuracies

n almost all datasets, it obtained the worst results in others, but

till being close to the top accuracies. As a matter of fact, it is

lso known that some features may degrade the classifier’s per-

ormance, which justifies that learners designed in some datasets

ith less features may produce more accurate results. 

Table 4 presents the average number of selected features by

ach technique considered in this work, where the one in bold

tands for the technique that selected the smaller number of fea-

ures. In this context, a feature selection technique usually aims at

chieving the best trade-off between the number of features and

ffectiveness, i.e., a small number of features that allows a rea-

onable accuracy is then expected. One can observe GSGP selected

he smaller number of features in 14 out 24 datasets, which means

8.33% of the datasets considered in this work. 

Fig. 4 presents a pictorial example to help us analyze the trade-

ff between the number of features and the accuracy over Segment
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Table 3 

Average accuracy over the test set considering all datasets. 

BA FA GP GSGP PSO Baseline 

Adult 64.56% 65.45% 63.11% 63.98% 64.89% 65.29% 

BASEHOCK 79.66% 80.32% 78.93% 79.33% 77.88% 80.43% 

COIL20 98.86% 99.21 % 98.88% 98.88% 98.85% 99.19% 

DNA 75.51% 75.76% 75.24% 75.34% 74.72% 77.85% 

Gisette 91.22% 91.15% 91.00% 90.93% 90.90% 91.90% 

Isolet 90.98% 90.71% 90.62% 90.76% 90.86% 91.18% 

Letter 94.83% 96.17% 93.57% 93.37% 94.75% 97.43% 

Lung 87.59% 90.89% 87.04% 88.36% 87.24% 92.41% 

Madelon 62.73% 61.73% 62.30% 61.66% 59.36% 64.37% 

MPEG7_BAS 89.20% 88.37% 89.19% 89.22% 89.19% 89.17% 

MPEG7_Fourier 71.25% 72.14 % 70.29% 71.13% 71.13% 72.33% 

Mushrooms 96.78% 95.11% 97.63% 95.04% 96.61% 95.43% 

ORL 91.95% 92.82% 91.57% 91.69% 91.79% 93.50% 

PCMAC 73.45% 73.13% 72.64% 71.59% 72.30% 72.51% 

Pendigits 97.98% 97.96% 97.25% 97.10% 97.79% 98.74% 

Protein 58.82% 58.69% 58.56% 58.68% 58.49% 59.09% 

Scene 79.10% 80.33% 79.25% 78.89% 79.14% 81.09% 

Segment 97.53% 96.85% 97.30% 97.43% 97.35% 97.22% 

SensIT 72.78% 71.87% 72.66% 72.96% 72.92% 73.42% 

Sonar 79.96% 83.38% 81.98% 82.40% 82.87% 84.64% 

Splice 72.74% 72.62% 73.25% 73.25% 73.43% 73.35% 

USPS 92.53% 92.69% 92.05% 92.14% 92.05% 94.00% 

Vehicle 77.09% 76.73% 77.03% 76.58% 77.91% 77.68% 

Yeast 57.12% 57.33% 56.93% 56.84% 56.89% 56.67% 

Table 4 

Average number of best features found over the validation set considering all datasets. 

BA FA GP GSGP PSO Baseline 

Adult 80.13 78.93 76.47 75.27 82.47 122 

BASEHOCK 3,143.53 3,178.13 3,080.53 3,063.13 3,154.53 4862 

COIL20 665.07 662 655.60 654 660.13 1024 

DNA 115.07 118.47 112.80 111.67 115.73 180 

Gisette 3,245.53 3,233.87 3,097.23 3,127.53 3,233.63 50 0 0 

Isolet 406.80 402.47 397.33 389.40 396.67 617 

Letter 11.80 12.53 10.67 10.73 11.33 16 

Lung 2147 2,150.04 2,097.53 2,078.33 2,151.53 3312 

Madelon 320.53 322.53 313.33 319 320.47 500 

MPEG7_BAS 119.40 119.40 118.20 116.40 118.33 180 

MPEG7_Fourier 82 84.67 77.93 79.73 82.13 126 

Mushrooms 74 74.80 71.27 72.60 72.13 112 

ORL 668.40 664.27 655.07 651.20 663.87 1024 

PCMAC 2,133.13 2,143.27 2,064.53 2,058.73 2115 3289 

Pendigits 12.07 12.53 10.80 10.20 11.73 16 

Protein 235.33 231.27 226.07 225.07 231.73 357 

Scene 188.53 192.20 185.87 187 185.13 294 

Segment 13.47 13.40 11.73 11.73 12.47 19 

SenseIT 66.20 65.20 60.93 62.67 64.80 100 

Sonar 38.67 38.87 37.8 36 39.87 60 

Splice 41.60 39.80 37.73 38 38.53 60 

USPS 168.20 164.33 163.80 165 165.47 256 

Vehicle 12.87 12.87 12 11.93 12.8 18 

Yeast 68.87 67.80 66.33 68.67 68.80 103 
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ataset. Since we considered a 2-fold cross-validation with 15 run-

ings for all datasets, one can observe 15 points for each technique,

eing the idea to have those points at the upper-left corner of the

hart, i.e. one aims at obtaining the best recognition rates with the

mallest number of features. One can observe GSGP consistently

btained very much suitable trade-offs, followed by naïve GP. 

Fig. 5 shows a possible bottleneck of GSGP, which is related to

ts computational burden. On average, GSGP required much less

omputational load when compared to BA, for instance, but some

eaks can be observed at runnings #6 , #10 and #15 , for instance.

ince we are using trees with maximum depth equals to 5 con-

erning both GP and GSGP, the evaluation of each individual (tree)

oes not take too much time, which makes GP slight faster than

A and PSO, for instance. However, with respect to GSGP, when

e perform the semantic crossover ( Eq. (1) ) and mutation ( Eq. (2) )

perators, one has the additional complexity to evaluate that new
ree defined by the operators. Fig. 6 displays the convergence graph

mong all techniques considered in this work. The fitness value ( y

abel) used for this graph is the minimization of the classification

rror over the validation set. Note that on this particular dataset,

lmost everyone reached the same minimum point. Nevertheless,

ne can observe the FA technique was the fastest one for conver-

ence, followed by PSO, GP, BA, and finally GSGP. 

Fig. 7 depicts the number of selected features versus the OPF

ecognition accuracy over Yeast dataset. In this situation, one can

bserve more competitive results, where BA appears as a good

hoice, closely followed by GSGP ( ≈ 68 features and ≈ 58% of

ecognition accuracy). Fig. 8 displays the computational load con-

erning the feature selection process over Yeast dataset. Once

gain, one can observe some peaks of higher computational load

oncerning GSGP, but with reasonable efficiency on average. Fi-

ally, Fig. 9 displays the convergence graph among all imple-
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Fig. 5. Computational load concerning the feature selection process over Segment 

dataset. 

Fig. 6. Convergence graph concerning all implemented algorithms over Segment 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Trade-off between the number of selected features and accuracy over Yeast 

dataset. 

Fig. 8. Computational load concerning the feature selection process over Yeast 

dataset. 

Table 5 

Gold standard concerning the datasets used in the “Ex- 

periment B”. 

Gold standard 

Letter 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Pendigits 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 

Segment 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 

Vehicle 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 

Table 6 

Average Hamming distance considering the datasets 

used in the “Experiment B”. 

BA FA GP GSGP PSO 

Letter 0.71 1.35 2.02 1.87 0.74 

Pendigits 2.90 4.07 4.22 4.20 2.91 

Segment 2.50 3.76 3.34 3.47 2.66 

Vehicle 2.07 2.94 2.95 2.88 1.99 

u  

c  

t

 

f  

c  

fi  
mented techniques. Note that, once again, GSGP has obtained the

best convergence among all algorithms. 

5.2. Experiment B 

In this section, we present the results concerning the experi-

ment that holds the assumption the fitness landscape is unimodal,

according to Section 2 . In regard to this experiment, since we need

to find out the gold standard by means of an exhaustive search

over 2 n possibilities, where n stands for the number of features, we

opted to use four datasets from the ones presented in Table 1 that

have the smaller number of features, say that: 

• Letter: 16 features ( 2 16 − 1 = 65 , 535 possibilities); 
• Pendigits: 16 features ( 2 16 − 1 = 65 , 535 possibilities); 
• Segment: 19 features ( 2 19 − 1 = 524 , 287 possibilities); and 

• Vehicle: 18 features ( 2 18 − 1 = 262 , 143 possibilities). 

The gold standard subset of features is the one that maximizes

the OPF accuracy over the validating set, as displayed in Table 5 . In

this case, ‘1’ denotes a given feature has been selected, and ‘0’ the

opposite situation. 

As aforementioned in Section 4 , the idea is to find out the sub-

set of features that minimizes the Hamming distance with respect

to the gold standard. Table 6 presents the average Hamming dis-

tance concerning the aforementioned datasets and the techniques
sed in the previous experiment. The best results are in bold ac-

ording to Wilcoxon statistical test. In this situation, the smaller

he distance, the better the technique is. 

One can observe that BA and PSO obtained the best results,

ollowed by FA, GSGP and GP. However, an interesting point con-

erns a direct comparison between GSGP and naïve GP, given the

rst one obtained slightly better results. Table 7 presents the mean
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Fig. 9. Convergence graph concerning all implemented algorithms over Yeast 

dataset. 

Table 7 

Average elapsed time (s) considering the datasets used in the “Ex- 

periment B”. 

BA FA GP GSGP PSO 

Letter 0.0012 0.0036 0.0035 0.5447 0.0010 

Pendigits 0.0014 0.0042 0.0036 0.5199 0.0011 

Segment 0.0013 0.0057 0.0035 0.5611 0.0011 

Vehicle 0.0013 0.0039 0.0035 0.5669 0.0011 

Table 8 

GSGP comparison between “Experi- 

ment A” and “Experiment B”. 

GSGP-A GSGP-B 

Letter 93.37% 97.01% 

Pendigits 97.10% 97.74% 

Segment 97.43% 97.53% 

Vehicle 76.58% 78.74% 
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omputational load for feature selection purposes, being PSO the

astest approach, closely followed by BA, GP and FA. Once again,

SGP appeared as the most costly technique, although its compu-

ational burden is quite acceptable. 

We performed an additional experiment to evaluate GSGP

ver both non-unimodal and unimodal fitness landscapes. Table 8

resents a comparison between GSGP under “Experiment A”

GSGP-A) and GSGP under “Experiment B” (GSGP-B), being the best

echniques in bold according to Wilcoxon statistical test. In this ex-

eriment, we considered the best subset of features selected by

oth experiments to train and evaluate an OPF classifier in order

o assess GSGP behavior under that different conditions, i.e., we

ould like to assess whether GSGP would benefit or not from uni-

odal fitness landscapes concerning the problem of feature selec-

ion. One can observe that both GSGP-based techniques obtained

imilar results in 2 out 4 datasets, being GSGP over unimodal fit-

ess the best one in all situations, which was expected, since we

ssume the operators are “really semantic”. Concerning the Letter

ataset, for instance, GSGP-B obtained a considerably more accu-

ate result than GSGP-A. In short, the results showed us GSGP is

uitable for feature selection, as well as it can work well in non-

nimodal fitness landscapes, thus broadening its number of appli-

ations. 
. Conclusions 

Feature selection appears to be one of the most important prob-

ems in machine learning. Despite selecting the subset of features

hat lead to better recognition rates and lower computational load,

o discard some features might be much more important than the

lassification effectiveness itself. In medical-related data, some fea-

ures are usually too much expensive to be obtained, or even too

uch invasive to the patient. 

In this paper, we tackled the problem of feature selection as an

volutionary optimization problem, where the idea is to find the

ubset of features that maximizes/minimizes some fitness func-

ion. Specifically, we introduced the Geometric Semantic Genetic

rogramming for feature selection problems. In this case, we con-

idered two situations: 

• the first one aims at maximizing the classification accuracy over

a validating set, but such approach does not guarantee one will

have a unimodal fitness landscape, which means we can no

longer hold the assumption that one is using semantic opera-

tors; and 

• in the second experiment, we aim at minimizing the Hamming

distance between the best solution and the gold standard, thus

following the guidelines for using semantic operators [20] . 

We showed GSGP can obtain very much reasonable results in

4 public datasets without the guarantee one has unimodal fit-

ess landscapes (GSGP-A). A second experiment (GSGP-B) used

our datasets in order to obtain a gold standard to be used as the

tness function. Nevertheless, one can notice that finding the gold

tandard of a dataset is very time-consuming, being infeasible on

roblems with many features. Thus, the purpose of this experiment

as to validate GSGP in the context of feature selection under uni-

odal fitness functions. In 2 out of 4 datasets, GSGP-A obtained

imilar results to GSGP-B, being the latter one the best in all four

atasets, as expected. We believe the results presented in this pa-

er can make even broader the applications of Geometric Seman-

ic Genetic Programming. In regard to future works, we intend to

ompare GSGP with different meta-heuristic techniques. 

As a take-home message, one can conclude GSGP is suitable

or the feature selection problem based on wrapper approaches,

s well as GSGP can work well in situations where the assump-

ion of unimodal fitness landscapes can not be held. One possible

hortcoming of GSGP is related to its computational load, which is

lightly heavier (on average) than the compared techniques. 
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