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Unsupervised clustering under the Union of
Polyhedral Cones (UOPC) model

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron

Abstract—In this paper, we consider clustering data that is
assumed to come from one of finitely many pointed convex
polyhedral cones. This model is referred to as the Union of
Polyhedral Cones (UOPC) model. Similar to the Union of
Subspaces (UOS) model where each data from each subspace
is generated from a (unknown) basis, in the UOPC model each
data from each cone is assumed to be generated from a finite
number of (unknown) extreme rays. To cluster data under this
model, we consider several algorithms - (a) Sparse Subspace
Clustering by Non-negative constraints Lasso (NCL), (b) Least
squares approximation (LSA), and (c) K-nearest neighbor (KNN)
algorithm to arrive at affinity between data points. Spectral
Clustering (SC) is then applied on the resulting affinity matrix
to cluster data into different polyhedral cones. We show that
on an average KNN outperforms both NCL and LSA and for
this algorithm we provide the deterministic conditions for correct
clustering. For an affinity measure between the cones it is shown
that as long as the cones are not very coherent and as long as
the density of data within each cone exceeds a threshold, KNN
leads to accurate clustering. Finally, simulation results on real
datasets (MNIST and YaleFace datasets) depict that the proposed
algorithm works well on real data indicating the utility of the
UOPC model and the proposed algorithm.

I. INTRODUCTION

Clustering data which is assumed to come from the union
of finitely many pointed convex polyhedral cones is motivated
by several recent applications such as clustering human faces
under different illuminance [1]–[3], hyperspectral imaging
[4]–[6], metabolic network engineering [7], [8], and topic
modeling [9], [10]. Clustering data under union of subspaces
has been studied widely [11]–[13]. The key difference with
clustering data under the union of polyhedral cones is that
given the extreme rays of a polyhedral cone [14] as shown in
Fig 1, which serve as the generator of the polyhedral cone,
the data inside the cone is a non-negative linear combination
of the extreme rays. In other words a subspace is a cone (not
pointed) but a cone is not a subspace. Furthermore, an issue
in extension of the approaches for sparse subspace clustering
is that the extreme rays cannot be represented as a positive
linear combination of the other points in the same polyhedral
cone, unlike the case of subspaces where there are no extreme
rays. This in turn makes the identification of the cone a harder
problem in general and unless the data contains the extreme
rays, it is computationally hard to uniquely identify the cone.
This requirement is very similar to the case of non-negative
matrix factorization [15], [16].
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In this paper, we provide an method for clustering data
which is assumed to come from the union of polyhedral
cones. We first build an affinity graph with the different data
points (treated as graph vertices) with the edge weights or
affinities derived using a K-nearest neighbor (KNN) algorithm.
Subsequently, spectral clustering [17] is applied to obtain the
correct clusters. We also note that algorithm along these lines
have been considered in [18], [19]. In [18], a thresholded
subspace clustering (TSC) algorithm has been proposed for
clustering data under the union of subspaces model, which
uses nearest neighbors to create affinities that are then used
to perform spectral clustering after thresholding. The authors
of [19] employ mutual nearest neighbors are chosen to define
affinity matrix. However, none of these works considered the
problem of clustering when the data is assumed to come from
a union of polyhedral cones (UOPC).

Under the UOPC model, if for every extreme ray, the nearest
point in other cone is farther than the K th nearest point in
the same cone, then the graph will give K true connections
for each node and zero false connections. Thus, given enough
density of data in each polyhedral cone, the proposed approach
will be able to give perfect clustering. We formalize this by
deriving deterministic conditions for clustering data in union
of polyhedral cones. Clustering data under the UOPC model
can also be performed by a modification of sparse subspace
clustering (SSC) [11] with additional non-negative constraints
for the coefficients. Such problems can be solved with Non-
negative Constraint Lasso (NCL) algorithm [20], which has a
computational complexity of O(N3), where N is the number
of data points. As a special case of no sparsity condition, this
algorithm has been considered in [3]. However, theoretical
analysis of these approaches for perfect clustering remain
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Fig. 1. A polyhedral cone in 3D with 7 extreme rays:
od1, od2, od3, od4, od5, od6, od7. Any points inside the cone, e.g. A,
can be represented by the non-negative linear combination of the extreme
rays.
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open. With our proposed KNN-SC algorithm, we show that if
there is enough density in the polyhedral cones and K is large
enough, the clustering will be perfect. Further, applying KNN
method to build the graph takes O(N logN) using kd-tree
based KNN search [21]. Finally, through extensive sets of
simulations, we show that the proposed approach performs
better than the benchmark result proposed in [3], [20] on both
simulated and real datasets.

The rest of this paper is organized as follows. Section II
describes the problem and Section III gives the proposed
algorithm. Section IV gives the guarantees to the algorithm
and numerical evaluations are presented in Section V. Finally,
Section VI concludes this paper.

II. PROBLEM SET-UP

A pointed polyhedral cone K in Rn is defined as the set of
all non-negative linear combination of the extreme rays D, as
one example shown in Fig 1, thus

K = {Da : a ∈ Rd×1 ≥ 0,D ∈ Rn×d}, (1)

where column vectors in D represent d extreme rays that
define the polyhedral cone K.

We are given a set of N data points, Xi,i=1,2,...,N ∈ Rn,
uniformly sampled from a union of L polyhedral cones, such
that Xi ∈

⋃L
`=1 K

(`), where K(`) is a pointed polyhedral
cone with d` extreme rays in Rn. The purpose is to find a
partition to split N data points into L groups, denoted as
ζ1, ζ2, ..., ζL, such that data from each subgroups belong to
the same polyhedral cones. Note that the number of extreme
rays d` can be larger than the ambient dimensionality n.

III. ALGORITHM: KNN-SC

The proposed algorithm, KNN-SC, is described in Algo-
rithm 1. The data points are first normalized on a unit sphere.
We consider two variants - denoted as the Gaussian Kernel
Case, and the Binary Kernel Case. In these variants, the K
nearest neighbors are used for each data points and the affinity
between them, summarized in A, is based on the distance or
1 in the two cases respectively. Finally, Spectral Clustering is
performed on A> +A.

Algorithm 1 KNN-SC Algorithm
Input: Data points X1,X2, ...,XN , number of clusters L,

scaling parameter τ , maximum number of neighbors K
Output: Clustering Result ζ1, ζ2, ..., ζL

1: Normalize each data by `2 norm to get the normalized
data Yi such that Yi =

Xi

‖Xi‖`2
,∀i:i=1,2,...,N

2: for i ∈ {1, 2, ..., N} do
3: (Build affinity matrix A)

Gaussian Kernel Case: A(i, j) = e−d
2(Yi,Yj)/2τ2

if Yj is top-K neighbor of Yi and Ai,j = 0 otherwise.
Binary Kernel Case: A(i, j) = 1 if Yj is top-K

neighbor of Yi and Ai,j = 0 otherwise.
4: end for
5: C = A> +A
6: (Spectral Clustering) Apply Spectral Clustering [17]

corresponding to C and get the partition ζ1, ζ2, ...., ζL

IV. ANALYSIS OF KNN-SC

We note that if we have enough points in each polyhedral
cone, and the distance between polyhedral cones is large
enough, the algorithm will likely succeed in correctly clus-
tering the data. In this section, we will formalize this notion.
In order to do that, we first define the concept of false and
true discoveries.

Definition 1. (False and True Discoveries [12]) Fix i and
j ∈ {1, 2, 3, ..., i−1, i+1, ..., N}, let A be the affinity matrix
built in step 3 of the KNN-SC Algorithm. Then (i, j) obeying
Aij 6= 0 is (i) a false discovery if Xi and Xj do not originate
from the same polyhedral cone, and (ii) a true discovery if Xi

and Xj originates from the same polyhedral cone.
When there are no false discoveries, points from different

clusters will be well separated from each other as no con-
nections exist between different clusters [17]. When there are
many true discoveries in the affinity matrix, points from the
same cluster will form a well connected graph and there will
be no separations within data from the same clusters. Thus No
False Discoveries and Many True Discoveries together indicate
a perfect performance of the clustering algorithm.

Applying KNN-SC algorithm under UOPC models, the
pair-wise distance between any two polyhedral cones and
the density inside each cone determine the accuracy of the
clustering algorithm. Intuitively, the larger distance between
the polyhedral cones and the denser the data from each cone,
the larger is the value of K which can be used to satisfy no
false discoveries and K true discoveries for every data point
thus obtaining many true connections.

We next define the notion of affinity, which is a measure of
distance between two polyhedral cones.

Definition 2. (Affinity) Let K(i) and K(j) be the two poly-
hedral cones defined by (1), then the affinity between the two
polyhedral cones is defined as

Aff(K(i),K(j)) = min
p,q
‖Y(i)

p −Y(j)
q ‖`2 , (2)

where Y
(i)
p and Y

(j)
q are normalized (as unit `2 norm) data

from K(i) and K(j) respectively.
The notion of affinity indicates the closest distance between

the normalized data points in the two polyhedral cones thus
defining a notion of distance between polyhedral cones. The
affinity is bounded in the range [0,2]. We next define the
Affinity Condition for the UOPC model, which indicates the
minimum distance between any two polyhedral cones are
separated by at least the threshold value t∗.

Definition 3. (Affinity Condition) We say that the union of
polyhedral cones obeys affinity condition with parameter t∗ if
for any pair of polyhedral cones K(i) and K(j), i 6= j,

Aff(K(i),K(j)) ≥ t∗. (3)

Next, we will introduce the concept of density of a polyhe-
dral cone K(l) at any location v drawn from the surface of a
unit sphere in Rn with a paraeter J , denoted as ρl(v, J).
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Definition 4. (Density)

ρl(v, J) =
J

Vn(rv,J)
, (4)

rv,J is the radius of n-sphere in Rn such that the ball centered
at v with the radius rv,J includes exactly J normalized points
from K(l) (not including v), Vn(x) = πn/2

Γ( n
2 +1)x

n is the volume
of a n-sphere.

For data uniformly distributed in the cone, the density would
be higher inside the cone as compared to that closer to the
boundary. In order to have a single notion of desity for the
cone, we define the density of the polyhedral cone K(l) with
parameter J as

ρl(J) = min
v∈K(l)

ρl(v, J). (5)

The condition that the cone is dense enough is denoted by
the Density Condition given below.

Definition 5. (Density Condition) We say that union of polyhe-
dral cones obeys density condition with parameters ρ∗(J) and
J , if the density ρl(J) of any polyhedral cone K(l) satisfies

ρl(J) ≥ ρ∗(J). (6)

We have the following main result.

Theorem 1. (No False Discoveries) Under the union of L
polyhedral cones from Rn, assume that the affinity condition
holds with parameter t∗ and the density condition holds with
parameter ρ∗(K). If ρ∗(K) ≥ K

Vn(t∗) , then there will be no
false discovery for the affinity matrix A that is constructed by
KNN-SC with K neighbors.

Proof: Let P be an arbitrary point selected from the cone
K(l). Based on affinity condition, within a ball centered at P
with radius of t∗, there are no points from the other cones.
Since ρ∗(K)Vn(t

∗) ≥ K, there are more than K points from
the cone K(l) within the ball centered at P with radius t∗.
Thus the K nearest neighbors are all from the cone K(l) and
there is No False Discovery.

Theorem 1 gives a upper bound, K ≤ ρ∗(K)Vn(t
∗), for

finding the number of neighbors used in KNN algorithm. In
order to satisfy many-true discoveries, we can have K =
bρ∗(K)Vn(t

∗)c.

V. NUMERICAL RESULTS

In this section, we will compare KNN-SC with other
baselines for both synthetic and real datasets. The baseline
we consider is a LASSO-based algorithm [20], which solves
the following optimization problem for each data point y,

min
cy

1

2
‖y −Ycy‖22 + λ1>cy s.t. cy ≥ 0, (7)

where y is any one of data, Y represents the remaining
data not including y, and cy are the non-negative coefficients
that represent y as a linear combination of Y. Then, the
coefficients cy for each data point y are combined in a matrix
C. Finally, Spectral Clustering is performed on A = C+C>.
We denote our Lasso-based clustering algorithm as NCL.
Further, Least Square Approximation (LSA) proposed in [3]
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Fig. 2. Clustering Error Versus Sample Size in each cone in 2-Dimensional
Case.

to do clustering under UOPC is a special case of the above
with λ = 0. We note that the authors of [3] compared different
algorithms for YaleFace Dataset B [22], where it is found that
the LSA algorithm gives 6.67% clustering error, which is the
lowest among the compared algorithms. The compared algo-
rithms include K-means algorithm (78.44% error), Spectral
Clustering (47.78% error ), K-subspace (59.00% error), and
Spectral Curvature Clustering (58.00% error). Thus, we use
LSA for comparison, and do not include the other algorithms
as baselines in this paper.

A. Synthetic Data in 2-Dimension

A cone in 2D is predefined by 2 fixed extreme rays. We con-
sider the data from two polyhedral cones, where the extreme
rays corresponding to the first cone are [cos(−π2 ), sin(−

π
2 )]

and [cos 2π
9 , sin

2π
9 ], and the extreme rays corresponding to the

second cone are [cosπ, sinπ] and [cos 5π
18 , sin

5π
18 ]. Let there

be N data points from each polyhedral cone drawn randomly
between the two extreme rays by a convex combination of the
extreme rays where the coefficient is selected from a uniform
distribution.

Clustering error for different values of N from N = 20
to N = 260 is shown in Figure 2. For each plotted point,
the clustering error is the average result of 100 iterations. The
numerical results show that KNN-SC algorithm with either
Binary Kernels or Gaussian Kernels outperforms both the NCL
and LSA algorithms. LSA algorithm is comparable to KNN-
SC algorithm, but it does not converge to zero clustering
error. In contract, when the sample size is larger than 140 in
each polyhedral cone, KNN-SC algorithm with K = 16 gives
perfect clustering result, which is consistent with the No False
Discoveries. For lower K, such as K = 8, the clustering error
is higher because of not enough true connections which leads
to not enough connections holding a cluster together (which
can be split into sub-cluster and a sub-cluster can get attached
to a different cluster).

B. Synthetic Data in 3-Dimension

Unlike in 2D scenario, a polyhedral cone in 3D is defined
by at least 3 extreme rays. To generate synthetic data, we only
pre-determined three extreme rays to build the cone. Repre-
sented by polar coordinates, the extreme rays corresponds to
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Fig. 4. Clustering Error Versus Sample Size for each digit in MNIST dataset

the first cone are [1, 2π
9 ,

π
4 ], [1,

π
2 ,

π
4 ], [1, 0, 0], while the the

extreme rays corresponds to the second cone are [1, 5π
18 ,

π
4 ],

[1, π2 ,
π
2 ], [1,

π
4 ,

π
2 ]. Let there be N data points from each cone

and data inside the the cone is generated by the non-negative
affine combination of the three corresponding extreme rays,
where the three coefficients are generated by standard entry-
wise uniform distribution between 0 and 1 which are then
normalized by the sum the three coefficients.

Clustering error for different values of N from 20 to 270
is shown in Figure 3. For each plotted point, the clustering
error is the average result of 100 iterations. The numerical
results show that when sample size is large than 70, the
NCL algorithm with proper parameters, such as λ = 0.01 or
λ = 0.001 performs slightly worse as compared to the KNN-
SC algorithm with Gaussian Kernels. LSA performs the worst
in this case, unlike its good performance in synthetic data
in 2-dimensional scenario. For KNN-SC algorithm, Gaussian
Kernel performs better than the Binary Kernel for the param-
eters selected.

C. MNIST Dataset

We consider two digits, 1 and 2 in the handwritten digits
from MNIST dataset [23], and compare the performance of
the algorithms for varying amount of data points N in each
cluster from N = 100 to N = 600 sampled uniformly. The
comparison is depicted in Figure 4, where each data point
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Fig. 5. Clustering Error Versus Number of Persons in YaleFace Dataset.

is the average over 100 random selections of points. We note
that KNN-SC algorithm with Gaussian kernels performs better
than KNN-SC with Binary kernels. Further, clustering error
decreases when K increases from 5 to 7, which is caused the
increasing number of true discoveries. Further clustering error
decreases when K increases from 7 to 9 since the number of
false discoveries increase. KNN-SC algorithm with K = 7 and
Gaussian kernels performs better than the other algorithms,
with clustering error less than 1% when the sample size is
600 for each digit.

D. YaleFace Dataset

We will now evaluate the performance of KNN-SC algo-
rithm in clustering human faces from the Extended Yale B
data set [22], [24]. We resize the images to 48× 42 pixels for
ease of calculation. YaleFace includes the faces of 38 persons
with 64 faces for each person. We choose U out of 38 people
uniformly at random and depict the comparisons of different
algorithms for varying values of U from two to eight in Figure
5. For each point plotted, the clustering error is the average
of 20 random choices of selecting U persons. We note that
NCL and LSA algorithms are comparable, and perform the
best when number of persons selected is small. The clustering
error increases as the number of persons (U ) increases, and
KNN-SC performs the best for U > 5. Beyond U = 6, there is
more than 10% gap between the performance of KNN-SC with
K = 2 and Gaussian Kernels and the LSA/NCL algorithms.

VI. CONCLUSION

This paper proposes an algorithm, KNN-SC, to cluster
data into union of polyhedral cones by applying spectral
clustering algorithm on K-Nearest-Neighbour based graph.
Deterministic guarantees on the algorithm performance are
provided. Furthermore, our analysis can be extended to poly-
tope clustering model. Extensive set of experiments depict
that the proposed algorithm works well in both synthetic and
realistic settings.
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