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ABSTRACT

We propose a generalisation of the local feature matching framework, where keypoints are replaced
by k-keygraphs, i.e. isomorphic directed attributed graphs of cardinality k whose vertices are key-
points. Keygraphs have structural and topological properties which are discriminative and efficient to
compute, based on graph edge length and orientation as well as vertex scale and orientation. Key-
point matching is performed based on descriptor similarity. Next, 2-keygraphs are calculated; as a
result, the number of incorrect keypoint matches reduced in 75% (while the correct keypoint matches
were preserved). Then, 3-keygraphs are calculated, followed by 4-keygraphs; this yielded a signifi-
cant reduction of 99% in the number of remaining incorrect keypoint matches. The stage that finds
2-keygraphs has a computational cost equal to a small fraction of the cost of the keypoint match-
ing stage, while the stages that find 3-keygraphs or 4-keygraphs have a negligible cost. In the final
stage, RANSAC finds object poses represented as affine transformations mapping images. Our ex-
periments concern large-scale object instance recognition subject to occlusion, background clutter and
appearance changes. By using 4-keygraphs, RANSAC needed 1% of the iterations in comparison with
2-keygraphs or simple keypoints. As a result, using 4-keygraphs provided a better efficiency as well as
allowed a larger number of initial keypoints matches to be established, which increased performance.

c� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in computer vision involve finding corre-
spondences of robust invariant local features (i.e., keypoints),
for both 2D images and 3D point clouds generated using depth
images. For example, object instance recognition applied to vi-
sual search, augmented reality or object manipulation by robots.
In such contexts, a query image is matched against a (possibly
large) set of model images by individually matching each query
feature against the set of model features. Such recognition strat-
egy based on local feature matching provides three main advan-
tages. First, by employing indexing techniques, it is possible to
efficiently compare the query features against the model fea-
tures. Second, local feature matching is effective against prob-
lems caused by occlusions and background clutter, leading to
a good performance in “real-world” object detection. Third, it
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is possible to obtain geometrically precise detections, since fine
object structures are matched.

The extraction of local features involves two stages: detec-
tion and description. In the detection stage, keypoints pre-
senting rich local information are identified. In the description
stage, the method assigns to each keypoint local shape informa-
tion (e.g., scale and orientation) as well as a descriptor repre-
senting local visual content. After keypoint extraction, the next
stage finds correspondences between keypoints representing the
same parts in different images subject to large changes in view-
point, scale and appearance. Traditionally, correspondences are
established between individual keypoints based on descriptor
similarity only, e.g. the original SIFT approach of Lowe (2004)
or the method of Hsiao et al. (2010). Other authors employed
spatial information in keypoint neighbourhoods in order to im-
prove the overall quality of keypoint matching. For instance,
the approach of Li et al. (2015) which matches keypoint pairs
or the SCRAMSAC method of Sattler et al. (2009) that exam-
ines consistency in keypoint neighbourhoods.

We propose a generalisation of the traditional keypoint
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framework, by replacing keypoints for keygraphs, i.e. isomor-
phic directed attributed graphs whose vertices are keypoints,
in order to explore structural and topological properties. A
keygraph constitutes a semi-local descriptor that maintains ro-
bustness to geometric deformations provided by its vertex (key-
point) features. Each image is represented by a set of keygraphs
and correspondences are established between keygraphs. We
refer to a keygraph with k vertices as a “k-keygraph”. In this
paper, we consider 2-keygraphs, 3-keygraphs and 4-keygraphs.

Figure 1 illustrates the keygraph matching pipeline. Cor-
respondences are established between query image keypoints
and model image keypoints based on descriptor similarity; this
yields a large number of both correct and incorrect keypoint
matches. Next, matches of keygraphs of cardinality k are cal-
culated based on keygraphs of cardinality k − 1. The compu-
tational cost of the stage that obtains 2-keygraphs can be lim-
ited to a small fraction (say, 20%) of the cost of the keypoint
matching stage, while the stages that obtain 3-keygraphs or 4-
keygraphs have a negligible cost. As a result of the keygraph
matching phase, the vast majority of incorrect initial keypoint
matches are filtered out while the correct ones are preserved.
Finally, RANSAC is applied to find object poses represented as
affine transformations mapping images. By using matches of 4-
keygraph vertices, RANSAC requires very few iterations, since
a large fraction of correct matches is available.

This paper presents two fundamental contributions. First, we
propose structural and topological properties of keygraphs with
two, three or four vertices. Keygraph properties involve graph
edge length and orientation as well as vertex scale and orien-
tation, being fundamental to the success of the proposed ap-
proach. Second, we introduce an efficient method to calculate
keygraph matches. The proposed method filters out the vast ma-
jority of incorrect keypoint matches, which provides two main
advantages: (1) efficiency, since RANSAC needs to perform
few iterations and (2) increased recognition performance, as the
strategy allows a large number of keypoints matches to be es-
tablished in the initial stage which results in a large number of
correct keypoint matches.

Our experiments consider an object instance recognition
problem in which a query image is matched against a large
dataset of model objects. Query images are subject to realistic
occlusions and illumination, viewpoint transformations. In this
paper, we use keygraphs whose vertices are SIFT keypoints,
since SIFT is widely known and has a good matching perfor-
mance, as shown by Lowe (2004). As experimentally evalu-
ated by Lowe (2004), SIFT features are robust against prob-
lems caused by occlusions, background clutter and illumina-
tion changes. And, since transforming keypoint matches into
keygraph matches does not eliminate correct keypoint matches,
the proposed method also presents robustness against occlu-
sion, background clutter and illumination changes. The model
dataset is composed of 105 images, which generated a large set
of 109 SIFT keypoints.

Experiments showed that obtaining 2-keygraphs filtered out
75% of the incorrect initial keypoint matches (while correct
keypoint matches were not eliminated); next, obtaining 3-
keygraphs reduced in 99% the number of incorrect remaining
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Fig. 1. (a) A match of 4-keygraphs between a query image (left) and a
model image (right). (b) Keygraph matching pipeline. Starting from key-
point matches, keygraphs of cardinality k are defined based on keygraphs
of cardinality k − 1. Finally, RANSAC uses the matches of vertices of 4-
keygraphs.

keypoint matches; then, obtaining 4-keygraphs filtered out a
moderate fraction of remaining incorrect matches. As a result,
RANSAC required very few iterations. In contrast, if simpler
2-keygraphs were used, RANSAC needed to perform two or-
ders of magnitude more iterations, leading to a total compu-
tational at least 25% larger than the cost of the method based
on 4-keygraphs. An even worse result was obtained by using
simple “1-keygraphs” (i.e., the initial keypoint matches). We
also present results for the SCRAMSAC method of Sattler et al.
(2009). SCRAMSAC has a similar computational cost as the
proposed method while being based on a different use of spatial
properties – namely, consistency in keypoint neighbourhoods.
As shown by experiments, the proposed method achieved supe-
rior results than SCRAMSAC.

The remainder of this paper is organised as follows. Section
2 discusses related works in the literature. Section 3 presents
mathematical definitions regarding keygraph matching. Sec-
tion 4 describes an efficient implementatison of the concepts
presented in Section 3. Section 5 presents experimental evalua-
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tion. Finally, Section 6 draws conclusions.

2. Related work

An advantage gained from using local features is a natu-
ral geometric precision in detection, since fine object struc-
tures are matched. This property is fundamental in tasks such
as Structure-from-Motion, wide-baseline stereo, augmented re-
ality or object manipulation by robots, as discussed by Lon-
comilla (2016). In the present paper, we consider the problem
of large-scale object instance recognition. Since our goal is in-
troducing the keygraphs method, we employ a relatively simple,
hand-crafted descriptor (SIFT), instead of using CNN-based de-
scriptors that are tailored for image matching applications, such
as the descriptors proposed by Dong and Soatto (2015) and Han
et al. (2015). Moo Yi et al. (2016) employ a CNN in order to
assign a canonical orientation to a keypoint; in contrast, SIFT
uses the dominant orientation. Buoncompagni et al. (2015) pro-
pose an efficient method to rank and select keypoints based on
their saliency.

In order to achieve a better performance, local features
conveying complementary information should be employed.
Tombari et al. (2013a) proposed a keypoint detector and de-
scriptor that operates in textureless regions. The result of the
keypoint detection stage is a sparse keypoint set extracted from
visually rich regions, which yields accurate keypoint matches.
A different strategy relies on extracting a dense keypoint set,
e.g., one keypoint from each pixel. Choy et al. (2016) employ
CNN’s in order to learn a feature space where dense local de-
scriptors are compared.

Keypoints can be extracted from 3D point clouds created us-
ing depth images generated by sensors such as LIDAR. 3D key-
point detectors and descriptors are evaluated by Tombari et al.
(2013b) and Guo et al. (2016), respectively. The Fast Point Fea-
ture Histograms (FPFH) proposed by Rusu et al. (2009) calcu-
lates a 3D keypoint descriptor as a histogram of angles between
surface normals, measured in the surrounding keypoint neigh-
bourhood. Kim and Hilton (2014) improve the performance
of FPFH by separately employing neighbourhoods of differ-
ent sizes and then combining the matching outputs. Kim et al.
(2016) propose a framework for registration of visual data ac-
quired from various 2D and 3D sensing modalities.

After the keypoint matching phase, a subset of matches
agreeing on an object pose instantiation is found; in this con-
text, the Random Sample Consensus (RANSAC) method pro-
posed by Fischler and Bolles (1981) is a standard solution.
However, if a large fraction of incorrect matches is used,
RANSAC needs to perform a large number of iterations, lead-
ing to a prohibitive computational cost. In order to filter out
incorrect matches aiming to enable the use of RANSAC, in
the approach of Pang et al. (2014), a candidate keypoint match
(p, q) is filtered out in case the local geometric structure of p
is different from the one of q; such local geometric structure is
calculated using an optimization process that reconstructs the
keypoint from its three neighbours in the image. The approach
of da Camara Neto and Campos (2010) obtains a coarse global
registration between a pair of images, which constrains the key-
point correspondence space; however, in case the fraction of

correct keypoint matches is low, the estimation of coarse global
registration is likely to fail.

Sattler et al. (2009) proposed the Spatial Consensus
RANSAC (SCRAMSAC) method. For each tentative keypoint
match (p, q), a minimum fraction of the keypoints in a neigh-
bourhood of p is required to match keypoints in a neighbour-
hood of q otherwise the match is filtered out. Such an ap-
proach presents two main drawbacks in comparison to ours.
First, a large keypoint neighbourhood is employed in order to
decide whether a candidate keypoint match is valid, thus mak-
ing the approach susceptible to the fraction of correct keypoint
matches. In contrast, the proposed method considers small key-
point neighbourhoods (up to four keypoints). Second, SCRAM-
SAC employs limited spatial information (keypoint distance
only), while the proposed method considers orientation, scale
and position. The computational cost of SCRAMSAC is similar
to the cost of the proposed method: both methods are quadratic
in the number of keypoint matches.

Previous work investigated the idea of finding correspon-
dences of small keypoint sets instead of correspondences of
individual keypoints. In particular, using matches of keypoint
pairs demonstrated good results. The method of Carneiro and
Jepson (2004) checks for consistency in changes in keypoint
scale and orientation as well as changes in length and orienta-
tion of a vector connecting each keypoint pair. Li et al. (2015)
additionally employ a Hough transform in order to filter out a
number of keypoint matches. Hao et al. (2013) detect 3D ob-
ject models (created using Structure-from-Motion) in 2D query
images; a candidate match of 2D-3D keypoint pairs is evalu-
ated by back-projecting the 2D positions into the camera coor-
dinates and then checking whether both 3D distances are simi-
lar. Avrithis and Tolias (2014) propose a method with a linear
cost in the number of matches that explores simple pairwise re-
lations. Zhang et al. (2011) employ the co-occurrence statistics
of visual words within some local image regions.

Instead of using keypoint pairs, previous work used matches
of keypoint triples or quadruples, which allows exploring richer
structural information. Zitnick et al. (2007) extract all keypoint
triples from query and model images, which are then mapped
to a canonical space where keypoint descriptors are calculated;
then, keypoint triples are matched based on descriptor similar-
ity. Kalantidis et al. (2011) use Delaunay triangulations in or-
der to select a subset of keypoint triples from both query and
model images. Hao et al. (2012) detect 3D object models in 2D
images; Delaunay triangulations generate keypoint triples from
the models, and a valid match presents consistent changes in
keypoint scales and distances of 2D projections of 3D points.
Hinterstoisser et al. (2007) extract keypoint quadruples and
quintuples from the model images, which can be used to instan-
tiate a 3D object model onto a 2D query image. Hashimoto and
Cesar Jr (2009) introduced the concept of keygraphs: all pos-
sible keygraphs with three vertices are extracted from a model
image, and Fourier coefficients of keygraph edges are used as
local descriptors; then, during matching time, a Delaunay trian-
gulation generates keypoint triples from a query image.

A drawback of the discussed methods based on matches
of keypoint triples or quadruples is relying on storing pre-
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calculated structures of model keypoints in working memory,
which presents a scalability issue. Our previous approach
(Dazzi et al. (2016)) avoids that scalability problem: Delaunay
triangulations are employed in order to select several keypoint
triples in the query image. Next, each query keypoint triple
(i.e. 3-keygraph) is matched against a model image in case all
its three constituent keypoint matches exist and the candidate
3-keygraph match satisfies the keygraph properties. Unfortu-
natelly, it is possible that a set of three correct keypoint matches
do not form a 3-keygraph match, which would occur in case
those three keypoint matches are not selected by a Delaunay tri-
angulation for composing the same keypoint triple in the query
image. In the present paper, we introduce an efficient strategy
that matches all possible keypoint triples or quadruples during
the matching phase, thus preserving correct keypoint matches.

A different graph-based approach for image matching mod-
els an image as a global graph whose vertices are keypoints.
As shown by Zhang et al. (2016), graph matching techniques
can be used to find similar images. McAuley et al. (2010) con-
sider that graph similarity encompasses three aspects: keypoint
descriptors, distances of keypoint pairs and inner angles of key-
point triples. Park et al. (2014) also propose a method that is
based on similarity of inner angles of keypoint triples. In con-
trast, our method relies on efficient comparisons of changes oc-
curring in individual graph edges and/or vertices.

3. Definitions

Table 1 summarises the symbols and important concepts
adopted in this paper.

3.1. Keypoints
A keypoint is a locally distinct feature. Each keypoint p is

detected using SIFT and assigned a scale σp, an orientation θp,
a position xp = (xp, yp) and a descriptor. Let PI be the set of
keypoints extracted from an image I; each keypoint p ∈ PI is
assigned an unique, random integer label L(p) ranging from 1
to |PI|.

A keypoint match is a pair ι = (p, q), where keypoint p is in a
query image IQ and keypoint q is in a model image IM . A set
M1v has the initial keypoint matches between a pair of images.

Each keypoint match (pi, qi) is associated to a change in key-
point scale,

Δσi =
σqi

σpi

, (1)

and a change in keypoint orientation, measured as a (signed)
difference between a pair of 2D orientations (i.e., a 2D angle):

Δθi = θqi − θpi . (2)

3.2. Keygraphs
A keygraph G = (VG,EG) is a directed attributed graph

whose vertices are keypoints, with vertex set VG (composed
of keypoints in the same image) and graph edge set EG.

A keygraph match is a triple µ = (G,H, f ), where G =

(VG,EG) is a keygraph in a query image and H = (VH ,EH)
is a keygraph in a model image (with G and H being isomor-
phic), and f : VG → VH is a bijection mappingVG andVH .

Table 1. Summary of symbols and concepts adopted in the paper.
Symbols Description
IQ , IM Query image IQ and model image IM .
p , σp , θp , xp Keypoint p with scale σp, orientation θp and 2D po-

sition xp.
L(p) Keypoint label in an image.
PI Set of keypoints extracted from an image I.
E , lE , ΘE Keygraph edge E with length lE and orientation ΘE .
lmin , lmax Mininum lmin and maximum lmax allowed edge

length in a query image.
EIQ Set of keygraph edges in a query image IQ.
G = (VG,EG) Keygraph G with vertex setVG and edge set EG.
G2v, G3v, G4v 2-keygraph, 3-keygraph and 4-keygraph.
ι = (p, q) Keypoint match ι between keypoints p and q.
µ = (G,H, f ) Match of keygraphs G and H with bijection map-

ping vertices f .
Δσ , Δl Change in keypoint scale Δσ and change in key-

graph edge length Δl.
∇Φ(·, ·) Dissimilarity of changes in keypoint scale and/or

edge length.
Δθ , ΔΘ Change in keypoint orientation Δθ and change in

keygraph edge orientation ΔΘ.
∇α(·, ·) Dissimilarity of changes in keypoint orientation

and/or edge orientation.
M1v Set of initial keypoint matches between a pair of

images.
M2v,M3v,M4v Set of matches of 2-keygraphs M2v, 3-keygraphs

M3v and 4-keygraphsM4v.
N4v Set of matches of vertices of 4-keygraphs.

3.2.1. Keygraph edges
A keygraph edge is defined as an ordered pair Ei j = �pi, p j�,

where pi and p j are keypoints in the same image. In case Ei j

is an edge in a query image, the keypoint labels are such that
that L(pi) < L(p j); that is, we arbitrarily determine an edge’s
direction to be such that the edge leaves the keypoint with the
smaller label and enters the keypoint with the larger label (i.e.
from p1 to p2). Determining edge direction is a necessary step
in order to assign edge orientation, which is obtained as the reg-
ular angle of a 2D vector with the horizontal axis (as illustrated
in Figure 3-c). In a 2D image, a vector vi j = xp j − xpi is associ-
ated to Ei j; the length lEi j = |vi j| and the orientation ΘEi j of vi j

are assigned to edge Ei j.
A match between edges Ei j = �pi, p j� and Fi j = �qi, q j� with

a bijection f = {(pi, qi), (p j, q j)} has a change in edge length:

Δli j =
lFi j

lEi j

, (3)

and a change in edge orientation, measured as a (signed) differ-
ence between a pair of 2D orientations (i.e., a 2D angle):

ΔΘi j = ΘFi j − ΘEi j . (4)

A set EQ of keygraph edges in a query image IQ is composed
of every keypoint pair �pi, p j� in IQ whose associated keygraph
edge Ei j has a length lying between a minimum and a maximum
allowed values, lmin ≤ lEi j ≤ lmax, and whose keypoint scales
σpi , σp j differ in at most one octave, 0.5 ≤ σpi/σp j ≤ 2.0. If
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a keygraph edge with length l in a model image is mapped to
a query image in which a change in scale s has occurred, its
length becomes sl. Thus, the minimum edge length in a query
image lmin is related to how much the area of an object in a
query image can be reduced in comparison to the area of that
object in a model image. As for the maximum edge length in
a query image lmax, it should be set sufficiently large to occupy
the image of the considered object in a query image but not
unnecessarily large to generate unnecessary computational cost.

3.2.2. Dissimilarity between changes in keygraph attributes
A keygraph match is associated to changes in keypoint scale
Δσi (Equation 1) and changes in edge length Δli j (Equation 3).
Let Δφ, Δφ� be a pair of changes in keypoint scale and/or edge
length; a dissimilarity ∇φ(Δφ, Δφ�) between them is measured
as a ratio. We define a pair of changes Δφ, Δφ� to be similar if
the largest one is at most twice the smaller one:1

0.5 ≤ Δφ
Δφ�
≤ 2.0 . (5)

A keygraph match is also associated to changes in keypoint
orientation Δθi (Equation 2) and changes in edge orientation
ΔΘi j (Equation 4). Let Δα,Δα� be a pair of changes in key-
point orientation and/or edge orientation; a dissimilarity∇α(Δα,
Δα�) between them is measured as an angle. We define a pair
of changes Δα,Δα� to be similar if the absolute value of the
smaller angle between them is at most 60◦:2

arccos(cos(Δα − Δα�)) ≤ 60◦ . (6)

3.2.3. 2-keygraphs
A 2-keygraph G2v = (VG2v ,EG2v ) has two vertices and one

edge. Given a set EQ of keygraph edges in a query image
IQ (Section 3.2.1), a setM2v of 2-keygraph matches between
IQ and a model image IM is obtained by matching each edge
E ∈ EQ against IM . Let triple µ2v = (G2v,H2v, f2v) represent a
candidate 2-keygraph match, where the query image keygraph
G2v has edge E12 = �p1, p2� and the bijection mapping vertices
is f2v = {(p1, q1), (p2, q2)} (with the keypoint matches in f2v

being determined in the initial keypoint matching stage). This
candidate 2-keygraph match is established if it presents similar
changes in attributes: the changes in keypoint scale Δσ1,Δσ2
and the change in edge length Δl12 must be pairwise similar

1In an image subjected to a zoom of factor κ, each keygraph edge length
or SIFT scale changes in the same factor κ. Sattler et al. (2009) showed that
in an image subjected to a change in viewing angle of ψ degrees, a unit circle
becomes an ellipse whose longer and shorter axes have length 1 and cosψ,
respectively. For successful matching, this change in viewing angle must be
below 60◦, since SIFT features lose reliability when ψ > 60◦, as shown by
Lowe (2004). When ψ = 60◦, the length of the transformed ellipse’s shorter
axe divided by the original circle’s diameter is cos 60◦/1 = 0.5. Based on
preliminary experiments, we used this value for the parameter, thus making
keygraph matching invariant to changes in viewing angle of at most 60◦.

2Rotating an image by θ degrees changes the orientation of every keypoint
and keygraph edge in θ degrees. Under a moderate change in viewing angle,
not every keypoint and edge rotates in the same θ degrees, although very dis-
tinct changes in orientation cannot occur. We allow a maximum difference in
rotations of 60◦, according to preliminary experiments.
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Fig. 2. Structural and topological properties of keygraphs. Left: each 2-
keygraph match is associated to one change in edge and two changes in
vertices, yielding

�
1+2
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= 3 pairwise comparisons of changes in vertices

and/or edge. Middle: each 3-keygraph match is associated to three changes
in edges and three changes in vertices, yielding

�
3+3

2

�
= 15 comparisons of

changes in vertices and/or edges. Right: each 4-keygraph match is formed
of a pair of 3-keygraphs sharing an edge.

(Equation 5), which yields
�

3
2

�
= 3 pairwise comparisons that

must be satisfied (Figure 2-Left). Similarly, the changes in
keypoint orientation Δθ1,Δθ2 and the change in edge orienta-
tion ΔΘ12 must be pairwise similar as well (Equation 6), which
yields additional

�
3
2

�
= 3 comparisons that must be satisfied.

3.2.4. 3-keygraphs
A 3-keygraph G3v = (VG3v ,EG3v ) is composed of three ver-

tices and three edges. A set M3v of 3-keygraph matches be-
tween a pair of images contains all combinations of three 2-
keygraph matches yielding a valid 3-keygraph match. Let
µ3v = (G3v,H3v, f3v) represent a candidate 3-keygraph match,
where the query image keygraph G3v has edges VG3v =

{�p1, p2�, �p1, p3�, �p2, p3�} and the bijection mapping vertices
is f3v = {(p1, q1), (p2, q2), (p3, q3)}. In order for this candi-
date 3-keygraph match to be established, similar changes in
keygraph attributes are required: the changes in keypoint scale
Δσ1,Δσ2,Δσ3 and the changes in edge length Δl12,Δl13,Δl23

must be pairwise similar (Equation 5), which yields
�

6
2

�
= 15

pairwise comparisons that must be satisfied (Figure 2-Middle).
Similarly, the changes in keypoint orientation Δθ1,Δθ2,Δθ3
and the changes in edge orientation ΔΘ12,ΔΘ13,ΔΘ23 must be
pairwise similar as well (Equation 6), which yields additional�

6
2

�
= 15 pairwise comparisons that must be satisfied. Figure

3 shows 3-keygraph attributes: keypoint scale, orientation and
edge length, orientation. Figure 4 illustrates the structural eval-
uation of matches of 3-keygraphs.

3.2.5. 4-keygraphs
A 4-keygraph G4v = (VG4v ,EG4v ) has four vertices and five

edges. A setM4v of 4-keygraph matches between a pair of im-
ages is composed of all combinations of two 3-keygraphs shar-
ing a 2-keygraph (Figure 2-Right). Both constituent 3-keygraph
matches are consistent w.r.t. the changes in the shared edge
and vertices. Obtaining 4-keygraphs eliminates disconnected
3-keygraphs as well as 3-keygraphs sharing one vertex only.

3.3. Final matches of keygraph vertices

Given a set M4v of 4-keygraph matches between a pair of
images, the set N4v of 4-keygraph vertex matches is

N4v = {(p, q) : (p, q) ∈ f4v and (G4v,H4v, f4v) ∈M4v} . (7)
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Fig. 3. Structural attributes of 3-keygraphs. (a) Edge length. (b) Vertex
scale. (c) Edge orientation. (d) Vertex orientation.

4. Methodology and implementation

The proposed method is composed of a learning phase and
a matching phase. During the learning phase, keypoints are
extracted from all model images and then indexed in the de-
scriptor space. During the matching phase, keypoints are ex-
tracted from a query image IQ; then, object matching between
IQ and the dataset of model images follows five stages: key-
point matching and then matching of 2-keygraphs, 3-keygraphs
and 4-keygraphs, followed by RANSAC using matches of 4-
keygraph vertices. This pipeline is illustrated in Figure 1-b.

4.1. First stage: keypoint matching

In order to index model keypoint descriptors, we use a modi-
fied version of the hierarchical K-means tree proposed by Muja
and Lowe (2014). Given all model keypoints, K-means splits
the descriptor space, recursively; a region with less than K de-
scriptors then becomes a leaf node. When a query image key-
point p traverses a tree, in an intermediate tree level, p’s de-
scriptor is assigned to the nearest cluster center. In a leaf node,
the distance from p’s descriptor to the cluster center is calcu-
lated and represents the similarity between p and each one of
the keypoints in this leaf; then, p restarts the traversal from the
next most similar cluster mean (in an intermediate level). When
p examines a total of L stored descriptors, the traversal stops.
As a result, p establishes up to one keypoint match with each
model image IMn (where n stands for the n-th model image
in the dataset): during the traversal, if p is compared to more
than one keypoint from the same model image, only the match
with the highest similarity between descriptors is maintained.
We also performed experiments employing at most two key-
point matches per model image, instead of one; however, using
4-keygraphs, this approach provided only a small gain in per-
formance, thus we opted to use only one match since it allowed
a more fair comparison of the keygraphs method with methods
based on simple keypoints.
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Fig. 4. Consistency in changes of 3-keygraph attributes. (a) Consistency
among a change in vertex scale (changing from σp1 to σq1 ) and a change
in edge length (from lp2 ,p3 to lq2 ,q3 ): 0.5 ≤ σq1 /σp1

lq2 ,q3 /lp2 ,p3
≤ 2.0. (f) Consistency

among a change in vertex orientation (from θp2 to θq2 ) and a change in
edge orientation (from Θp1 ,p3 to Θq1 ,q3 ): arccos(cos((θq2 − θp2 ) − (Θq1 ,q3 −
Θp1 ,p3 ))) ≤ 60◦.

4.2. Second stage: matching of 2-keygraphs

Let M1v be a set of initial keypoint matches between a
query image IQ and a model image IMn . Each pair of key-
point matches in M1v is checked for constituting a match of
2-keygraphs (Section 3.2.3). This generates a set M2v of
2-keygraph matches between images IQ and IMn . The set
M2v is implemented as a (sparse) matrix of lists T2v, with
one list Lp,q for each keypoint match ι = (p, q) in the set of
matches of vertices of 2-keygraphs N2v = {(p, q) : (p, q) ∈
f2v and (G2v,H2v, f2v) ∈M2v}. A list Lp,q contains all elements
(p�, q�) such that there is an established match of 2-keygraphs
whose edge in the query image is �p, p�� and whose bijection
mapping vertices is {(p, q), (p�, q�)}. Each list Lp,q stores its el-
ements in sorted order, with an element (p�, q�) being assigned
a sort key value consisting of a pair (L(p�),L(q�)).

For each 2-keygraph match that is established (i.e., that sat-
isfies the 2-keygraph properties shown in Section 3.2.3), the
calculated changes in edge and vertices are stored in the matrix
T2v as well, in order to be employed in the next stage.

4.3. Third stage: matching of 3-keygraphs

Let µ2v = (G2v,H2v, f2v) be a match of 2-keygraphs inM2v

with edge in the query image E12 = �p1, p2� and bijection
mapping vertices f2v = {(p1, q1), (p2, q2)}. In a matrix of lists
T2v, let lists Lp1,q1 and Lp2,q2 be associated to keypoint matches
(p1, q1) and (p2, q2), respectively (Section 4.2). Since each
list stores its elements in sorted order, finding elements which
are common to both lists has a linear complexity in the total
number of elements. Each element (p3, q3) which is present
in both lists Lp1,q1 and Lp2,q2 yields a candidate match of 3-
keygraphs µ3v = (G3v,H3v, f3v) with edges in the query image
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Fig. 5. Transforming 2-keygraphs into 3-keygraphs. In this Figure, each
match of 2-keygraphs is represented by its edge in the query image. Given
a 2-keygraph G2v with edge �p1, p2�, the method searches for pairs of edges
leaving vertices p1 and p2 and entering in a same vertex. Figure shows that
p3 is such a common vertex; then, the candidate match of 3-keygraphs
represented in this Figure by the vertex set {p1, p2, p3} is checked for being
valid. Figure also shows that edges �p1, a��, �p1, a���, �p2, b��, �p2, b��� do not
form 3-keygraphs.

EG3v = {�p1, p2�, �p1, p3�, �p2, p3�} and bijection mapping ver-
tices f3v = {(p1, q1), (p2, q2), (p3, q3)}. Then, the method checks
whether this 3-keygraph match is valid (Section 3.2.4). Since
edge changes ΔΘi j, Δli j and vertex changes Δθi, Δσi were pre-
viously calculated and stored, the current stage only needs to
evaluate the pairwise dissimilarities (Equations 5 and 6). Also,
since it is known that the changes involved in each individual
2-keygraph match are pairwise similar, they do not need to be
re-evaluated; e.g. it is known that the changes in edge length
and vertex scale {Δl12,Δσ1,Δσ2} are pairwise similar.

Each 2-keygraph match inM2v is checked for being involved
in 3-keygraph matches, as illustrated in Figure 5.

A set M3v of 3-keygraph matches between a pair of im-
ages is implemented as a (sparse) matrix of lists T3v. In T3v,
list Lp1,q1

p2,q2 , which is associated to a pair of keypoint matches
{(p1, q1), (p2, q2)}, contains all elements (p�, q�) such that there
is a 3-keygraph match whose bijection mapping vertices is f =
{(p1, q1), (p2, q2), (p�, q�)}; thus, in case the 3-keygraph match
associated with f is established, three elements are inserted into
matrix T3v: an element (p�, q�) inserted into list Lp1,q1

p2,q2 , (p2, q2)
inserted into Lp1,q1

p�,q� and (p1, q1) inserted into Lp2,q2
p�,q� .

4.4. Fourth stage: matching of 4-keygraphs

Let µ3v = (G3v,H3v, f3v) be a 3-keygraph match
in M3v with edges in the query image EG3v =

{�p1, p2�, �p1, p3�, �p2, p3�} and bijection mapping vertices
f3v = {(p1, q1), (p2, q2), (p3, q3)}. The method verifies whether
there are other 3-keygraph matches sharing an edge with µ3v by
individually checking each constituent 2-keygraph match. That
is, for the edge E12 = �p1, p2�, the method checks in the matrix
of lists T3v whether list Lp1,q1

p2,q2 has any inserted element; for each
keypoint match (p�, q�) in list Lp1,q1

p2,q2 , if L(p�) > L(p3), then
a match of 4-keygraphs µ4v = (G4v,H4v, f4v) is established,
where keygraph G4v in the query image is the union of both
3-keygraphs, with edges EG4v = EG3v ∪ {�p2, p��, �p3, p��} and
bijection mapping vertices f4v = f3v ∪ {(p�, q�)}. Similarly, for
the edge E13 = �p1, p3�, list Lp1,q1

p3,q3 is verified, while, for the
edge E23 = �p2, p3�, list Lp2,q2

p3,q3 is verified.

p1

p2

p3

p4
a�

b�

�

��

�

�

�

�

�

��

�

�

Fig. 6. Transforming 3-keygraphs into 4-keygraphs. In this Figure, each
match of 3-keygraphs is represented by its edges in the query image. Given
a 3-keygraph G3v with edges {�p1, p2�, �p1, p3�, �p2, p3�}, each 3-keygraph
sharing an edge with G3v generates a match of 4-keygraphs. Figure shows
that a 4-keygraph G4v with vertices {p1, p2, p3, p4} is established. Figure
also shows that a 3-keygraph G�3v with vertices {a�, b�, p2} does not form a
4-keygraph together with G3v, since G3v and G�3v do not share edges.

Each established 3-keygraph match is checked for being in-
volved in 4-keygraph matches, as illustrated in Figure 6.

4.5. Fifth stage: pose estimation using RANSAC

Let setNQ
Mn

contain matches of 4-keygraph vertices between
a query image IQ and a model image IMn (Equation 7). Then,
RANSAC finds object poses represented as affine transforma-
tions mapping images. The total number of pose evaluations,
with the whole dataset of model images, is set in advance. One
iteration (i.e., pose evaluation) of RANSAC proceeds as fol-
lows. Let set NQ = NQ

M1
∪ · · · ∪ NQ

MN
contain all established

keypoint matches between the query image IQ and the whole
set of N model images. Then, one keypoint match ι = (p, q) is
randomly selected from NQ; let keypoint q belong to a model
image IMn . Next, two additional keypoint matches are ran-
domly selected from the subset NQ

Mn
which contains matches

with the model image IMn only. The three keypoint matches
generate an affine transformation mapping images IQ and IMn ,
whose confidence is estimated as the number of inliers.

The next, final stage deals with multiple detections. First, the
candidate affine transformations are sorted based on confidence.
The best solution is returned and its model image ground-truth
segmentation is projected onto the query image by using the
recovered affine transformation. Then, the next best solution re-
counts its agreeing keypoint matches, now discarding matches
lying inside the projection of any previously returned solution;
in case there are remaining keypoint matches, this solution is
then returned and projected onto the query image. This process
continues as long as there are remaining candidate solutions.

4.6. Algorithmic complexity

If there are n keypoint matches between a pair of images,
O(n2) candidate matches of 2-keygraphs are evaluated; this
yields n2v 2-keygraph matches, with a maximum of d2v edges
leaving a same vertex (in the query image). Next, O(n2v · d2v)
candidate 3-keygraph matches are evaluated; this yields n3v 3-
keygraph matches, with a maximum of d3v 3-keygraphs sharing
a same edge (in the query image). Next, O(n3v · d3v) candi-
date 4-keygraph matches are evaluated. In terms of computa-
tional complexity, the worst-case occurs when a query image is
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Fig. 7. Average AP (i.e., average value of the area underneath the precision-
recall curve over the ten object classes) versus value of the parameter N
which sets the maximum number of initial matches of a query keypoint.
The parameter R sets the number of RANSAC iterations.

identical to a model image: all candidate 2-keygraph matches
would be established, yielding O(n · d2v) 2-keygraph matches,
O(n · d2v

2) 3-keygraph matches and O(n · d2v
3) 4-keygraph

matches, where d2v = O(n). Thus, an effective approach to
control the combinatorial complexity limits the number d2v of
edges leaving a vertex as well as the number d3v of 3-keygraphs
sharing an edge i.e., makes d2v = O(1) and d3v = O(1). As a
result, the cost of the stage that finds 2-keygraphs dominates the
cost of the following stages.

5. Experiments and results

We consider an object instance recognition problem where
images are subject to realistic viewpoint, scale and appear-
ance changes, as well as occlusion and background clutter. We
employed the CMU10 dataset made available by Hsiao et al.
(2010). This dataset contains ten types of model objects, for
a total of 250 model images with resolution 640 × 480 or
1600×1200 pixels. There are 500 query images with resolution
640 × 480 pixels. The dataset collected by Hsiao et al. (2010)
considers a natural setting, consisting of common household
objects in real, cluttered environments under different lighting
conditions, occlusions and viewpoints (examples of images are
presented in Figures 1 and 9). Ten different objects are con-
sidered: clam chowder can, diet coke can, juice box, orange
juice carton, pot roast soup, rice pilaf box, rice tuscan box, soy
milk can, soy milk carton and tomato soup can. Some objects
present relatively few visual features (e.g. diet coke can and soy
milk can) while other objects present a larger number of fea-
tures (e.g. clam chowder can and rice pilaf box). We decided
to average out the final accuracy measure over all the ten object
classes in order to better focus on the main result of the present
paper, namely, the gain in performance and efficiency provided
by using k-keygrahs with k = 3 or k = 4 in comparison to using
k = 1 or k = 2 (we experimentally observed that all the ten con-
sidered object categories presented such gains in performance
and efficiency). In order to simulate a large-scale scenario, we
also considered an additional set of 105 “distractor” model im-

ages, obtained from the Oxford Buildings dataset introduced
by Philbin et al. (2007). Their model keypoints are indexed to-
gether with the true model keypoints from the CMU10 dataset.
The distractor images consider a very large range of different vi-
sual contexts, effectively simulating a “real-world” scenario in
which many distinct model objects are considered. This yielded
a total of 109 SIFT keypoints which were indexed in a hierarchi-
cal K-means tree using K = 16. The VLFeat library (Vedaldi
and Fulkerson (2008)) was used for keypoint extraction.

For each detected object in a query image, we used the recov-
ered affine transformation to project the model image’s ground-
truth segmentation onto the query image, which yields a region
A; a detection is correct if (A ∩ Agt)/(A ∪ Agt) > 0.4, where
Agt is the ground-truth in the query image. 3 For each of the
ten model objects, we plotted a precision/recall curve and then
calculated the area underneath the curve; this is denoted as Av-
erage Precision (AP). The average AP over all ten AP values
summarises the results; we denote this average value as “AP”.

Object matching can be divided into three stages: keypoint
matching, keypoint match filtering and RANSAC which finds
affine transformations. We evaluated five strategies for the
match filtering stage. (1) Not filtering out keypoint matches,
i.e. RANSAC uses the initial keypoint matches; this is similar
to a traditional approach that relies only on descriptor similar-
ity and does not consider spatial information, such as the origi-
nal SIFT method of Lowe (2004) which uses simple, individual
keypoints. (2) Using 2-keygraphs, which presents similarities
with the method of Li et al. (2015) that finds matches of key-
point pairs. (3) Using 3-keygraphs. (4) Using 4-keygraphs.
And (5) using the SCRAMSAC method of Sattler et al. (2009).

The maximum and minimum allowed keygraph edge length
in a query image was set as lmax = 256 and lmin = 8 pixels, for
images of resolution 640 × 480; those values were set empiri-
cally, following the discussion in Section 3.2.1. RANSAC con-
siders a keypoint match as correct if the distance, in the query
image, between the true keypoint position (x, y) and the mapped
model keypoint’s position (x�, y�) is lower than three pixels.

During tree traversal, each query keypoint p investigated
L = 4000 model keypoints, leading p to establish up to 4000
initial keypoint matches (with at most one match with each
model image). Next, each query keypoint retained only its
N < L matches with highest similarity between descriptors.

Figure 7 presents the AP per maximum number N of ini-
tial matches of a query keypoint. Limiting N is useful in order
to control the quadratic complexity of the keygraph matching

3In matching methods based on 3D object models (e.g. the method of Hsiao
et al. (2010)), training keypoints obtained from multiple viewpoints can be com-
bined to generate a putative object pose. This enables the projected 3D object
to have a larger area than in case matching is performed by using a single 2D
warped training image that only considers a frontal view of the object (which
is the case of the present paper). Therefore, a threshold of 0.5 on the overlap
criterion (intersection divided by union of segmentation masks) is too tight for
image-to-image matching methods in Hsiao et al. (2010)’s dataset. Based on
preliminary experiments, we found that setting the threshold as 0.4 allows a
more fair comparison of the investigated methods. As an illustration, Figures
9-d and 9- shows cases in which keypoints correctly matched the query images
but, because of the way the training segmentation is projected, their overlap
criterion fell under the 0.5 threshold.
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Fig. 8. Average AP versus number R of RANSAC iterations, using N = 103

initial matches per query keypoint.

phase. Experiments show that using a small N generated few
initial matches in total. In this case, simple keypoints achieved
a similar AP as keygraphs; this demonstrates that transforming
keypoints into keygraphs did not eliminate a significant num-
ber of correct keypoint matches. Simple keypoints benefited
moderately from using a larger number of initial matches: the
AP improved from .39 to .44 when N increased from 10 to 102

(however, a large number of RANSAC iterations, R = 106, was
used). Then, as N increased even more, so did the number of
initial matches and the fraction of incorrect correspondences;
in this case, simple keypoints achieved a poor performance,
as a consequence of an infeasible number of RANSAC itera-
tions becoming necessary. In constrast, 4-keygraphs benefited
from using a larger number of initial matches: the AP improved
from .37 to .53 when N increased from 10 to 103. This demon-
strates that using a larger N did yield a larger number of cor-
rect keypoint matches, even though those additional matches
had a lower descriptor similarity than the matches obtained by
using a small N only. Interestingly, 2-keygraphs achieved a
consistently lower AP than 3- or 4-keygraphs, even when much
more RANSAC iterations were used; this is a consequence of
2-keygraphs not filtering out as many incorrect matches as 3-
or 4-keygraphs do. 2-keygraphs achieved its best performance
(an AP of .50) by using a moderate number of initial matches,
N = 500, and a large number of RANSAC iterations, R = 106.

Figure 8 shows the estimated AP per number R of RANSAC
iterations. We used a moderately large number of initial
matches (N = 103); nevertheless, the stage which finds 2-
keygraphs presented a small computational cost in compari-
son to the keypoint matching stage. 4-keygraphs achieved a
high AP even using very few RANSAC iterations. 3-keygraphs
performed slightly worse than 4-keygraphs when very few
RANSAC iterations were employed. In case of 2-keygraphs,
much more RANSAC iterations were necessary; for instance,
2-keygraphs achieved an AP of .36 and .47 for R = 105 and
R = 106, respectively, while 4-keygraphs achieved .51 and .53
for R = 104 and R = 105, respectively.

We evaluated the computational cost of a single-thread C im-
plementation of the object recognition pipeline. By using 4-
keygraphs and N = 103, each query image required approxi-

Table 2. Average AP and average number of keypoint matches between a
query image and each model image (before RANSAC), using N = 1000 ini-
tial matches per query keypoint. The method based on 2-keygraphs, which
employ R = 106 RANSAC iterations, require a total computational cost ap-
proximately 25% larger than the methods based on 3- or 4-keygraphs.

Method Avg. number of
keypoint matches

AP

Keypoints, R = 106 44.7 .35
2-keygraphs, R = 106 10.1 .47
3-keygraphs, R = 105 0.12 .52
4-keygraphs, R = 105 0.06 .53
SCRAMSAC, R = 106 1.5 .48

mately eight seconds (not considering SIFT feature extraction).
The stage which transforms the initial keypoint matches into 2-
keygraphs required approximately 20% of the total cost. Next,
obtaining 3-keygraphs and 4-keygraphs had a negligible cost
(less than 1%). Then, RANSAC, using R = 105 iterations, re-
quired 1% of the total time. On the other hand, by using 2-
keygraphs, employing R = 106 RANSAC iterations required
a significant 20% of the total time; thus, the method based on
2-keygraphs required a total computational cost approximately
25% superior than the methods based on 3- or 4-keygraphs, due
to the cost of RANSAC. In case of the method based on simple
keypoints, using R = 106 led RANSAC to require 45% of the
total computational cost. Since setting R = 106 led RANSAC
to require a significant percentage of the total time, the fact that
4-keygraphs use R = 105 is an important advantage in compar-
ison to 2-keygraphs which use R = 106. In order for simple
keypoint to achieve a good performance, an infeasible number
of RANSAC iterations, R = 107, was necessary.

We also evaluated the SCRAMSAC method proposed by Sat-
tler et al. (2009). We set the SCRAMSAC parameter r = 128
pixels which provided better results than using the value r = 7
that is suggested by the authors (i.e. we considered larger key-
point neighbourhoods). We set N = 103 initial keypoint
matches. By using R = 105 and R = 106 RANSAC iterations,
SCRAMSAC achieved an average AP of .44 and .48, respec-
tively. In comparison, 4-keygraphs presented a superior perfor-
mance, with an AP of .53 using R = 105.

Table 2 shows the average number of keypoint matches be-
tween a query image and a model image, before RANSAC (us-
ing N = 103 initial matches). A model image with less than four
keypoint matches contributed with zero to the averaged value,
since RANSAC can not instantiate an affine transformation in
such an image. The stage which finds 2-keygraphs yielded
a reduction of 75% in the total number of incorrect keypoint
matches. The next stage, which finds 3-keygraphs, yielded a
reduction of 99% in the number of remaining incorrect key-
point matches. Next, finding 4-keygraphs filtered out a mod-
erate fraction of incorrect matches. In case of SCRAMSAC, it
filtered out a larger number of incorrect keypoint matches than
the 2-keygraphs method. However, 4-keygraphs achieved a sig-
nificantly better performance than SCRAMSAC.

Figure 9 presents examples of matches between query and
model images. Figure 9-a shows 2-keygraph matches; these
were transformed into 4-keygraph matches, as shown in Figure
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Table 3. AP results obtained on the dataset of Dazzi et al. (2016).
Method AP
Ratio test of Lowe (2004) .53
Multiple triangulations of Dazzi et al. (2016) .55
4-keygraphs, proposed in this paper .68

9-b. From Figure 9-a to 9-b, two incorret 2-keygraph matches
were filtered out. Figures 9-c and 9-d show the same query im-
age as before, but considering a different model image, present-
ing a larger number of established keypoint matches: Figure 9-c
shows 4-keygraph matches, while Figure 9-d shows the key-
point matches after RANSAC as well as the affine transforma-
tion mapping images. Figure 9-e presents incorrect 3-keygraph
matches that were eliminated when 4-keygraphs were obtained.
Figure 9-f shows another example of keypoint matches after
RANSAC and the calculated affine transformation.

We compared 4-keygraphs with our previous method (Dazzi
et al. (2016)), which finds matches of keypoint triples that are
generated by using several Delaunay triangulations. A valid
keypoint triple is required to satisfy similar spatial properties
as 3-keygraphs. Such an approach is particularly effective in
a context where a large number of initial keypoint matches is
established, since they are filtered out by using triangulations.
In this experiment, the original dataset adopted by Dazzi et al.
(2016) is used. It is composed of the 250 images of the CMU10
dataset employing a K-means tree with K = 16. During tree
traversal, a query image keypoint is compared against L = 50
stored model keypoints. In case of 4-keygraphs, a maximum of
N = 5 initial keypoint matches is retained for each query key-
point, while the method of Dazzi et al. (2016) uses N = 50. We
also investigated the performance of the “ratio test” proposed
in Lowe (2004), in which each query keypoint matches a single
model keypoint. In this experiment, R = 103 RANSAC itera-
tions were used, which was sufficiently large for all methods.
Table 3 shows the results. Lowe’s ratio test and Dazzi et al.
(2016)’s method achieved an AP of .53 and .55, respectively,
while 4-keygraphs achieved a significantly higher AP (.68).
This result demonstrates that the methods of Dazzi et al. (2016)
and Lowe’s ratio test did eliminate correct keypoint matches,
since they achieved a lower AP than 4-keygraphs.

6. Conclusion

Methods based on local feature matching establish keypoint
correspondences relying on descriptor similarity. In object in-
stance recognition, establishing matches between query key-
points and different model images yields a large number of
correct keypoint matches, which improves recognition perfor-
mance. However, this produces a large fraction of incorrect cor-
respondences, which hinders the performance of RANSAC-like
pose estimation. In order to avoid this problem, we proposed a
method that filters a large number of incorrect keypoint matches
(while the correct ones are preserved), thus enabling RANSAC
to be used. The proposed method transforms keypoint matches
into matches of k-keygraphs. Each valid keygraph match sati-
fies semi-local affine constraints which are efficiently evaluated.

Keygraphs of cardinality k are defined based on keygraphs
of cardinality k − 1. Keypoint matches are transformed into
2-keygraphs, which involves calculating changes in length, ori-
entation and scale. In our experiments, obtaining 2-keygraphs
reduced 75% of the incorrect keypoint matches; this operation
had a small computational cost in comparison to the cost of
keypoint matching. Next, 3-keygraphs are obtained at a neg-
ligible computational cost, which yielded a reduction of 99%
of the remaining incorrect keypoint matches. As a conse-
quence, the method based on 3-keygraphs achieved a high per-
formance even using 1% of the RANSAC iterations in compar-
ison with the method based on 2-keygraphs. Our experiments
also showed that using all the initial keypoint matches, as well
as SCRAMSAC, performed worse than using 3-keygraphs.

We proposed 4-keygraphs, that are generated from a pair
of 3-keygraphs sharing an edge. Such method to obtain 4-
keygraphs can be employed to find keygraphs of cardinality
larger than four. However, since a valid match of k-keygraphs
requires k correct keypoint matches, one drawback associated
to using k > 4 is a reduced probability of detecting small or
occluded objects, which present few keypoint matches. In this
paper, we used 4-keygraphs, that provided the best results.

The keygraphs method has few intrinsic parameters. The
two most important ones are the thresholds on attribute changes
(scale/length and orientation). The values were selected in or-
der to allow a large range of viewpoint change between images.

In this paper, we employed SIFT features, chosen mostly due
to their popularity. Keygraph matching uses scale, orientation
and position computed by the keypoint detector. SIFT could
be readily replaced by other descriptors which generate scale,
orientation and position information with a similar precision as
SIFT. Examples of methods proposed more recently than SIFT
are SURF (Speeded-Up Robust Features) and ORB (Oriented
FAST corner detector and Rotated BRIEF features). The main
improvement that they brought is in terms of computational
efficiency, while the improvement in terms of performance is
not as substantial. CNN-based local descriptors have been pro-
posed more recently and could also replace SIFT, as long as
they are designed to produce local scale and orientation infor-
mation. However, CNN-based descriptors require substantially
more computational power than SIFT, SURF and ORB. It is
worth noting that the proposed keygraphs method tolerates an
elevated amount of noise in the estimations of scale, orienta-
tion and position of keypoints, being robust to wide variations
in viewpoint. Its focus is on the structure of small sets of local
features rather the quality of individual matches. A benchmark
evaluation of descriptors is therefore beyond the scope of this
paper and constitutes a suggestion for future work.

Another direction for future work is an extension of our key-
graphs method for 3D point clouds, using 3D keypoint detectors
and descriptors for applications such as 3D object retrieval and
3D scene understanding.
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Fig. 9. Matches between query (left) and model (right) images. Keygraph matches before RANSAC: (9-a) 2-keygraphs; (9-b) and (9-c) 4-keygraphs; (9-e)
3-keygraphs. (9-d) and (9-f) show final keypoint matches (after RANSAC) and the calculated affine transformations.
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