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Highlights

• Oversampling in the string space for addressing imbal-
anced classification

• Generating new strings between pairs of instances using
the Edit distance

• Experimentation with contour representations of hand-
written digits and characters

• Statistical performance improvement of the classifier with
respect to imbalanced case
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ABSTRACT

Imbalanced data is a typical problem in the supervised classification field, which occurs when the
different classes are not equally represented. This fact typically results in the classifier biasing its
performance towards the class representing the majority of the elements. Many methods have been
proposed to alleviate this scenario, yet all of them assume that data is represented as feature vectors.
In this paper we propose a strategy to balance a dataset whose samples are encoded as strings. Our ap-
proach is based on adapting the well-known Synthetic Minority Over-sampling Technique (SMOTE)
algorithm to the string space. More precisely, data generation is achieved with an iterative approach to
create artificial strings within the segment between two given samples of the training set. Results with
several datasets and imbalance ratios show that the proposed strategy properly deals with the problem
in all cases considered.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Within the Pattern Recognition (PR) field, supervised classi-
fication aims at categorizing unknown elements considering a
set of labeled examples. This particular task has been largely
addressed due to its applicability in disparate duties such as
text recognition (Plamondon and Srihari, 2000), audio music
analysis (McVicar et al., 2014) or image categorization (Cire-
gan et al., 2012), among many others. As a consequence, many
algorithms have been proposed, being some representative ex-
amples the k-Nearest Neighbor (Cover and Hart, 1967), Sup-
port Vector Machines (Platt, 1999) or Random Forest (Breiman,
2001).

In general, classification systems show a great dependency
with respect to the representation considered for the data. In
this regard, two main families of approaches are typically dis-
tinguished (Duda et al., 2001): statistical representations, in
which the data is encoded as numerical feature vectors, and
structural representations, which codify data as symbolic data
structures, that is strings, trees or graphs. Statistical repre-
sentations depict a limited flexibility in terms of representa-
tion but they are addressable by most PR models (Bunke and
Riesen, 2012). On the contrary, structural representations are

∗∗Corresponding author: Tel.: +349-65-903772; Fax: +349-65-909326
e-mail: jcalvo@dlsi.ua.es (Jorge Calvo-Zaragoza)

constrained in their applicability since not all classification
schemes can process them, but they constitute very powerful
abstractions capable of properly representing high-level rela-
tionships. Within the structural representations, the string space
(samples that consist of sequences of characters) is considered
in many PR applications such as chain-code-based classifica-
tion (Lee and Kim, 2015), signature verification (Fischer and
Plamondon, 2017), music genre recognition (Yoon et al., 2016),
or time series classification (Marteau and Gibet, 2015), among
others. A significant advantage of this representation is the exis-
tence of the well-known Edit distance, which represents a suit-
able distance metric for classification (Gottlieb et al., 2014).

Regardless of the type of representation considered, most
classification schemes assume the ideal situation of having an
equal distribution of the classes. Nevertheless, real-world sit-
uations do not generally show that trend, which typically re-
sults in the classifier biasing its performance to the class rep-
resenting the majority of the elements (He and Garcia, 2009).
In many applications, as for instance in the medical field (Yu
and Ni, 2014; Tesfahun and Bhaskari, 2013), data collections
generally show imbalanced distributions in which the class rep-
resented by a scarce amount of examples (the minority class) is
indeed the important one to predict. Thus, a large number of
paradigms and methods for tackling the class imbalance prob-
lem have been studied, many of which will be introduced in
next section.
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A possible solution to tackle this issue is to artificially create
new examples from the minority class to compensate the class
distribution. However, the main problem with such approach
is that balancing algorithms only work with statistical data, ie.,
represented by feature vectors. Hence, when addressing cases
considering structural representations, the data must be mapped
onto a vector space before the balancing stage. While this so-
lution may somehow solve the aforementioned limitation of the
data-balancing methods, these mapping processes generally en-
tails a decrease in the classification performance (Bunke and
Riesen, 2012). There is thus a need for designing new balanc-
ing methods which can be directly applied to structural data.

In this paper we address the aforementioned issue of imbal-
anced classification in the particular context of the string space.
For that, we propose a new technique for artificially equilibrat-
ing imbalanced data collections encoded as strings without the
need of an intermediate embedding stage to map the data onto
a statistical representation. Designing balancing techniques
which are directly applicable to string data is not trivial due
to the limitations found in mathematical operations for strings
(e.g., obtaining the mean of two string data). In this context we
take as starting point existing algorithms that address such type
of operations as, for instance, the method by Abreu and Rico-
Juan (2013), which generates an equidistant string between two
examples using the Levenshtein distance.

The rest of the paper is structured as follows: Section 2 con-
textualizes the problem of imbalanced classification highlight-
ing the most known techniques to tackle it; Section 3 explains
the new proposed technique to artificially equilibrate imbal-
anced string-based data collections; Section 4 describes the ex-
perimental methodology considered for assessing the proposal;
Section 5 presents and analyzes the results obtained; finally,
Section 6 summarizes the general conclusions obtained and dis-
cusses possible future work.

2. Background

This section describes the issue of classification in imbal-
anced scenarios and introduces some of the most well-known
approaches for tackling it. Finally, this concept is extended and
contextualized for the case of structural data, which constitutes
the particular case of study of this work.

As discussed above, imbalanced data is commonly found in
real-life data collections. Nevertheless, conventional classifica-
tion models are not generally prepared for such cases, which re-
sults in schemes in which the classifier consistently categorizes
new instances as belonging to the majority class, thus neglect-
ing the minority ones. To palliate this undesired consequence,
different strategies may be found in the literature, being gen-
erally grouped in two main categories (He and Garcia, 2009):
algorithmic-level approaches and data-level methods.

Algorithmic-level methods modify the actual behavior of the
classifier so that it compensates the asymmetry in the data in-
stead of assuming a class-balanced problem. This is typically
done using cost-sensitive training strategies, which consider
higher penalties for the misclassifications of the data belong-
ing to the minority class than for the rest. However, this family

of methods is totally dependent on the learning algorithms con-
sidered, thus being these techniques hardly generalizable.

Data-level approaches compensate the class distribution by
directly modifying the dataset at issue. This is generally car-
ried out by reducing the population of the majority class and/or
increasing the population of the minority one.

On the one hand, reducing the population of the majority
class, also known as undersampling, depicts the clear advan-
tage of being independent on the type of data considered as it
simply implies the elimination of examples from the dataset.
However, this process may entail some loss of critical infor-
mation for the classification. Classical approaches in this con-
text are the One-Sided Selection (Kubat and Matwin, 1997), the
Tomek Links (Tomek, 1976), and the Neighborhood Cleaning
Rule (Laurikkala, 2001), among others.

On the other hand, increasing the population of the minor-
ity class, which is known as oversampling, does not generally
imply any loss of information since no elements are discarded.
However, this process is more restrictive than the previous one
as generating new elements is totally dependent on the rep-
resentation considered for the data. Also note that including
new artificial elements in the data collection may imply an in-
crease in the cost of the classification process, especially for
instance-based classifiers as k-Nearest Neighbor (kNN); nev-
ertheless this should not represent a practical problem since
there exist successful algorithms for efficiently performing the
classification task (Cherian et al., 2014; Almalawi et al., 2016).
Among the different existing methods, the Synthetic Minority
Over-sampling Technique (SMOTE) algorithm (Chawla et al.,
2002) stands as one of the most well-known and successful
algorithms. It aims at alleviating the issues with imbalanced
data collections by populating the space around the instances
of the minority class with new artificial samples from the
same class. Due to its reported success, some extensions have
been proposed such as the SMOTE-Borderline 1 and SMOTE-
Borderline 2 by Han et al. (2005), which focus on perform-
ing the population process on the decision boundaries among
the different classes. Other existing alternatives are the work
by Jo and Japkowicz (2004), which proposes an oversampling
method based on clustering, or the Adaptive Synthetic Sam-
pling Approach for Imbalanced Learning (ADASYN) by He
et al. (2008), which progressively adapts the level of oversam-
pling of the minority class depending on the difficulty of the
classifier to learn the data distribution.

More recently, Das et al. (2015) proposed the RApidy COn-
verging Gibbs (RACOG) algorithm, which considers a proba-
bilistic framework that oversamples the minority class using a
Markov chain Monte Carlo strategy. Abdi and Hashemi (2016)
presented a method for oversampling in multi-class imbalanced
problems. Their method generates new samples based on the
Mahalanobis distance to class means. In the work of Zhu
et al. (2017), an oversampling technique for multi-class imbal-
ance tasks is proposed, which weighs the directions of the mi-
nority class samples to generate new prototypes accordingly.
In addition to these advances, note that oversampling meth-
ods may be complemented with classical undersampling tech-
niques (Valero-Mas et al., 2017; Junsomboon and Phienthrakul,
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2017).
For all above, oversampling methods stand as an appealing

alternative for dealing with the class-imbalance problem with-
out modifying the classification algorithm (Amin et al., 2016).
Typically, these approaches have been constrained to statisti-
cal data representations because the operations involved (ba-
sic arithmetic operations such as mean or median) are not triv-
ial in a structural space. Thus, in this work we address this
shortage by proposing a new oversampling approach for tack-
ling data imbalance directly in structural representations, and
more precisely string data. We shall consider the SMOTE algo-
rithm as base idea, as it still constitutes one of the most success-
ful methods for oversampling in class-imbalance classification
tasks (Bach et al., 2017).

3. Oversampling imbalanced data in the String Space

Oversampling methods for balancing class distributions do
not usually imply any loss of classification performance as no
information is discarded. Nevertheless, in general these meth-
ods are only applicable to statistical data representations. In
this regard, this section proposes a new method for equilibrat-
ing imbalanced data collections for the particular case in which
the elements are encoded as strings.

As the starting point of our proposal we consider the initial
SMOTE algorithm. Let us assume a two-class training set T
that may be further divided in two subsets TMAJ and TMIN repre-
senting the instances of the majority and minority classes, re-
spectively. Basically, SMOTE populates the minority class by
adding new instances to TMIN.

More specifically, SMOTE takes as input a parameter N that
indicates the number of prototypes to be generated. For each
prototype p ∈ TMIN, the algorithm randomly selects N of its
k-nearest neighbors within TMIN. Then, new prototypes are arti-
ficially generated, which are located at any place of the segment
between p and each of the selected neighbors. The new proto-
types are finally included in the minority class set TMIN.

As it is, the SMOTE algorithm has no special requirements,
only that a distance between pairs of prototypes of the in-
put space can be defined to be able to retrieve the nearest k-
neighbors. However, note that the operation “generate a pro-
totype that is located in the segment between two prototypes”
is straightforward for feature vectors, but it is not trivial in a
structured space like the string one.

In this work, we define the geometric concept of “point in
the segment between two prototypes” as the point for which the
sum of the distances to such prototypes is equal to the distance
between those prototypes. Since the distance considered has
an important relevance on the development of our strategy, we
shall consider the use of the Edit Distance (Wagner and Fischer,
1974). For a given pair of data encoded as strings, this distance
is defined as the minimum number of editing operations (inser-
tions, substitutions or deletions) to transform one of the strings
into the other.

For the actual data generation, our strategy makes use of
the algorithm proposed by Abreu and Rico-Juan (2013). This
method is able to retrieve a point in the segment between two

string prototypes by means of randomly deciding which of the
editing operations needed to transform one string into another
is eventually applied.

First, we assume that given two strings v and w
that might be of different lengths, we have a function
GetSecuenceOfTransformations(v, w) that returns the se-
quence of edit operations required to transform v into w. This
can be efficiently performed with a dynamic programming ap-
proach reaching lineal complexity respect of the size of the
strings.

Considering ε as the empty character, we can define all
the mentioned editing operations as substitutions: an insertion
equals to a substitution of ε by the new character, and a deletion
is equivalent to a substitution of the character by ε. Let e(a, b)
be the operation “substitute character a by character b”, which
nicely generalizes to insertion as e(ε, b) and deletion as e(a, ε).
Note that a match is produced when a = b, which represents an
edit operation with no cost.

Considering these operations, a new string located in the seg-
ment between v and w can be obtained by following Algo-
rithm 1. The algorithm receives two strings v and w with the
goal of generating a new artificial string s located somewhere
in the segment between v and w. It also takes a threshold within
the range [0, 1], indicating to which of the reference strings the
generated one is more likely to be closer. That is, a threshold
above 0.5 will generate strings closer to v, being closer to w
otherwise.

The complete process consists of the following steps:

(i) Get the sequence of transformations W required to trans-
form v into w. There might be more than one solution, so
we assume that any of them is returned (line 2).

(ii) Initialize the sequence of transformations W ′ that will gen-
erate s from v (line 3).

(iii) Iterate over each edit operation of W (line 4). If the opera-
tion is a match, it is directly added to W ′ (lines 5-6). Oth-
erwise, it is randomly decided—according to the threshold
(line 8)—if the operation is either substituted by a match
(line 9) or maintained (line 11). Note that if the operation
is maintained, s gets closer to w.

(iv) When all transformations have been checked, W ′ is ap-
plied to v to get the generated string s.

Let us describe a running example to understand its op-
eration. Let us consider the strings v = 223697 and
w = 246985. Then, the sequence W of edit op-
erations to transform the string v into w (returned by
GetSecuenceOfTransformations(v, w)) can be defined by
e(2, ε) e(2, 2) e(3, 4) e(6, 6) e(9, 9) e(7, 8) e(ε, 5). The distance
is 4, which results from counting the length of the sequence but
ignoring matches.

After getting the sequence of transformations, it is easy
to obtain a string in the segment between 223697 and
246985 by randomly replacing insertions, deletions or sub-
stitutions by matches. For instance, if we skip the
first and last edit operation by a match, the result is



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

Algorithm 1: Generation of a new string prototype in the
segment between two given strings.

1 Algorithm CreateNewString(v, w, t)
Data: v, w: strings
Data: t ∈ [0, 1]: threshold
Result: s: string in the segment between v and w

2 W ← GetSecuenceOfTransformations(v, w)
3 W ′ ← ()
4 foreach e(a, b) ∈ W do
5 if a = b then
6 Append(W ′, e(a, b))
7 else
8 if Random() ≤ t then
9 Append(W ′, e(a, a))

10 else
11 Append(W ′, e(a, b))
12 end
13 end
14 end
15 s← ApplyTransformations(v,W ′)
16 return s
17 end

e(2, 2) e(2, 2) e(3, 4) e(6, 6) e(9, 9) e(7, 8) e(2, 5), which applied
to the first string gives 2246985. Note that this resulting string
is of distance 3 to 223697 and of distance 1 to 2246985.

Finally, if we combine everything explained before, we can
balance datasets in the string space following Algorithm 2,
which considers separately the initial prototypes of the train-
ing set belonging to the majority class and the minority class.
It iterates over the latter set, and for each of these prototypes,
the k-nearest neighbors are retrieved. Then, it generates N
new string prototypes located between the considered prototype
and one of its nearest neighbors (selected randomly) using the
CreateNewString() method explained above. The new gen-
erated prototype is added to the final training set. Once N pro-
totypes have been generated, the reference prototype is also in-
cluded in the final training set. Eventually, when all prototypes
from the minority class have been consulted, the process re-
turns the balanced training set which comprises the prototypes
from the minority class (both original and generated) and those
belonging to the majority class.

3.1. Extension to Borderline 1 and Borderline 2

In addition to the classic SMOTE approach, we are also con-
sidering its two extensions Borderline 1 (B1) and Borderline 2
(B2). Instead of a general populating approach of the minority
class, these variants focus on detecting and oversampling re-
gions close to the boundaries between classes. For that, these
methods initially obtain a set TDANGER that represents the infor-
mation located in the frontier between TMIN and TMAJ. The ini-
tialization of TDANGER follows the next process:

(i) A prototype p is extracted from minority class set TMIN.

(ii) The kNN rule is applied to p in the entire train set T .

Algorithm 2: Scheme of the SMOTE algorithm over the
string space.

1 Algorithm SMOTE-String(TMIN, TMAJ, N, t)
Data: TMIN: prototypes from the minority class
Data: TMAJ: prototypes from the majority class
Data: k: neighborhood considered for generating new

prototypes
Data: N: number of new instances per prototype
Data: t ∈ [0, 1]: threshold
Result: TSMOTE: balanced training set

2 foreach p ∈ TMIN do
3 TkNN ← kNN(p,TMIN, k)
4 for i=1 to N do
5 v← RandomSelect (TkNN)
6 s←CreateNewString(p,v,t)
7 TSMOTE ← TSMOTE ∪ {s}
8 end
9 TSMOTE ← TSMOTE ∪ {p}

10 end
11 TSMOTE ← TSMOTE ∪ TMAJ

12 return TSMOTE

13 end

(iii) If more than a half of the neighbors belong to the set of the
majority class TMAJ, instance p is included in TDANGER.

(iv) The process is repeated until all prototypes in TMIN have
been queried.

Once TDANGER has been obtained, B1 and B2 consider different
ways of generating prototypes. On the one hand, B1 populates
the minority class using the same process as SMOTE but iterat-
ing over the set TDANGER instead of TMIN (line 2 of Algorithm 2).
B2, on the other hand, maintains the idea of B1 but addition-
ally generates instances between pairs of prototypes from sets
TDANGER and TMAJ.

4. Evaluation methodology

Recalling from above, the proposed algorithm aims at cre-
ating new string prototypes to compensate the imbalance class
distribution and thus improve the performance of the classifier.
This sections describes the evaluation methodology considered
for assessing the goodness of the approach, which is graphically
shown in Fig. 1.

In order to have a higher control over the experiments, we
considered a set of balanced data collections. By means of an
external parameter, we controlled the imbalance degree by ran-
domly removing prototypes from one of the classes (the one
chosen as minority). Having the initial balanced dataset al-
lowed us to obtain a glass ceiling in terms of the classification
performance which might be achieved when artificially com-
pensating the class distribution. We considered several minor-
ity class ratios with respect to the majority class size, namely
20 %, 40 %, 60 % and 80 %. Once the data was artificially im-
balanced, we applied the proposed string-based SMOTE algo-
rithm, as well as the B1 and B2 extensions. In our experiments
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Balanced
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Class
imbalancing SMOTE

Borderline 1

Borderline 2

kNN

Test set

Class

Figure 1. Experimental scheme considered. The initial data collection,
which may be imbalanced, is equilibrated using one of the proposed string-
based oversampling strategies. Finally, classification is performed using
the kNN classifier with k = 1.

we considered a threshold value of t = 0.5 for the SMOTE
and Borderline 1 algorithms so that the new string prototypes
were generated at the same distance of the initial two string el-
ements; for the Borderline 2 method we considered a threshold
value of t = 0.75 to generate the new prototypes closer to the
string element belonging to the minority class. For all cases we
considered a neighborhood of k = 1 elements (Algorithm 2).

Note that, since the gist of the work is related to the use
of string data, many classification algorithms such as Support
Vector Machines, Decision Trees or Artificial Neural Networks
cannot be used. Thus, we restricted ourselves to the use of the
kNN with k = 1 for the classification stage, with the Edit Dis-
tance as dissimilarity measure.

Regarding the precise data collections, we considered three
different datasets: the United States Postal Service (USPS) digit
dataset (Hull, 1994) which comprises images of 16 × 16 pix-
els of single handwritten digits, the NIST SPECIAL DATABASE
(NIST) of handwritten characters (Wilkinson et al., 1992), and
the MNIST collection of isolated handwritten digits in images
of 28x28 pixels (LeCun et al., 1998). All these datasets com-
prise images of isolated shapes, hence contour descriptions with
Freeman Chain Codes (Freeman, 1961) were extracted. Note
that in no case we are claiming that this representation is the
most suitable for these datasets but it allowed us to perform the
desired experimentation in the string space.

Furthermore, these datasets entail a multi-class scenario.
However, SMOTE is designed for two-class classification sce-
narios. Thus, we chose pairs of classes from the aforemen-
tioned datasets which depicted a higher level of confusion. That
is, those that imply a more challenging recognition problem.
For each dataset, this confusion level was determined by creat-
ing subsets containing all the pairs of classes of the collection
and classifying each subset using kNN with k = 1. Eventually,
we selected the subsets which depicted the lowest classification
scores: for the MNIST and USPS collections we selected the
pairs of classes (3, 5) and (7, 9); for the NIST collection, the
highest confusion level was found in the pairs (C,G) and (V,Y).
Table 1 details the number of instances of the data collections
in terms of the imbalance level considered.

For the quantitative evaluation of the strategies we consid-
ered the F-measure (F1) as it constitutes a typical figure of merit

in the context of imbalanced classification. Focusing on the mi-
nority class, this measure is obtained as

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where TP stands for the True Positives or correctly classified
elements, FP represents the False Positives or misclassified ele-
ments from the majority class as minority ones, and FN stands
for the False Negatives or the misclassified elements from the
minority class as of the majority one.

Finally, it should be noted that all methods in this paper have
been implemented in Java language and the results shown in
Section 5 have been obtained with a general purpose computer
with the following technical specifications: Intel(R) Core(TM)
i7-4700HQ CPU @2.40GHz, 12GB RAM, and Linux Mint (64
bits) operating system.

5. Results

This section presents the results obtained for the assessment
strategy proposed. The results provided correspond to the av-
erage of the individual values obtained with a 5-fold cross-
validation scheme for each data collection.

For a better comprehension, these results are provided graph-
ically in Figure 2. For all cases, the x-axis depicts the percent-
age of minority class after the initial class-imbalance process,
whereas the y-axis represents the classification performance in
terms of the F1 measure.

An initial point to comment is the performance of the base-
line configuration considered. As the imbalance ratio of the
distribution was progressively increased, the performance of the
classifier remarkably decreased for all data collections assessed.
For instance, for the MNIST set, the performance decreased
from an F1 = 97.5 % with the balanced data distribution to a
value of F1 = 90.5 % when the minority class was reduced to
a 20 % of its initial size. This decrease was also observed for
the USPS dataset, in which the performance lowered from the
a value of F1 = 92.5 % to an F1 = 75 %, the NIST (C,G)
case for which the classifier showed an initial correctness ra-
tio of F1 = 88 % which deteriorated to an F1 = 55 %, and
in the NIST (V,Y) case in which this decrease went from an
F1 = 88 % to an F1 = 68 %. All these values confirmed the
initial suspicion of that an imbalanced data distribution could
imply a worse performance of the classifier.

Focusing now on the results retrieved by the balancing strate-
gies, it can be observed that the proposed methods were able
to cope with the aforementioned issues of imbalanced scenar-
ios. For all studied imbalance ratios, the different string-based
oversampling methods were not only capable of recovering the
performance loss due to the imbalance, but also they improved
over the baseline results. Some particular examples in which
this improvement was remarkably noticeable are all the NIST
cases, for which the classification performance improved from
a value of F1 = 88 % to correctness rates above F1 = 95 %,
and the USPS case, in which the classification rates improved
from an F1 = 92 % to performances above F1 = 95 %. For
the particular case of the MNIST set, the proposed string-based
oversampling techniques were able to recover the performance
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Table 1. Description of the datasets in terms of the number of instances.

Database Majority class size
Minority class ratio

100 % 80 % 60 % 40 % 20 %

NIST 520 520 416 312 208 104
MNIST 1000 1000 800 600 400 200
USPS 928 928 742 556 372 186
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Figure 2. Results obtained for the MNIST (2a, 2b), NIST (2e, 2f), and USPS (2c, 2d) datasets for the selected class pairs. The graphs assess the different
string-based oversampling strategies proposed considering a kNN classifier (with k = 1) and different initial imbalance ratios.

decrease of the imbalance distribution, but did not show the performance boost over the baseline observed in the rest of the
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collections. This fact was possibly due to the high baseline per-
formance of the MNIST collection obtained in our experiments
(F1 = 97.5 %), which constitutes a result considerably difficult
to surpass.

Regarding the individual performance of each of the over-
sampling strategies, it can be observed that the results achieved
by the three proposed balancing methods did not show remark-
able differences among them. For instance, for all the data
collections considered, the proposed strategies retrieved quite
similar performances with subtle differences among them (the
different curves practically overlap).

To facilitate the overall analysis, Table 2 details the aver-
age classification performance results obtained in terms of the
F1 measure for each imbalance ratio and balancing method
proposed. These average results support the commented con-
clusion that the proposed strategies palliate the accuracy loss
caused by the class imbalance. Specifically, the B1 strategy
seems to report the best overall performance. As a representa-
tive case, it is observed that the use of B1 exhibits improvement
from F1 = 75.2 % to F1 = 94.0 % when the considering highest
initial imbalance, i.e. 20 % of the minority class.

Table 2. Average results in terms of F1(%) obtained with the considered
datasets for the different string-based oversampling strategies with respect
to the minority class ratio. Bold figures highlight the best result for each
initial class imbalance situation.

Minority class ratio Base SMOTE B1 B2

80 % 90.0 98.8 98.7 97.1

60 % 88.1 97.1 98.1 96.2

40 % 83.5 95.9 96.8 95.5

20 % 75.2 94.0 96.0 94.7

Finally, in order to minimize the possibility that the differ-
ences in the performance observed were due to chance varia-
tion, we performed a pairwise, non-parametric Wilcoxon signed
rank test (Demsar, 2006) to statistically assess their perfor-
mance. We used the 30 independent results (one per corpus
and cross-validation fold) to perform these statistical tests. The
assumed hypothesis is that the use of our strategy significantly
improves the accuracy obtained if classification is performed
directly with the imbalanced dataset (ie., the baseline configu-
ration considered). The results can be checked in Table 3.

Attending to the results in this statistical analysis it can be ob-
served that, for all imbalance cases, the proposed string-based
oversampling strategies statistically improved over the base-
line situation. Furthermore, note that the statistical significance
level of 99 % established in this evaluation constitutes a very
restrictive threshold. Thus, the fact that the proposed modifica-
tion on the SMOTE, B1, and B2 oversampling methods were
able to surpass this acceptance level accounts for their good-
ness and usefulness in the context of imbalanced classification
problems with string data.

6. Conclusions

In this paper we proposed a new approach to solve the prob-
lem of imbalanced data in the string space. The idea was to

Table 3. Results of the Wilcoxon test comparing the performance of the
baseline classification (no oversampling) against our oversampling strate-
gies with SMOTE, B1, or B2. Symbol 3represents that the oversampling
significantly improves the baseline. A significance level p < 0.01 has been
considered for the analysis.

Minority class ratio
Oversampling strategy

SMOTE B1 B2

80 % 3 3 3

60 % 3 3 3

40 % 3 3 3

20 % 3 3 3

use the well-known Synthetic Minority Oversampling Tech-
nique (SMOTE) and its Bordeline 1 and 2 extensions. Since
these techniques were designed for feature vectors—for which
it is easy to generate new prototypes at specific points of the
space— we used a strategy to be able to directly generate new
string prototypes. This strategy is capable of generating a new
prototype in the segment between two given strings, and so it
allows the adaptation of SMOTE to this scenario, which could
be applied with datasets generated with Freeman Code as HO-
MUS (Calvo-Zaragoza and Oncina, 2014).

To corroborate the goodness of our approach, we performed
experiments with datasets of isolated symbols (digits and char-
acters). These data can be represented as strings by encoding
their contours with Freeman Chain Codes, being therefore suit-
able for our case. To control the experiments and make the ap-
propriate comparisons, the datasets were artificially imbalanced
at different levels (20 %, 40 %, 60 %, and 80 %). In all the ex-
periments performed, our oversampling strategy on the string
space significantly improved the classification results compared
to directly considering the initial imbalanced data collection.

Given the successful results obtained, we intend to follow
a similar approach for developing Prototype Generation (PG)
algorithms in the string space. Unlike oversampling, which al-
lows the dataset to be balanced, PG algorithms are designed
to have a more compact representation of the initial collection.
For that, they create prototypes located in key places of the
space so that many of the original prototypes can be discarded
with the ultimate goal of speeding up the k-nearest neighbor
search (Triguero et al., 2012). As a more ambitious project, the
idea is also to extend this approach to other structured spaces
such as trees or graphs, since there also exist satisfactory (yet
approximate in most cases) algorithms to compute an edit dis-
tance in these spaces.
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