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Abstract—This paper addresses the problem of unsupervised
object localization in an image. Unlike previous supervised
and weakly supervised algorithms that require bounding box
or image level annotations for training classifiers in order to
learn features representing the object, we propose a simple
yet effective technique for localization using iterative spectral
clustering. This iterative spectral clustering approach along with
appropriate cluster selection strategy in each iteration naturally
helps in searching of object region in the image. In order to
estimate the final localization window, we group the proposals
obtained from the iterative spectral clustering step based on
the perceptual similarity, and average the coordinates of the
proposals from the top scoring groups. We benchmark our
algorithm on challenging datasets like Object Discovery and
PASCAL VOC 2007, achieving an average CorLoc percentage
of 51% and 35% respectively which is comparable to various
other weakly supervised algorithms despite being completely
unsupervised.

Index Terms—Object Localization, Spectral Clustering, Unsu-
pervised Localization.

I. INTRODUCTION

Object localization is an important computer vision problem
where the task is to estimate precise bounding boxes around
all categories of the objects present in the given image. Due
to the intra-class variations, occlusion, and background clutter
present in the real-world images, this becomes a challenging
problem to solve. Compared to image classification, localiza-
tion involves estimating precise location of an object in the im-
age. Therefore, it proves to be more difficult problem to solve.
Object localization is useful in several image understanding
tasks like separating the foreground from the background, ob-
ject recognition, and segmentation. Previous fully-supervised
approaches relied on sliding window search in order to search
for an object in the image. Because of their inefficiency in
terms of speed, several efficient sub-window search algorithms
were proposed which work quite well in localizing the object
in an image ([1]). However, these techniques require strong
supervision in the form of manually-annotated bounding boxes
on locations of all the object categories in an image. Acquiring
such human annotations for training accurate classifiers is
a cumbersome task and is prone to human errors. As a
result, supervised techniques for object localization do not
prove to be useful in resource restricted settings. In order
to overcome the huge manual efforts required in annotations
of objects in the image in supervised learning algorithms,
several weakly supervised approaches were proposed. Rather
than bounding box annotations of target instances, weakly

supervised learning focuses on image level labelling which
is based on the presence/absence of target object instances in
an image ([2], [3], [4], [5], [6]). Though these techniques work
well in terms of localization accuracy, they still require human
annotation efforts especially when the training data is large.

In an effort to make the task of object localization com-
pletely unsupervised, various object co-localization algorithms
were proposed which try to localize an object across multiple
images ([7], [8], [9], [10], [11]) without any supervision. As
co-localization algorithms assume that each image has the
same target object instance that needs to be localized ([9],
[10]), it imports some sort of supervision to the entire local-
ization process thus making the entire task easier to solve using
techniques like proposal matching ([11]) and clustering ([12])
across images. In contrast to these works, the work presented
in this paper focuses on localizing a single object instance in
an image in a completely unsupervised fashion. To the best
of our knowledge there is no previous work that tries to solve
this problem in an unsupervised way. In this work, we do not
make any assumptions like that in co-localization algorithms,
thus making the entire problem more practical and challenging
one to be solved. Further, it is an important problem to be
addressed because of the following reasons: (1) Proposed
work is an unsupervised approach for object localization.
As mentioned previously, all the manual labour required in
annotating the data with accurate bounding box regions around
the target object instances will not be required, which saves
the resources as well as the training time. (2) Apart from being
fully automatic and unsupervised, our technique is easy-to-fit
in the current state-of-the-art object recognition pipelines like
RCNN ([13]). Thus unlike current system, we do not need to
classify each of the thousands of object proposals generated
from an object proposal algorithm individually. Instead, we
can localize the object directly in the input test image and
then provide this localized object to the CNN pipeline that will
classify the object appropriately. Such a type of functionality
is not available with co-localization techniques. This restricts
their applicability in real-world scenarios.

To solve this problem in an unsupervised manner, we start
with extracting thousands of object proposals from the input
image using an off-the-shelf object proposal algorithm ([14],
[15]). We then try to filter out number of object proposals
effectively in such a way that after the entire proposal filtering
process, a good set of object proposals that contain the object
are retained. In order to achieve this, we formulate the problem
as an undirected graph problem and perform spectral clustering
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on the constructed graph. This will split the set of proposals
that can be discriminated based on the selected feature space.
However, one iteration of spectral clustering would not be
enough to filter the proposals by a significant amount. As
a result, we repeat the process for a number of iterations
after selecting appropriate cluster for subsequent partitioning.
We compute a cluster score after each iteration and select
the cluster that has higher score for further partitioning in
the next iteration and discard all the proposals in the cluster
having lower score. After this filtering step, we then estimate
the final localized window by grouping the proposals based
on the perceptual similarity among the proposals. We then
pick top scoring groups and take the mean of coordinates
of proposals present in that groups in order to get the final
localized window.

The main contributions of this paper are summarized as
follows: (1) A completely unsupervised object localization
algorithm for an image containing a single object is pre-
sented and benchmarked on a challenging datasets like Object
Discovery ([16]) and PASCAL VOC 2007 ([17]). (2) An
iterative spectral clustering approach along with an appropriate
cluster selection strategy is proposed which naturally helps in
searching of object region in the image. This entire process
takes place in a completely unsupervised fashion. (3) Proposal
grouping technique is proposed which helps in estimating the
final localized window in the image.

II. RELATED WORK

Previous works in object localization are described below
based on the decreasing order of supervision.

Supervised approaches for object localization involves
sliding window approaches that apply a classifier subsequently
to subimages, thus obtaining a classification map. Indicator of
the object region is obtained from the classification map as the
region with the maximum score. As an average size image
will have a lot of pixels, scanning all of them and deriving
the classification map is a computationally expensive task. [1]
and [18] tried to come up with a more efficient solution by
proposing an efficient subwindow search for object localization
which does not suffer from the above mentioned drawbacks.
This scheme helps to optimize the quality function over all
the possible subregions of the image with fewer number
of classification evaluations and thus making the algorithm
run in linear time or faster. [19] introduced the concept of
global and local context kernels that tries to combine different
context models into a single discriminative classifier. [20]
proposed an integrated framework for image classification,
localization and detection. They efficiently implemented a
multiscale and sliding window approach within a convolutional
neural network (CNN). They treat localization as a regression
problem where the final layer is involved in predicting the
coordinates of the bounding box. This entire system is trained
end-to-end with bounding box annotations from the ImageNet
dataset ([21]).

Weakly-supervised approaches for localization can be
divided into 4 categories: (i) exhaustive search technique
([4], [5], [22], [23]), (ii) multiple instance learning ([24],

[25], [26], [27], [28], [29]), (iii) inter-intra-class modelling
([3], [30], [31], [32], [33]), and (iv) topic model ([34], [7]).
Exhaustive search techniques try to learn discriminative sub-
window classifiers from the weakly labelled data and then
based on the scores of the most discriminative local regions of
the image, they try to estimate the final localization window.
Multiple-instance learning approaches try to learn various
object categories from the bag of positive and negative labelled
images. Different multiple-instance learning algorithms try
to exploit various aspects associated with the image. For
example, [29] tries to model the latent categories of the image
like sky and grass in order to improve the overall localization
accuracy. [28] proposed an alternative learning approach where
they trained robust category models from images returned
by keyword-based search engines. In order to improve the
quality of the object regions, along with the inter-class models,
researchers also model intra-class relations to improve the
similarity of the regions within the same object class.

Co-localization approaches: [12] proposed an image-box
formulation for solving object co-localization problem, where
they simultaneously localize object of the same class across a
set of images. [11] generalized the task of object localization
by relaxing the condition that each image should contain the
object from the same category. [10] proposed an iterative link
analysis technique in order to estimate the region of interest in
the image. [9] proposed an approach for colocalization which
is based on the partial correspondences and the clustering of
local features.

III. PROPOSED APPROACH

In this section, we describe the entire pipeline for the
unsupervised object localization. The summary of the entire
pipeline is shown in Fig. 1.

A. Object proposals extraction and scoring

We generate object proposals from the input image using
off-the-shelf object proposal generation algorithm known as
EdgeBoxes ([14]), which generates object proposals based on
the edge information present in the image. We chose this
technique for extracting object proposals as it is capable of
generating proposals with high recall at a very fast rate. It
extracts ∼1000 object proposals per image in around 0.25 secs
achieving an object recall of over 96% at an overlap of 0.5 on
the PASCAL VOC dataset ([17]).

After the extraction of object proposals B = {b1, b2, ..., bN}
from the image I , we score each proposal based on the
probability that the region contains an object. Here, we extract
N = 1000 object proposals. EdgeBoxes algorithm computes
objectness scores sobj for each proposal in B which is based
on the fact that the number of edge contours that are wholly
contained by the proposal is indicative of the proposal contain-
ing an object. We combine appearance score of each proposal
with the saliency score in order to compute the overall score
of each proposal. In order to do this, we compute the saliency
map S of the input image I using the saliency algorithm
proposed by [35]. From the saliency map S, we compute the
average saliency score for each object proposal which gives
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Fig. 1. Overview of the proposed approach. (a) Input image. (b) Extraction of object proposals (N ). (c) Iterative spectral clustering stage. Construct a graph
with nodes as HOG descriptor extracted from each proposal, red nodes = foreground region and green nodes = background nodes. Spectral clustering and
cluster selection continues for a number of iterations with the graph being updated in each iteration based on the cluster selected. The process continues till
the stopping criteria (T ) is met. (d) Result after iterative spectral clustering after reaching stopping criteria (T ). (e) Final estimated localized window bfinal.

saliency score ssal for that particular proposal. After this, the
overall score si of all the object proposals in the set B are
computed as si = sobj × ssal, where i = 1 to N . As a result,
proposals that have high objectness score and those that cover
the salient region of the image will have high overall score.

B. Iterative spectral clustering for proposal filtering

Given a set of object proposals B = {b1, b2, ..., bN} and
proposal scores s = {s1, s2, ..., sN} (N = 1000), we need
to effectively select a subset of proposals that have a high
probability of containing an object. We model the feature
similarity among the object proposals using an undirected
graph. For each proposal bi ∈ B, we extract a HOG descriptor
fi on a 8 × 8 grid ([36]). We model graph W based on
the HOG feature similarity among the computed proposals
in the set B. Each node of the graph is the computed HOG
descriptor fi and each edge of the graph is weighted by
wij , where wij is the gaussian similarity score computed as
w(fi, fj) = exp(−‖fi−fj‖

2

2σ2 ). Here the parameter σ controls
the width of the neighbourhood. For our experiments we
select σ to be 0.05×max(‖fi − fj‖). After constructing the
graph W , we then compute the normalized Laplacian matrix
of the graph W as L = I − D

−1
2 WD

−1
2 , where D is the

diagonal matrix composed of the sum of rows of W . This
choice is motivated by the work of [37] who showed that
selecting the second smallest eigenvector of the normalized
Laplacian graph L leads to bi-partitioning of the graph. As
HOG features are able to discriminate between the foreground
and background object proposals through the modelled graph,
this bi-partitioning will try to partition these proposals into
two separate clusters. However, one step of spectral clustering
will not be able to select highly localized proposals from
the huge set of object proposals. As a result, we perform
a few iterations of spectral clustering until we are left with
a few highly localized object proposals from which we can
estimate the final detected window. In order to select a cluster
for subsequent partitioning, we compute a cluster score by
taking the average of all the scores s among all the proposals
present in the cluster. We pick the cluster with higher score
for further partitioning and discard the proposals in the cluster
with lower score. We continue this iterative spectral clustering
until the number of proposals are less than stopping criteria
T (here, T = 100). As it can be seen in Fig. 2(b) that after
iterative spectral clustering, highly localized object proposals

Fig. 2. Results of iterative spectral clustering. (a) Candidate regions
extracted from the input image from the PASCAL VOC 2007 dataset ([17]).
(b) Filtered object proposals of the image.

are retained and rest of the proposals are discarded from the
original set of proposals (Fig. 2(a)).

C. Estimating the final localized window

After the iterative spectral clustering step, the proposals
obtained from the final cluster localizes the object region in
the image, as it can be seen in Fig. 2(b). This is due to the
reason that the proposals in the final cluster have a high HOG
feature similarity and they stand out based on the cluster score
during the entire clustering process. We need to estimate a tight
localization window around the object from these proposals
in order to get good localization accuracy in a completely
unsupervised fashion. One simple way to do this is to take the
mean of all the proposals obtained after the iterative spectral
clustering step. However, such a naive technique is prone to
outliers (those object proposals that are larger in area will
have less portion of object covered and have more background
region) which will affect the overall mean of all the windows
and thus affect the final localization accuracy. As a result, we
need to come up with a better strategy to estimate the final
window location which is immune to such outliers and thus
resulting in an accurate localization.

In visual perception, a high contrast difference exists be-
tween the foreground and the background regions and low
contrast difference exists between the foreground-foreground
and background-background regions. We exploit this idea
in order to get a good localization window. We group the
object proposals obtained after clustering by considering each
proposal as a seed proposal and selecting other members of
the group as the proposals that have a high feature similarity
with the seed proposal. We score each group based on the
feature similarity of group’s member proposals with the seed
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Algorithm 1: Pipeline for Object Localization
Input: Image I
Result: Final localization window, bfinal

1 Procedure:
2 Set Number of proposals, N.
3 Set stop criteria for iterative spectral clustering, T .
4 Set k for NN search and C for number of groups to

select.
5 Extract object proposals B = {b1, b2, ..., bN} from I .
6 Compute saliency map S of I .
7 Compute saliency score ssal for each proposal.
8 Compute overall score si = sobj ∗ ssal, i = 1 to N .
9 Compute HOG features for bi ∈ B, i.e.,

F = {f1, f2, ..., fN}.
10 while N <= T do
11 Construct similarity graph W on F feature set.
12 Compute normalized laplacian L and perform

bi-partitioning.
13 Compute cluster scores and select appropriate cluster.
14 Update proposals B.
15 end
16 Compute Dense SIFT features F̂ = {f̂1, f̂2, ..., f̂K}, for

b̂i ∈ B̂, where B̂ = {b̂1, b̂2, ..., b̂K}, where K < T .
17 k-NN for b̂i ∈ B̂ resulting in G = {g1, g2, ..., gK} groups.
18 Compute scores for gi ∈ G using Eq. 1 and pick top-C

groups.
19 Compute mean of all coordinates of proposals to get the

final localized window bfinal.

proposal and on the score of each proposal in the group. The
main difference between iterative spectral clustering step and
proposal grouping strategy is that, iterative spectral clustering
helps in effectively filtering huge set of proposals at a very fast
rate by reducing the number of proposals by about half in each
iteration. However, each proposal remaining after the iterative
spectral clustering step will have some implication on the final
localization accuracy as it can be seen in Fig. 2(b). As a result,
continuing iterative spectral clustering on these proposals will
discard many such proposals that highly contribute towards
the localization accuracy. Because of this, we come up with
a proposal grouping technique that considers each proposals
implication on localization accuracy through the contrast dif-
ferences between the foreground and background regions, thus
helping in better localization window estimation.

After the iterative spectral clustering step, we are left with
a set of proposals B̂ = {b̂1, b̂2, ..., b̂K}, where K < T .
For each object proposal b̂i ∈ B̂, we extract dense SIFT
features as local discriminative features every 4 pixels and
vector quantize each descriptor into a 1, 000 word codebook.
For each proposal, we pool the SIFT features within the
proposal using 1 × 1 and 3 × 3 spatial pyramid matching
(SPM) ([38]) pooling regions to generate a d = 10, 000
dimensional feature descriptor for each box, similar to the
one used by [12] for co-localization. We then normalize each
feature descriptor using L2 norm. As a result of this, we get
a set of features F̂ = {f̂1, f̂2, ..., f̂K} for each proposal in B̂.

We then group the set of object proposals that are perceptually
similar. For this, we consider each proposal from the set B̂
as the seed proposal and find the k-nearest neighbours of this
seed proposal using the F̂ feature set. Here we select k = 10.
We do this k-nearest neighbour search for all proposals. After
this, we get G = {g1, g2, ..., gK} groups of object proposals
with each group containing one member as a seed proposal
and remaining members of the group with proposals that have
higher similarity with the seed proposal. In order to get the
final localization window, we need to select best groups from
this set G. We compute the score for each group based on the
feature similarity among the proposals in that group and the
proposal score of the member object proposals in that group.
The score for each group gi ∈ G is given as:

sgroup(i) =

k∑
j=2

s(b̂j)(f̂
>
j f̂i) (1)

Here i is the seed proposal of the group and j is the index
of the group members and thus the range is from 2 to k. We
pick top-C proposal groups (here, C = 5) that have maximum
group scores and obtain a final set of proposals by taking
the union of all proposals in the top-C groups (i.e., many
proposals in the top-C groups would be common, thus those
proposals that are common will be considered only once in
the final set if we take the union). We then take the mean of
all the coordinates of the bounding boxes in the final set of
proposals in order to obtain the final detection window bfinal
as shown in Figure. 1(e).

IV. EVALUATION

In order to evaluate our algorithm, we conducted experi-
ments on two realistic datasets, the Object Discovery dataset
([16]) and PASCAL VOC 2007 dataset ([17]) and compare
the results with various state-of-the-art algorithms for weakly
supervised localization of object in the image like [4], [5],
[32], [26], [34], [2], [27], [29]. We set the parameters of the
experiments as follows: (1) Number of proposals per image,
N = 1000. (2) Stopping criteria of iterative spectral clustering,
T = 100. (3) k for NN search, k = 10. (4) Number of groups
to merge, C = 5. Selecting a higher value of k and C will
result into more proposals contributing to the estimation of
the final localization window, thus affecting the localization
accuracy. We tried with different values of k and C and found
that the above values give best results. We use these values
for our experiments and keep it constant throughout.

A. Evaluation criteria and runtime

Following previous works on weakly supervised localization
of images, we use the CorLoc (correct location) metric, defined
as the percentage of images correctly localized in the whole
dataset. Here a correct localization in an image is obtained
if the intersection-over-union score of the estimated bounding
box and the ground truth bounding box of the image is greater
than 0.5 i.e., area(bp∩bgt)

area(bp∪bgt) > 0.5. Here bp is the predicted
bounding box and bgt is the ground truth bounding box of the
same object. This evaluation criteria was suggested by [39].
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Fig. 3. Results of localization on PASCAL VOC dataset ([17]). Green box = Estimated Window, Red box = Ground Truth.

Since our algorithm is able to localize a single object instance
in an image, we face an issue when the image consists of
multiple object instances. This case happens when we evaluate
our algorithm on PASCAL VOC 2007 dataset ([17]) where
many images consists of more than one target object instances.
In order to measure CorLoc in such situations, we evaluate our
algorithm on per image basis i.e., we classify the image to be
correctly localized if any one object instance in the image
satisfies the CorLoc condition similar to [29]. We perform the
experiments in MATLAB environment on a PC with intel core
i7 processor. Our algorithm is able to localize an object in an
image of resolution of 500× 375 (of PASCAL VOC dataset)
in around ∼ 11 seconds, out of which computing saliency map
using [35] technique itself takes 7.5 secs. In order to make the
entire algorithm faster we can replace the saliency algorithm
with various other faster alternatives ([40]).

B. Object Discovery dataset and results

The Object Discovery dataset ([16]) consists of images from
3 object categories i.e., aeroplane, car, horse. We evaluate our
algorithm on the 100 image subset. This dataset is mainly
used for the purpose of benchmarking object discovery algo-
rithms ([16], [11], [41]). However, since each image consist
of a single object to localize, we can have a much more
extensive and better evaluation of our algorithm. No previous
weakly supervised techniques for localization with which we
benchmark our algorithm ([4], [5], [32], [26], [34], [2], [27],
[29]) have benchmarked their algorithms on this dataset. Since
this dataset is used for object discovery algorithms, it consists
of noisy images as well. We discard noisy images in the
evaluation of our algorithm because of the unavailability of

Fig. 4. Results of localization on Object Discovery dataset ([16]). Green box
= Estimated Window, Red box = Ground Truth.

the ground truth for these images. Aeroplane class of the
dataset have 18, car class have 11 and horse class have 7
noisy images out of the set of 100 images each. Thus we get
a total of 264 images for evaluation from the whole dataset.
The ground truths are available in the form of segmentations.
We convert all the ground truth segmentations into localization
boxes. We evaluate our algorithm on all 264 images of all
3 classes available in the dataset. The results are shown in
Table I. Our algorithm achieves an average CorLoc measure
of 51.41%. Images of the results of localization on Object
Discovery dataset is shown in Fig. 4.
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TABLE I
PERFORMANCE OF OUR ALGORITHM ON OBJECT DISCOVERY DATASET.

Class Aeroplane Car Horse Average (%)
CorLoc 43.9 65.17 45.16 51.41

C. PASCAL VOC 2007 dataset and results

In order to compare our algorithm with various other weakly
supervised algorithms, we benchmark it on PASCAL VOC
2007 dataset ([17]) which is a very challenging dataset consist-
ing of images captured in real-life scenarios with considerable
clutter, occlusion, and diverse viewpoints. It consists of 20
object classes. For a large scale evaluation of the algorithm
we take all train+val dataset images which counts to a total
of 5011 images. Each of the 20 object instances are spread
across all the 5011 images in a range from 215 (diningtable)
to 4690 (person), having a total of 12608 object instances.
However, as mentioned above we evaluate our algorithm on
per image basis i.e., the image is correctly classified in the
image if atleast one object instance in the image is correctly
localized.

The results on PASCAL dataset is shown in Table II. The
second column in the table describes about the amount of data
used by these mentioned algorithms. Positive images of the
training set is denoted by P and negative images are denoted
by N. [29] uses additional data to train a CNN model thus
this is represented as A. We evaluate our algorithm on 5011
images. Our algorithm achieves an average CorLoc measure of
about 35.08%, which performs better then some of the weakly
supervised techniques i.e. [4], [5], [32], [26] and comparably
to [34], despite being completely unsupervised. The best
performing algorithm is that by [29] which gives an average
CorLoc of 48.5%. However, it trains a convolutional neural
network (CNN) on ILSVRC 2011 dataset in order to extract a
4096 deep feature descriptor for each proposal of the image.
However, we achieve better results than 3 weakly supervised
by just using simple conventional features like HOG and dense
SIFT and with the power of spectral clustering. Images of the
results of localization on PASCAL VOC dataset is shown in
Fig. 3.

TABLE II
PERFORMANCE OF OUR ALGORITHM ON PASCAL VOC 2007 DATASET.

Method Data used CorLoc (%)

[4] P+N 22.4
[32] P+N 30.2
[26] P+N 30.4
[34] P+N 36.2
[2] P+N 38.8

[27] P 47.3
[29] P+N+A 48.5

Ours - 35.08

V. CONCLUSION

We have presented a new simple and efficient approach
for unsupervised object localization using iterative spectral
clustering and proposal grouping. We have shown that our
algorithm is able to perform well in challenging scenarios

by benchmarking our algorithm on challenging datasets like
Object Discovery dataset and PASCAL VOC 2007. We have
achieved comparable results in terms of CorLoc when com-
pared to other weakly supervised algorithms. In future work,
we plan to extend this work to localizing multiple object
instances in an image thus making the algorithm more useful
for real-life scenarios.
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