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Abstract

Clustering procedures suitable for the analysis of very high-dimensional data are

needed for many modern data sets. One model-based clustering approach called

high-dimensional data clustering (HDDC) uses a family of Gaussian mixture models

to model the sub-populations of the observed data, i.e., to perform cluster analysis.

The HDDC approach is based on the idea that high-dimensional data usually exists

in lower-dimensional subspaces; as such, the dimension of each subspace, called the

intrinsic dimension, can be estimated for each sub-population of the observed data.

As a result, each of these Gaussian mixture models can be fitted using only a fraction

of the total number of model parameters. This family of models has gained attention

due to its superior classification performance compared to other families of mixture

models; however, it still suffers from the usual limitations of Gaussian mixture model-

based approaches. Herein, a robust analogue of the HDDC approach is proposed.

This approach, which extends the HDDC procedure to include the mulitvariate-t

distribution, encompasses 28 models that rectify one of the major shortcomings of

the HDDC procedure. Our tHDDC procedure is fitted to both simulated and real

data sets and is compared to the HDDC procedure using an image reconstruction

problem that arose from satellite imagery of Mars’ surface.
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Chapter 1

Introduction

Cluster analysis refers to the practice of using statistical approaches to detect sub-

groups within a given data set. These subgroups can represent a physical attribute

not described by the given explanatory variables, e.g., gender, income tax bracket or

blood type, which can reveal important relationships among the observed data and

may be a crucial component in the effective analysis of a given data set. Due to their

construction, finite mixture models are very useful when modelling data that contain

a finite collection of sub-populations because each component of the model can be

used to represent one of these sub-populations. Reviews of the application of finite

mixture models for clustering are given by Fraley and Raftery (2002); Bouveyron and

Brunet-Saumard (2014) and McNicholas (2016b), and extensive details can be found

in the monographs by McLachlan and Peel (2000) and McNicholas (2016a).

The current influx of information from, e.g., social media sources, has resulted in

many modern data sets having the characteristics of big data (Puts et al., 2015). As

such, there is an increasing need for statistical methods that can handle these large

data sets. In Chapter 2, we provide a review of popular finite mixture-models for
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handling big data sets, specifically those with large dimension, and highlight a high-

dimensional data clustering (HDDC) approach recently introduced by Bouveyron

et al. (2007). This approach has gained attention due to its parsimonious parameter

estimation scheme. It has been shown to work well for very high-dimensional real

data of more than 200 variables. However, it still suffers from the usual limitations of

the Gaussian mixture model based approaches, e.g., it is not robust to outliers. The

focus of this thesis is the expansion of this HDDC approach to include a multivariate

distribution that is robust to outliers.

A formal outline of this thesis follows: in Chapter 2, we provide background

information on finite mixture-models and summarize related work, in Chapter 3, we

outline the derivation of a multivariate-t high-dimensional data clustering (tHDDC)

approach and describe a parameter estimation scheme to fit the resulting models,

in Chapter 4 we assess the classification performance of this novel family of models

using a simulation study and three real data sets, and in Chapter 5 we conclude with

a discussion and suggestions for future work.

2



Chapter 2

Background

2.1 Normal-Variance Mixtures

Define a real random variable U following a probability distribution H, where H ∈

[0,∞) and a p-dimensional random variable X. We can say that X follows a normal-

variance mixture if X | U = u follows a multivariate Gaussian distribution with

mean µ and covariance matrix uΣ, where µ is a location parameter and Σ is a

p × p covariance matrix (Barndorff-Nielsen et al., 1982). Formally, a random vector

X arising from a normal-variance mixture has density

f(x | µ,Σ) =

∫ ∞
0

φp (x | u ;µ, uΣ)h(u)du, (2.1)

where φp (X | u ;µ, uΣ) is the density function of a p-variate Gaussian distribution

with location parameter µ and covariance matrix uΣ. There are several distribu-

tions that arise as mixtures of Normal distributions, one being the multivariate-t

distribution (Kotz and Nadarajah, 2004).

3
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2.2 Finite Mixture-Models

The density of a parametric finite mixture distribution is

f(x |ϑ) =
G∑
g=1

πg pg(x |θg), (2.2)

where πg > 0, such that
∑G

g=1 πg = 1, are called mixing proportions, pg(x |θg) are

the component densities and ϑ = (π1, . . . , πG,θ1, . . . ,θG) is a vector containing the

model parameters. Herein, we follow convention and refer to the application of finite

mixture models for clustering as model-based clustering.

As described in McNicholas (2016a), there are many different definitions of a

cluster. A common definition discussed by Wolfe (1963) is one where a cluster is

described as a group of observations that are more similar to each other than to

observations outside that particular group. A more rigorous definition, given by

Wolfe (1963), requires the use of finite mixture models and defines a cluster as being

one of the components of a mixture of distributions.

2.3 Gaussian Mixture-Model

Each component of the density of the general finite mixture model, given in (2.2), can

be specified to be any univariate or multivariate probability distribution. Until the

last decade or so, the majority of work on model-based clustering using multivariate

component densities focused on the Gaussian mixture-model. A random variable

X ∈ Rp arising from a multivariate Gaussian distribution with mean µ and covariance

4
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matrix Σ has density

φp (x | µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1 (x− µ)

}
. (2.3)

It follows that the density of a mixture of multivariate Gaussian distributions is

f
(
x | πg,µg,Σg

)
=

G∑
g=1

πg
1

(2π)p/2|Σg|1/2
exp

{
−1

2

(
x− µg

)′
Σ−1g

(
x− µg

)}
, (2.4)

where πg is defined for (2.2), and µg and Σg are the component location parameter and

component covariance matrix, respectively. In total, the general Gaussian mixture

model has (G− 1) +Gp+Gp(p+ 1)/2 free parameters.

2.4 Mixtures of Multivariate-t Distributions

One of the first notable departures from Gaussianity was provided by Peel and

McLachlan (2000), who utilized mixtures of multivariate-t distributions for cluster-

ing. As the name suggests, mixtures of multivariate-t distributions assume that each

sub-population of the observed data follow the multivariate-t distribution. Formally,

the density of a mixture of multivariate-t distribution is formulated by writing the

component density in (2.2) as

pg (x | θg) = ft(x | µg,Σg, νg) =
Γ [(νg + p) /2] |Σg|−1/2(πνg)−p/2

Γ [νg/2]
[
1 + δ

(
x,µg | Σg

)
/νg
](νg+p)/2 , (2.5)

where Γ (·) is the Gamma function, p is the number of dimensions in the observed

data set, µg is the component location parameter, Σg is the component covariance
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matrix, νg parameterizes the degrees of freedom in each component, and

δ(x,µg | Σg) =
(
x− µg

)′
Σ−1g

(
x− µg

)
(2.6)

is the squared Mahalanobis distance between x and µg for g = 1, . . . , G. Despite

rectifying a well known shortcoming of the Gaussian mixture model by formulating

a model that is robust to outliers, mixtures of multivariate-t distributions have only

gained popularity in the last few years (see McLachlan et al., 2007; Andrews and

McNicholas, 2011a,b; Baek and McLachlan, 2011; Steane et al., 2012; Andrews and

McNicholas, 2012; Lin et al., 2014, for examples).

2.5 Gaussian Parsimonious Clustering Models

A family of mixture models emerges when we introduce constraints on the component

densities. Some families of Gaussian mixture models are well established and widely

used, e.g., the Gaussian Parsimonious Clustering Models (GPCMs; Celeux and Go-

vaert, 1995) which arise from constraints being imposed on the eigen-decomposed

covariance structure in a Gaussian mixture model. This eigen-decomposition is

Σg = λgDgAgD
′

g, (2.7)

where Σg is the component covariance matrix, λg is a constant, Dg is a matrix of

eigenvectors, and Ag is a diagonal matrix with |Ag| = 1 and entries proportional

to the eigenvalues of Σg. Applying a combination of the constraints: λg = λ,Ag =

A,Dg = D,Dg = I, Ag = I, where I is the identity matrix of the appropriate
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dimension, across the components of the Gaussian mixture model results in a family

of fourteen models and allows for various shapes and sizes of clusters (see Table 2.1).

In more than half of these fourteen models there are O(p2) free parameters to be

estimated; hence, with higher dimensions, it can be very computationally inefficient

to use these models. The GPCMs are supported by the R packages mclust (Fraley

and Raftery, 2002) and mixture (Browne et al., 2015).

Table 2.1: Nomenclature, component volume, shape and orientation, covariance struc-
ture, and number of free covariance parameters for each member of the GPCM family.

Model Volume Shape Orientation Σg Free cov. parameters

EII Equal Spherical – λI 1
VII Variable Spherical – λgI G
EEI Equal Equal Axis-Aligned λA p
VEI Variable Equal Axis-Aligned λgA p+G− 1
EVI Equal Variable Axis-Aligned λAg pG−G+ 1
VVI Variable Variable Axis-Aligned λgAg pG
EEE Equal Equal Equal λDAD′ p(p+ 1)/2
EEV Equal Equal Variable λDgAD′g Gp(p+ 1)/2− (G− 1)p

VEV Variable Equal Variable λgDgAD′g Gp(p+ 1)/2− (G− 1)(p− 1)

VVV Variable Variable Variable λgDgAgD
′
g Gp(p+ 1)/2

EVE Equal Variable Equal λDAgD
′ p(p+ 1)/2 + (G− 1)(p− 1)

VVE Variable Variable Equal λgDAgD
′ p(p+ 1)/2 + (G− 1)p

VEE Variable Equal Equal λgDAD′ p(p+ 1)/2 + (G− 1)
EVV Equal Variable Variable λDgAgD

′
g Gp(p+ 1)/2− (G− 1)

2.6 tEIGEN Models

The multivariate-t analog of the GPCM family for the mixtures of multivariate-t

distributions is the tEIGEN family (Andrews and McNicholas, 2012). These models

use the same eigen-decomposition as the GPCM family and therefore the same con-

straints mentioned above can be applied, in addition to νg = ν. It is important to

note that in this case, it is not the covariance matrix that is decomposed, but rather

7
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the scale matrix. Furthermore, as explained in (Vrbik and Mcnicholas, 2014), the

geometric interpretation of the component shapes in non-Gaussian mixture-models is

not the same as with the Gaussian cases.

By combining the aforementioned constraints, a total of 28 different models are

derived. In R, all 28 models are supported by the teigen package (Andrews and

McNicholas, 2014; Andrews et al., 2017).

2.7 Parsimonious Gaussian Mixture Models

Another popular family of mixture models are the parsimonious Gaussian mixture

models (PGMMs; McNicholas and Murphy, 2008). These models are an extension

of the mixture of factor analyzers (Ghahramani and Hinton, 1997) whose component

covariance matrices are written as

Σg = ΛgΛ
′
g + Ψg, (2.8)

where Λg is a p×q loading matrix with q < p, and Ψg is a diagonal p×p matrix with

positive entries for g = 1, . . . , G. By imposing constraints on Λg and Ψg across the

components, McNicholas and Murphy (2008) introduced eight parsimonious models

in which the number of free parameters is O(p) so that the number of covariance

parameters grows linearly with dimension. For this reason, these models are more

appropriate than the GPCMs for high-dimensional data. These models can be im-

plemented via the pgmm package for R (McNicholas et al., 2015). Note: McNicholas

8
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and Murphy (2010) extended the PGMMs to include four new models by setting

Ψg = ωg∆g, (2.9)

where ωg ∈ R+ and ∆g = diag{δ1, δ2, . . . , δp} is a noise matrix, such that |∆g| = 1

(see Table 2.2).

Table 2.2: Nomenclature, component covariance matrix structure, and number of free
covariance parameters for each parsimonious Gaussian mixture models.

PGMM Nomenclature
Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip Component Covariance Matrix Number of Free Scale Parameters

C C C C Σg = ΛΛ′ + ωIp [pq − q(q − 1)/2] + 1
C C U C Σg = ΛΛ′ + ωgIp [pq − q(q − 1)/2] +G
U C C C Σg = ΛgΛ′

g + ωIp G[pq − q(q − 1)/2] + 1
U C U C Σg = ΛgΛ′

g + ωgIp G[pq − q(q − 1)/2] +G
C C C U Σg = ΛΛ′ + ω∆ [pq − q(q − 1)/2] + p
C C U U Σg = ΛΛ′ + ωg∆ [pq − q(q − 1)/2] + [G+ (p− 1)]
U C C U Σg = ΛgΛ′

g + ω∆ G[pq − q(q − 1)/2] + p
U C U U Σg = ΛgΛ′

g + ω∆g G[pq − q(q − 1)/2] + [G+ (p− 1)]
C U C U Σg = ΛΛ′ + ω∆g [pq − q(q − 1)/2] + [1 +G(p− 1)]
C U U U Σg = ΛΛ′ + ωg∆g [pq − q(q − 1)/2] +Gp
U U C U Σg = ΛgΛ′

g + ω∆g G[pq − q(q − 1)/2] + [1 +G(p− 1)]
U U U U Σg = ΛgΛ′

g + ωg∆g G[pq − q(q − 1)/2] +Gp

2.8 Mixture of Multivariate-t Factor Analyzers

The multivariate-t analogue of the PGMMs, known as the mixture of multivariate

t-factor analyzers (MMtFA) were introduced by Andrews and McNicholas (2011a,b).

In the MMtFAs, the component scale stucture is also parameterized as Σg = ΛgΛ
′
g +

Ψg. By applying the constraints: Ψg = ψgI, Λg = Λ, and νg = ν, Andrews and

McNicholas (2011a) created a family of six models, whose covariance parameters

grow linearly with p, and Andrews and McNicholas (2011b) extended this to a family

of 24 models. It is worth noting that the probabilistic principal t-component analyzer

model, MPtCA, is a special case of the MMtFA model, where Ψg = ψgI. This family

9
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of 24 models is supported by the mmtfa package (Andrews et al., 2015).

2.9 High-Dimensional Data Clustering

Bouveyron et al. (2007) proposed a high-dimensional data clustering (HDDC) tech-

nique that is also based on an eigen-decomposition of the covariance structure of the

Gaussian mixture model. This technique projects the observed data into a lower-

dimensional subspace spanned by a subset of the eigenvectors of Σg. Formally, given

a data set {x1, . . . ,xn} of n data points in Rp with G sub-populations, this method as-

sumes that high-dimensional data mostly rests in lower-dimensional subspaces. This

assumption can drastically reduce the number of covariance parameters that require

estimation and result in an efficient parameter estimation scheme.

As with the GPCMs, Bouveyron et al. (2007) lets Dg be the orthogonal matrix of

eigenvectors of Σg, but instead considers a block-diagonal matrix, ∆g, which contains

the eigenvalues of Σg. Formally, ∆g has the following form:

∆g =



a1g 0

. . . 0

0 adgg

bg 0

0
. . .

0 bg


, (2.10)

where the upper left block is of size dg × dg, dg ∈ {1, p− 1} is the intrinsic dimension

in each component, or cluster, and the lower right block is of size (p− dg)× (p− dg),

10
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with ajg > bg, for j = 1, . . . , dg and g = 1, . . . , G. Bouveyron et al. (2007) proposed

two methods for estimating the intrinsic dimension in each component of this eigen-

decomposed GMM. The first approach utilizes the scree-test of Cattell (1966) and

the second approaches utilizes the probabilistic Bayesian information Criterion (BIC;

Schwarz, 1978), which is given by

BIC = 2l(ϑ̂)− ρ log n, (2.11)

where ρ is the number of free parameters in the model, n is the number of observations,

and l(ϑ̂) is the maximized log-likelihood value. The eigenvectors associated with the

eigenvalues ajg, for j = 1, . . . , dg, span a subspace Eg ∈ Rdg for each cluster, such that

µg ∈ Eg. The affine subspace E⊥g is defined such that Eg ⊗ E⊥g = Rp and µg ∈ E⊥g .

Each observation xi is then projected onto the subspace Eg, which is called the specific

subspace of the gth group, because most of the data are assumed to live on or near

this subspace. This decomposition leads to 28 possible models by constraining the

parameters ajg, bg,Dg, dg across the G components and dg dimensions. Of these 28

models, 14 have been implemented in the R package HDclassif (Berge et al., 2012).

The fully unconstrained model will be referred to as UUUU and the letters C, G

and D will denote completely constrained, constrained across groups and constrained

across dimensions, respectively.

2.10 Model Selection and Performance Assesment

When fitting a family of mixture-models, it is necessary to choose the ‘best’ model. A

very popular choice is the BIC, defined in Section 2.9. It is a widely used method and

11
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has been strongly established in theoretical and applied work (Leroux et al., 1992;

Kass and Raftery, 1995; Kass and Wasserman, 1995; Keribin, 2000). It is important

to note that the BIC can be used to approximate the Bayes factors (Kass and Raftery,

1995; Dasgupta and Raftery, 1998). In particular, Dasgupta and Raftery (1998) show

that

2 log p (x | ϑg) ≈ BICG

where p (x | ϑg) is the integrated likelihood of the data using a G-component mixture

model and BICG is the BIC value for the model with G groups. The difference in

BIC values for two models is an approximation to the Bayes factor, assuming that

the prior distributions of the two models are equal.

For performance assessment, a usual choice is the adjusted Rand index (ARI;

Hubert and Arabie, 1985). The ARI is used to assess class agreement between the

true class labels and the predicted labels rendered by the clustering techniques. It

was originally introduced to correct the Rand index (Rand, 1971), which is given by

RI =
number of pairwise agreements

number of pairs
, (2.12)

where pairwise agreements refer to pairs of observations being correctly classified as

coming from the same group and correctly classified as coming from different groups.

The expected value of the Rand index is greater than 0 for a random classification,

making it hard to interpret. Hence, the ARI has expected value equal to 0, with

a perfect classification being represented by a score of 1. A negative ARI means

that the classification performance is worse than would be expected under random

classification.

12



Chapter 3

Methodology

We now lay out some groundwork for a novel HDDC approach that utilizes mixtures

of multivariate-t distributions. This approach, which is the t-analouge of the HDDC

models described in Section 2.9, rectifies a well-known shortcoming of the Gaussian

mixture model-based approach to cluster analysis by incorporating a distribution that

is robust to outliers. Like with all the clustering procedures introduced so far, our

goal is to cluster a given data set {x1, . . . ,xn} in Rp into G homogeneous groups.

Herein, we use a mixture of multivariate-t distributions, whose density is given by

f
(
x | πg,µg,Σg, νg

)
=

G∑
g=1

πg
Γ [(νg + p) /2] |Σg|−1/2(πνg)−p/2

Γ [νg/2]
[
1 + δ

(
x,µg | Σg

)
/νg
](νg+p)/2 , (3.1)

where all model parameters are defined for equations (2.2), (2.4) and (2.5).

The general multivariate-t mixture model requires the estimation of the full co-

variance structure, so the number of parameters to estimate is O(p2). As Bouveyron

et al. (2007) describe, via the empty space phenomenon (Scott and Thompson, 1983),

we can assume that most of the data live around lower-dimensional subspaces. By

13
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performing clustering in these lower-dimensional subspaces, the number of parameters

to be estimated is reduced significantly.

3.1 Formulating the tHDDC Approach

Analogous to the HDDC approach, we specify Dg to be the orthogonal matrix of

eigenvectors and

∆g = D′gΣgDg, (3.2)

where ∆g is a class specific matrix of the form given in (2.10). Following Bouveyron

et al. (2007) we define

Pg(x) = D̃gD̃
′
g(x− µg) + µg and P⊥g (x) = D̄gD̄

′
g(x− µg) + µg (3.3)

as the projection of x on Eg and the projection of x on E⊥g , respectively, where D̃g

consists of the first dg columns of Dg, concatenated with p − dg zero columns, and

D̄g = Dg − D̃g.

Formally, the covariance structure of each tHDDC mixture model has parameters

ajg, bg,Dg, dg, νg for j = 1, . . . , dg and g = 1, . . . , G. It follows that applying group-

wide constraints to the covariance parameters and allowing the degrees of freedom

parameter, νg, to either vary or be constrained across G can lead to a total of 56

possible models. (The tHDDC analogues of the HDDC models available in HDclassif

are listed in Table 3.1).

14
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3.2 Parameter Estimation

In model-based clustering, the expectation-maximization (EM) algorithm (Dempster

et al., 1977; McLachlan and Krishnan, 2008) is the usual choice when estimating the

parameters of a finite mixture model. As the name suggests, the EM algorithm is an

iterative procedure that alternates between two steps: an E-step and a M-step, until

convergence is reached. On the E-step, the expected value of the complete-data log-

likelihood is updated given the current parameter estimates. In the M-step, the same

complete-data log-likelihood is maximized in terms of the model parameters. We

use a variation of the EM algorithm called the expectation conditional-maximization

(ECM) algorithm (Meng and Rubin, 1993), which replaces each M-step with multiple

CM-steps. For each tHDDC model the complete-data is made up of the observed xi,

the latent uig, and the missing zig for i = 1, . . . , n and g = 1, . . . , G. The zig are

introduced to represent component membership. Formally, we write that

zig =

 1 if observation xi belongs to component g

0 otherwise.
(3.4)

The uig is a realization of a gamma distributed random variable, Uig, that arises

because we exploit the fact that the multivariate-t distribution is a normal-variance

mixture as defined in Section 2.1. Formally, the random variable Uig | zig = 1 follows a

G (ν/2, ν/2) distribution (Peel and McLachlan, 2000). Therefore, it will have density

f(u; ν/2, ν/2) =
(ν/2)ν/2 uν/2−1

Γ(ν/2)
exp [(−ν/2)u] . (3.5)

It follows that U | X ∼ G
(

(ν + p)/2,
ν+δ(x,µ|Σ)

2

)
.

15
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3.2.1 The E-step

For the general finite mixture model, the component indicator variables are usually

replaced by their expected values,

E[Zig | xi] =
πgpg(x | ϑg)∑G
h=1 πhph(x | ϑh)

=: ẑig,

for i = 1, . . . , n and g = 1, . . . , G. Unfortunately, this usually requires the computa-

tion of both the determinant and inverse of a p× p covariance matrix. To avoid these

potentially cumbersome calculations, we follow Bouveyron et al. (2007) and derive

a cost function that utilizes the projection functions: Pg(x) and P⊥g (x), defined in

Section 3.1. The derivation of the cost function is as follows: first, note that we can

write

− 2 log ft(x | µ,Σ, ν) = −2 log Γ [(ν + p)/2] + 2 log Γ [ν/2] + p (log ν + log π)

+ (ν + p) log

[
1 +

1

ν

(
||µ− P (x)||2A +

1

b
||x− P ′ (x)||2

)]
+

d∑
j=1

log aj + (p− d) log b,

where ||x||2A = xAx′ with A = D̃g∆gD̃
′
g, and all other values are as previously

defined. So, on the E-step of the proposed ECM algorithm we replace each zig with

ẑig =
1∑G

h=1 exp
[
1
2

(Kg (xi)−Kh (xi))
] ,

16
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where we refer to

Kg (xi) = −2 log Γ [(νg + p)/2] + 2 log Γ [νg/2] + (p− dg) log bg + p (log νg + log π)

+ (νg + p) log

[
1 +

1

νg

(
||µg − Pg (x)||2Ag

+
1

bg
||x− P ′g (x)||2

)]
+

dg∑
j=1

log ajg − 2 log πg,

for i = 1, . . . , n and g = 1, . . . , G, as the cost function. Each uig is then replaced by

their expected values

E[Uig | xi, zig = 1] =
νg + p

νg + ||µg − P (xi)||2A + 1
bg
||x− P ′ (xi)||2

=: ûig,

for i = 1, . . . , n and g = 1, . . . , G (cf. Peel and McLachlan, 2000; Andrews and

McNicholas, 2012). In this update we exploit a part of the cost function derivation

(given in Appendix A), which states that

δ(x,µg | Σg) = ||µg − P (xi)||2A +
1

bg
||x− P ′ (xi)||2.

3.2.2 The CM-steps

On the first CM-step we update the mixing proportions and component location

parameter using

π̂g =
ng
n

and µ̂g =

∑n
i=1 ẑigûigxi∑n
i=1 ẑigûig

,

respectively, where ng =
∑n

i=1 ẑig. The degrees of freedom parameter, νg, is updated

using the closed form approximation given in Andrews et al. (2017). Formally, we let

ν̂g ≈
− exp(k) + 2 exp

(
ϕ
(
ν̂oldg

2

)
+

1−ν̂oldg

2

)
exp(k)

1− exp(k)

17
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with

k = −1− 1

ng

G∑
g=1

n∑
i=1

ẑig (log ûig − ûig)− ϕ

(
ν̂oldg + p

2

)
+ log

(
ν̂oldg + p

2

)

where ν̂oldg is the estimate of νg from the previous iteration of this ECM algorithm,

and ϕ (·) is the digamma function.

For each tHDDC model, the updates on the second CM step are analogous to

those given in Bouveyron et al. (2007). For illustrative purposes, we outline how

to update each covariance parameter for the UUUUU model, i.e., the model where

ajg, bg,Dg, dg, νg are free to vary across all g = 1, . . . , G and j = 1, . . . , dg.

First, we calculate the intrinsic dimension, dg. For each value of j ∈ {1, p− 1} we

compute

l
(
ϑ̂
)

= −n
2

(dj log ajg + (p− dj) log bg − 2 log πg + log νg

+ log π − 2 log Γ[(νg + p) /2] + 2 log Γ (νg/2)) (3.6)

and set dg equal to the value of dj that maximizes the BIC values associated with the

log-likelihood values found using (3.6). Then we let Dg be the eigenvectors of Σ̂g,

where

Σ̂g =
1

ng

n∑
i=1

ẑigûig(xi − µ̂g)(xi − µ̂g)′. (3.7)

Each ajg, for j = 1, . . . , dg and g = 1, . . . , G is then replaced with the first dg eigen-

values of Σ̂g and we estimate bg using

b̂g =
1

(p− dg)

(
tr
(
Σ̂g

)
−

dg∑
j=1

ajg

)
. (3.8)
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3.3 Convergence

For the proposed ECM algorithm, we initialize each model using either k-means

clustering or random starting values and use the Aitkin’s acceleration (Aitken, 1926)

procedure to determine if the algorithm has converged. That is, we consider this ECM

algorithm to have converged when l
(k+1)
∞ − l(k) < ε, where ε = 10−2 (see Lindsay, 1995;

McNicholas et al., 2010). In this criterion, l(k) is the log-likelihood value at iteration

(k) and l
(k+1)
∞ is the asymptotic estimate of the log-likelihood at iteration (k + 1).

Formally,

l(k+1)
∞ = l(k) +

1

1− a(k)
(
l(k+1) − l(k)

)
, (3.9)

where

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
.
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Table 3.1: Nomenclature, covariance decomposition and number of free covariance pa-
rameters for the tHDDC models. For constaints on ajg, U represents unconstrained,
D represents constrained accross dimension, G represents constrained across groups
and C represents constrained accross both dimension and group. For all other com-
ponents, U and C are unconstrained and constrained across groups, respectively. For
the number of free parameters, ρ = Gp+G+1 is the number of parameters required to
estimate the mean and proportions. The number of parameters required to estimate
D̃g, D̃ and are τ̄ = dg[p− (dg + 1)/2] and τ = d[p− (d+ 1)/2], and s =

∑G
g=1 dg.

Model ajg = ag/aj bg = b Dg = D dg = d νg = ν Number of
Cov. Parameters

UUUUU U U U U U ρ+ τ̄ + 3G+ s
UCUUU U C U U U ρ+ τ̄ + 2G+ s+ 1
DUUUU D U U U U ρ+ τ̄ + 4G
CUUUU C U U U U ρ+ τ̄ + 3G+ 1
DCUUU D C U U U ρ+ τ̄ + 3G+ 1
CCUUU C C U U U ρ+ τ̄ + 2G+ 2
UUUCU U U U C U ρ+G(τ + d+ 2) + 1
UCUCU U C U C U ρ+G(τ + d+ 1) + 2
DUUCU D U U C U ρ+G(τ + 2 + 1) + 1
CUUCU C U U C U ρ+G(τ + 2) + 2
DCUCU D C U C U ρ+G(τ + 2) + 2
CCUCU C C U C U ρ+G(τ + 1) + 3
GCCCU G C C C U ρ+ τ + d+G+ 2
CCCCU C C C C U ρ+ τ +G+ 3

UUUUC U U U U C ρ+ τ̄ + 2G+ s+ 1
UCUUC U C U U C ρ+ τ̄ +G+ s+ 2
DUUUC D U U U C ρ+ τ̄ + 3G+ 1
CUUUC C U U U C ρ+ τ̄ + 2G+ 2
DCUUC D C U U C ρ+ τ̄ + 2G+ 2
CCUUC C C U U C ρ+ τ̄ +G+ 3
UUUCC U U U C C ρ+G(τ + d+ 1) + 2
UCUCC U C U C C ρ+G(τ + d) + 3
DUUCC D U U C C ρ+G(τ + 2) + 2
CUUCC C U U C C ρ+G(τ + 1) + 3
DCUCC D C U C C ρ+G(τ + 1) + 3
CCUCC C C U C C ρ+Gτ + 4
GCCCC G C C C C ρ+ τ + d+ 3
CCCCC C C C C C ρ+ τ + 4
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Chapter 4

Application

4.1 Computational Considerations

The data analyses will be treated as genuine clustering problems, where the true

classifications are not known. Because we do have the true class labels, the ARI will

be used to assess class agreement between the true and predicted class labels. In all

applications, the best fitting models will be chosen using the BIC.

All analyses are performed in R version 3.3.2 (R Core Team, 2016) for Linux 6.51.

Both the HDDC and tHDDC models are fit with G = 1, . . . , 10. It is important to

note that the only HDDC models considered are ones with a monotonic likelihood.

1Using a 32-core Intel Xeon E5 server with 256GB RAM running 64-bit CentOS
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4.2 Simulation Studies

We use a simulation study to highlight the aforementioned drawback of the considered

mixture of multivariate Gaussian distributions. Ten data sets were simulated from

a two-component multivariate-t distribution with ν1 = 2 and ν2 = 3. Figure 4.1

provides an illustration of the first three dimensions of one of the simulated data sets.

In each component, observations are scattered from the mean, with many outliers

on far ends of the clusters. Table 4.1 gives the classification results for the tHDDC

and HDDC models when fitted to the simulated data set. As expected, the tHDDC

approach outperforms the HDDC approach, achieving a near perfect classification.

The relatively small standard deviation reveals that the selected tHDDC models are
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X
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X
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X
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Figure 4.1: Pairs and density plots of the first three dimensions of one multivariate-t
simulated data set, coloured by true groups.
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consistently returning an exceptional classification performance, whereas the selected

HDDC models are using extra components to account for the increased variation in

the simulated data sets.

Table 4.1: Mean and standard deviation of ARI values returned by the best fitting
HDDC and tHDDC models found by the BIC for the simulated multivariate-t data
sets.

Mean of ARI Standard Deviation of ARI
HDDC 0.021 0.012
tHDDC 0.995 0.005

4.3 Fisher’s Irises

In our first real data analysis, we consider Fisher’s famous iris data set, which is

available in the R package datasets and gclus (Hurley, 2012). It is composed of

four explanatory variables: sepal length, sepal width, petal length, and petal width,

measured in centimetres. There are three species of the plant: Setosa, Versicolour

and Virginica. Table 4.2 gives the classification results.

Both the best fitting HDDC and tHDDC models return a very good classification

of the irises, with the best fitting tHDDC model outperforming the corresponding

HDDC model. Across the three selected components, both the best fitting HDDC

and tHDDC models use a varying number of eigenvalues and eigenvectors with a

Table 4.2: Model decomposition, number of components, BIC and ARI values for the
best fitting tHDDC and HDDC models when fitted for G = 1, . . . , 10 components for
the Fisher’s irises.

Model G BIC ARI
HDDC UUUC 3 −588.01 0.868
tHDDC UUUCC 3 −646.33 0.904
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common intrinsic dimension. Specifically, the selected tHDDC models uses a common

dimension of one and constrained degrees of freedom. In total, this model misclassifies

only 5 irises (see Table 4.3).

Figure 4.2 shows the data in the one dimensional subspace for all three groups.

The clusters found by the selected tHDDC model are clear and well separated.

Table 4.3: A classification table showing the results for the selected three-component
UUUCC tHDDC model for the iris data.

A B C
Setosa 50 0 0
Versicolor 0 45 5
Virginica 0 0 50
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Figure 4.2: The iris data coloured by the classes found by the best fitting tHDDC
model and projected onto the one-dimensional spaces for each component.
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4.4 Italian Wines

The Italian wines data set, available as wine in the R package pgmm (McNicholas et al.,

2015), is composed of 178 Italian wines on which 27 measurements are taken (Forina

et al., 1986). The wines come from three different cultivars and are classified based

on which one they come from: Barolo, Grignolino and Barbera. The tHDDC models

are fit using G = 1, . . . , 5, as the BIC will select a four-component mixture model.

Table 4.4 gives the classification results. Note that when fitting only three-component

HDDC and tHDDC models, the selected GCCC and GCCCC models gave the same

classification result (ARI = 0.933).

We can see that the best fitting HDDC model overfits by selecting a model with

eight components. Although the best tHDDC model did not have three groups, the

four group solution gives a superior classification performance (see Table 4.4). The

model selected by the BIC was the GCCCC model, with a common intrinsic dimension

of 4. Looking at Figure 4.3, in the four dimensional subspace, we can see that there

are no clear and well separated clusters.

Table 4.4: Model decomposition, number of components, BIC and ARI values for the
best fitting HDDC and tHDDC models when fitted for G = 1, . . . , 10 components for
the Italian wines data.

Model G BIC ARI
HDDC GCCC 8 −12, 071.63 0.658
tHDDC GCCCC 4 −11, 965.26 0.758

25



M.Sc. Thesis - Angelina Pesevski McMaster - Mathematics and Statistics

X1 X2 X3 X4

X
1

X
2

X
3

X
4

−5.0 −2.5 0.0 2.5 5.0 −4 −2 0 2 −5.0 −2.5 0.0 2.5 −2 0 2 4

0.0

0.1

0.2

0.3

−4

−2

0

2

−5.0

−2.5

0.0

2.5

−2

0

2

4

Figure 4.3: Pairs and density plots of the Italian wines data colored by classes found
by the best fitting tHDDC model and projected onto the four-dimensional subspace.

4.5 Martian Surface

This data set was retrieved by the OMEGA instrument (Mars Express, ESA; Bibring

et al., 2004). The OMEGA instrument is used for characterization of the Martian

surface based on physical and chemical composition. This can include classes of

silicates, hydrated minerals, ices and more. The data used is based on one 300× 128

raw image. It contains 255 variables on 38,400 observations. With a physical model,

eight groups were found and for the purpose of this analysis, these will be treated as

true groups; however, the best determination of model performance here is based on

efficacy for image reconstruction. For G = 8 components, tHDDC does a little better

than HDDC; however, neither performs well (Table 4.5).
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Although the physical model suggests eight groups, experts in the field are inter-

ested in exploring a five group solution (Bouveyron et al., 2007). Both HDDC and

tHDDC models are applied to this data with G = 5, and the selected tHDDC model

recovers the clusters better than the selected HDDC model (see Table 4.6).

In Table 4.7, we can see that the classification results returned by the selected

tHDDC and HDDC models are quite different. Furthermore, comparing the recovered

image based on the predicted classes to the original image (see Figure 4.4), the utility

of the model becomes clear, i.e., the physical details are generally recovered very well.

Table 4.5: Model decomposition, BIC and ARI values for the selected eight-
component HDDC and tHDDC models for the Martian surface data.

G Model BIC ARI
HDDC 8 CUUU 62, 460, 591 0.319
tHDDC 8 CCCCC 64, 249, 591 0.351

Table 4.6: Model decomposition, BIC and ARI values for the selected five-component
HDDC and tHDDC models for the Martian surface data.

G Best Model BIC ARI
HDDC 5 UUUU 61, 956, 344 0.472
tHDDC 5 UCUUC 70, 120, 085 0.645

Table 4.7: A classification table comparing the best fitting five-component tHDDC
and HDDC models for the Martian surface data.

HDDC
A B C D E

1 10744 22 0 0 2973
2 1019 1598 0 99 785

tHDDC 3 0 39 7807 4372 4
4 2 319 1 4871 716
5 605 914 4 283 1223
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Figure 4.4: Three images of the Martian surface constructed using spectral data
collected by the OMEGA instrument (top), the parameter estimates of the best-fitting
tHDDC model (middle) and the parameter estimates of the best-fitting HDDC model
(bottom).
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Chapter 5

Conclusions and Future Work

A new family of multivariate-t mixture models has been proposed. The tHDDC

approach is an extension of the HDDC approach that incorporates the multivariate-t

distribution, allowing for a more robust clustering scheme. A total of 28 models have

been developed and the need for these models was shown through a simulation study

which demonstrated their flexibility in recognizing outliers. The models were tested

on both simulated and real data sets and show superior results when compared to

the HDDC family. In particular, the results on the high-dimensional Martian surface

data show that image recovery can be greatly improved. Overall, the added degrees

of freedom parameter allows for more flexible clusters and a more flexible modelling

structure than HDDC.

A further direction to this research would be to explore different model and di-

mension selection criteria. Some include the integrated completed likelihood criterion

(Biernacki et al., 2000) and the approximate weight of evidence (Banfield and Raftery,

1993). In addition, this method can be extended to include skewed mixture-models.

Examples include the mixture of multivariate skew-t distributions (Lin, 2010; Murray
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et al., 2014, 2017), the mixture of shifted asymmetric Laplace distributions (Franczak

et al., 2014), the mixture of variance-gamma distributions (McNicholas et al., 2017),

and the mixture of generalized hyperbolic distributions (Browne and McNicholas,

2015).
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Appendix A

Cost Function Derivations

The cost function for a mixture of multivariate-t distributions can be derived as

follows:

log ξp (x | µ,Σ, ν) = log

[
Γ [(ν + p)/2] |Σ|−1/2 (νπ)−p/2

Γ [ν/2] [1 + δ (x,µ | Σ) /ν](ν+p)/2

]
,

log ξp (x | µ,Σ, ν) = log Γ [(ν + p)/2]− log
[
|Σ|1/2

]
− log

[
(νπ)p/2

]
− log Γ [ν/2]

− log

[(
1 +

1

ν
δ (x,µ | Σ)

)(ν+p)/2
]
,

log ξp (x | µ,Σ, ν) = log Γ [(ν + p)/2]− p

2
log [νπ]− log Γ [ν/2]− 1

2
log |Σ|

− (ν + p)

2
log

[
1 +

1

ν
δ (x,µ | Σ)

]
,

−2 log ξp (x | µ,Σ, ν) = −2 log Γ [(ν + p)/2] + 2 log Γ [ν/2] + p (log ν + log π)

+ log |(D∆D′)|+ (ν + p) log

[
1 +

1

ν
(x− µ)′ (D∆D′)

−1
(x− µ)

]
,

31



M.Sc. Thesis - Angelina Pesevski McMaster - Mathematics and Statistics

−2 log ξp (x | µ,Σ, ν) = −2 log Γ [(ν + p)/2] + 2 log Γ [ν/2] + p (log ν + log π) + log |∆|

+ (ν + p) log

[
1 +

1

ν

(
||D̃D̃′ (x− µ)||2A +

1

b
||D̄D̄′ (x− µ)||2

)]
,

−2 log ξp (x | µ,Σ, ν) = −2 log Γ [(ν + p)/2] + 2 log Γ [ν/2] + p (log ν + log π)

+ (ν + p) log

[
1 +

1

ν

(
||µ− P (x)||2A +

1

b
||x− P ′ (x)||2

)]
+

d∑
j=1

log ajg + (p− d) log b.

Therefore, we can write

zig =
1∑G

h=1 exp
{

1
2

(Kg (xi)−Kh (xi))
} ,

where

Kg (x) =− 2 log Γ [(νg + p)/2] + 2 log Γ [νg/2] + p (log νg + log π)− 2 log πg

+ (νg + p) log

[
1 +

1

νg

(
||µg − Pg (x)||2Ag

+
1

bg
||x− P ′g (x)||2

)]
+

dg∑
j=1

log ajg + (p− dg) log bg.
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