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ABSTRACT

To intelligently analyze and understand video content, a key step is to accurately perceive the motion
of the interested objects in videos. To this end, the task of object tracking, which aims to determine
the position and status of the interested object in consecutive video frames, is very important, and has
received great research interest in the last decade. Although numerous algorithms have been proposed
for object tracking in RGB videos, most of them may fail to track the object when the information from
the RGB video is not reliable (e.g. in dim environment or large illumination change). To address this
issue, with the popularity of dual-camera systems for capturing RGB and infrared videos, this paper
presents a feature representation and fusion model to combine the feature representation of the object
in RGB and infrared modalities for object tracking. Specifically, this proposed model is able to 1)
perform feature representation of objects in different modalities by employing the robustness of sparse
representation, and 2) combine the representation by exploiting the modality correlation. Extensive
experiments demonstrate the effectiveness of the proposed method.

1. Introduction

Developing a reliable object tracker is very important for
intelligent video analysis, and it plays the key role in motion
perception in videos (Chang et al. (2017b,a); Chang and Yang
(2017); Li et al. (2017b); Ma et al. (2018); Wang et al. (2017,
2016b); Luo et al. (2017)). While significant progress in object
tracking research has been made and many object tracking al-
gorithms have been developed with promising performance (Ye
et al. (2015, 2016, 2017, 2018b); Zhou et al. (2018b,a); Ye
et al. (2018a); Liu et al. (2018); Lan et al. (2018a); Zhang et al.
(2013b, 2017d,c, 2018c); Song et al. (2017, 2018); Zhang et al.
(2017b, 2016, 2018a); Hou et al. (2017); Yang et al. (2016);
Zhong et al. (2014); Guo et al. (2017); Ding et al. (2018); Shao
et al. (2018); Yang et al. (2018b,a); Pang et al. (2017)), it is
worth noting that most of these trackers are designed for track-
ing objects in RGB image sequences, in which they model the
object’s appearance via the visual features extracted from RGB
video frames. This may limit them to be employed in real appli-
cations, such as tracking objects in a dark environment where
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the lighting condition is poor and the RGB information is not
reliable.

Recent years have witnessed an increasing number of vision
systems equipped with both RGB and thermal infrared cam-
eras. The development and popularity of multi-spectral imag-
ing techniques further make it effective and efficient for these
systems to capture the RGB and thermal infrared videos. D-
ifferent from RGB cameras which form images using visible
light, infrared cameras can capture the infrared radiation of a
subject for forming an image, and thus its imaging procedure is
not sensitive to lighting conditions. Therefore, to perform more
reliable object tracking in more challenging practical scenarios,
it is very important to incorporate information from the infrared
modality into feature representation and appearance modeling
of the tracked object.

To perform RGB-infrared tracking, how to properly fuse the
information from RGB and infrared modalities is a key issue
which should be considered. It should be noted that RGB im-
ages and infrared images are intrinsically different in their vi-
sual characteristics (e.g. texture, color) as shown in Figure 1,
which leads to the gap between the statistical properties of their
features in two different modalities. Therefore, to perform ef-
fective fusion of RGB and infrared modalities, mining and ex-
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ploiting the correlation between these heterogeneous modali-
ties is very important. While exploiting the correlation, it is
also very important to reflect the complementarity of differen-
t modalities (Lan et al. (2018b)), which means the modality-
specific properties should also be modeled.

Although several RGB-infrared tracking algorithms have
been developed, they do not properly exploit the correlation
and the specific properties between heterogeneous modalities
for effective modality fusion. One typical approach is to apply
some feature combination methods for modality fusion, such
as feature concatenation (Wu et al. (2011)), sum rule (Leykin
and Hammoud (2010)). These methods may ignore the dif-
ferent statistical properties of different modalities, and do not
explicitly model the correlation of different modalities, which
means the gap of different modalities still exists when modal-
ity fusion is performed. Another kind of approaches such as
(Conaire et al. (2008)) regard the tracking of RGB and infrared
modalities as two independent tasks and combine the tracking
results of these two tasks for target localization. These meth-
ods do not model the correlation of different modalities during
the tracking process. Although there are some other methods
such as joint sparsity-based methods (Liu and Sun (2012); Li
et al. (2016)) which exploit the strength of multi-task learning
and formulate tracking on two modalities as two correlated rep-
resentation learning tasks, they may impose a strict constraint
on the fusion (i.e. enforcing them to share the same represen-
tation pattern), which ignores the modality-specific representa-
tion patterns and limits the utilization of the specific properties
of different modalities. As such, the complementary properties
of two modalities is not well exploited.

To address the aforementioned issues, we have developed a
feature fusion model for RGB-infrared object tracking. The de-
veloped model utilizes the robustness of sparse representation
for appearance modeling while exploiting the correlation be-
tween different modalities for effective modality fusion. In ad-
dition, different from the existing modality-correlation-aware
RGB-infrared object trackers (e.g. joint sparsity based track-
er (Liu and Sun (2012); Li et al. (2016)) which may ignore the
modality specific properties, by imposing the low rank regular-
ization (Candès and Recht (2009)), our proposed model exploit-
s a way of soft regularization which simultaneously reveals the
correlation of different modalities while mining certain modal-
ity specific representation for appearance modeling. Therefore,
our proposed model jointly exploits the correlation and comple-
mentarity of the RGB and infrared modalities for representation
learning in an unified optimization framework, which fully un-
leashes the representation capability of different modalities to
deal with the appearance variations during the tracking process.
Moreover, to guarantee the optimality of the developed model,
we derive an iterative optimization algorithm to learn the fea-
ture fusion model. Experiments show that the developed model
and the derived learning algorithm are both effective for RGB-
infrared tracking.

In summary, the contribution of this paper are listed as fol-
lows:

• A modality-correlation-aware sparse representation mod-
el is developed to fuse multiple sparse representations for
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Fig. 1. Illustration of some video frames from RGB and infrared modali-
ties. Top: RGB Bottom: infrared

appearance modeling in RGB-infrared tracking.

• A effective optimization algorithm is derived to solve the
modality-correlation-aware sparse representation prob-
lem.

• Extensive experiments are performed to show the effec-
tiveness of the developed model.

The rest of this paper is organized as follows. In Section
2, we first review some related works on RGB-Infrared objec-
t tracking and sparse representation-based visual tracking, and
then some works about multi-modality classification and recog-
nition methods will also be introduced. In Section 3, we present
our developed tracking model and its corresponding learning al-
gorithm. We describe the implementation details in Section 4.
Experimental analysis and conclusion are given in Sections 5
and 6, respectively.

2. Related Work

Since the developed model is related to sparse representa-
tion and modality fusion, besides the discussion of some relat-
ed work in RGB-infrared tracking, we further introduce some
related work on sparse representation-based visual tracking and
multi-modality recognition. For more comprehensive literature
review of visual tracking research, interested readers can re-
fer to (Zhang et al. (2013a); Wu et al. (2015); Smeulders et al.
(2014); Li et al. (2013); Salti et al. (2012)).

2.1. RGB-Infrared Object Tracking

Several methods have been developed for object tracking in
RGB-infrared videos. In (Bunyak et al. (2007)), a level set-
based RGB-infrared moving object segmentation and tracking
framework is developed (Bunyak et al. (2007)). (Conaire et al.
(2008)) proposed to fuse the results of a multiple spatiogram
tracker on RGB and infrared modalities for determining the fi-
nal target position. In (Leykin and Hammoud (2010)), sum rule
was utilized to aggregate the confidence maps from RGB and
infrared modalities based on a probabilistic background model,
and the fused confidence map was used to determine the po-
sition of the tracked pedestrian. Several sparsity-based track-
ing algorithms were also proposed among which representation
in different modalities are fused via concatenation (Wu et al.
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(2011)), joint sparsity regularization (Liu and Sun (2012); Li
et al. (2016)). These methods can exploit the correlation of
different modalities to some extent. However, most of them uti-
lized strict regularization and ignore the modality specific prop-
erties.

2.2. Sparse Representation-based Visual Tracking
Sparse Tracker Using A Single Feature. Lots of tracking al-
gorithms have been proposed for tracking in RGB videos and
they achieved promising performance. For example, Zhang
et al. (2018b) developed a laten constrained correlation filter
framework to deal with distorted tracking samples. In (Zhang
et al. (2017a)), an output constraint transfer (OCT)-based cor-
relation filter method which models the distribution of cor-
relation response in a Bayesian optimization framework was
developed to mitigate the drifting problem. In Zhang et al.
(2016), multiple Gaussian uncertainty theory deeply investi-
gate the tracking elements from a new viewpoint. Inspired by
the success of sparse and low rank representation in pattern
classification (Wright et al. (2010); Peng et al. (2018, 2017,
2016)), to enhance the robustness of trackers to large appear-
ance change, sparse representation was exploited in appearance
modeling for visual tracking. Mei and Ling (2011) proposed
the `1 tracker which sparsely represents the target’s appearance
using feature templates collected from previous frames. Along
this line, much efforts have been done to improve the robust-
ness and the efficiency of sparse representation-based trackers
by removing contaminated samples (Lan et al. (2016)), exploit-
ing local structural information (Ma et al. (2015, 2016); Wang
et al. (2015b); Zhang et al. (2015b)), improving computation
complexity (Zhang et al. (2015a)), exploiting the correlation a-
mong particles (Zhang et al. (2013c)), imposing discriminative
information (Lan et al. (2017)), learning dictionary (Liu et al.
(2016)), performing subspace learning (Sui et al. (2015)) and
so on. However, these trackers only exploit one single feature
extracted from RGB modality (e.g. grey intensity) for appear-
ance modeling, and they may not be able to handle the irregular
and complicated appearance changes with a single feature.

Sparse Tracker Using Multiple Features. The use of multiple
visual cues/features has been shown to be beneficial for visu-
al tracking (Wang et al. (2014); Yuan et al. (2014)), and there
are several works which fuse multiple sparse representations
from multiple features for appearance modeling. Inspired by
the multi-task joint sparse representation (Yuan et al. (2010)),
Hu et al. (2015b) proposed a joint sparse representation-based
tracking algorithm which combines multiple features based on
joint sparsity constraint for appearance modeling. To exploit
the relationship among different features of different particles
in a particle filtering-based tracking framework, Hong et al.
(2013) formulates visual tracking as a multi-task multi-view s-
parse learning model which combines multiple features while
detecting outlier particles. In (Lan et al. (2014)), a robust joint
sparse representation model was proposed to perform feature-
level fusion of multiple visual cues and remove unreliable fea-
tures. Along this line, Lan et al. (2015) further developed a
kernelized joint sparse representation model which utilizes the
non-linearity of features and combine features from different

kernel space. In (Lan et al. (2018b)), a multiple sparse repre-
sentation framework with appearance proximity constraint was
developed which fuses multiple features and exploits the multi-
feature similarity of object appearance for appearance model-
ing. Although most of these trackers can exploit the correlation
of multiple features for feature fusion-based appearance model-
ing, they exploit a strict regularization (e.g. joint sparsity con-
straint) which leads to a inflexible representations of different
features and limits the exploitation of feature-specific proper-
ties.

2.3. Multi-Modality Classification and Recognition

To improve the performance of image classification and ob-
ject recognition, with the increasing number of multi-modal
sensors and the available multi-modality big data, multi-
modality classification and recognition has been received great
research interests in recent years (Han et al. (2012, 2013)). For
example, Hu et al. (2015a) proposed a new learning model
which mines the shared and modality-specific structures of the
RGB-D modality for heterogeneous features learning. Wang
et al. (2015a) proposed a multimodal sharable and specific
feature learning algorithm to obtain features which reflect the
shared and modal-specific properties for RGB-D object recog-
nition. In (Wang et al. (2016a)), RGB-D scene classification
was performed by learning and fusing modality and component
aware features. However, some of these algorithms need some
off-line training data for model learning which may not be able
to be applied in online multi-modality tracking.

3. Proposed Method

This section mainly introduces two key aspects of the pro-
posed algorithm which includes: 1) modality-correlation-aware
sparse representation, and 2) the optimization algorithm for
model learning.

3.1. Modality-Correlation-Aware Sparse Representation

In our tracking framework, we have object template set-
s of different modalities, denoted as Xm = [xm

1 , . . . , x
m
N],m =

1, . . . ,M, where m is the index of the modalities, M is the num-
ber of the modalities, and N is the number of templates in the
template set. Our tracking model is to use the linear combina-
tion of feature templates to represent the tracking result of dif-
ferent modalities, denoted as ym,m = 1, . . . ,M, which is shown
as follows:

ym = Xmwm + εm,m = 1, . . . ,M (1)

where εm is the vector which characterizes the representation
error in the m-th modality, and wm ∈ RN is the coefficient vector
of the m-th modality which are used for linear combination of
the object templates.

How to determine the coefficient vectors of different modali-
ties for accurate object representation is the key problem which
should be considered for constructing the tracking model. The
object templates of different modalities should be able to han-
dle different appearance variations of the tracked target during
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the tracking process, which means each feature template char-
acterizes one distinct aspect of the object appearance. There-
fore, it is very important to adaptively select representative and
informative feature templates to deal with different appearance
changes. In addition, to performance effective modality fusion
of different representation, it is also crucial to bridge the gap
among different modalities by mining the correlation of differ-
ent modalities. Based on the aforementioned considerations,
we formulate the multi-modality tracking problem as learning
model-correlation-aware sparse representations:

min
{wm}Mm=1

M∑
m=1

1
2
‖ym − Xmwm‖22 + λ1Ω({wk}Mm=1) + λ2

M∑
m=1

‖wm‖1 (2)

where the first term
∑M

m=1 ‖·‖
2
2 represents the total reconstruction

error of the tracked target using the feature templates in differ-
ent modalities, the second term Ω(·) is the regularization func-
tion which aims to discover the correlation of different modality
representations, the third term

∑M
m=1 ‖ · ‖ is the sparsity regular-

ization which aims to select representative templates in differ-
ent modalities for appearance modeling, and λ1 and λ2 denote
the trade-off parameters of different terms.

To facilitate bridging the gap between different modalities,
the learning model in Eq. (2) should be able to learn repre-
sentation vectors of different modalities which are correlated
with each other as highly as possible. Let W = [w1, . . . ,wM],
maximizing the correlation among the representation vectors of
different modalities w1, . . . ,wM can be achieved by minimizing
the rank of W. Therefore, the second term Ω(·) in Eq. (2) is
defined as

Ω({wk}Mm=1) = rank(W),W = [w1, . . . ,wM] (3)

Different from joint sparsity regularization (Liu and Sun
(2012); Li et al. (2016)) which exploits the modality correlation
by strictly enforcing the representation of different modalities
to share the same sparsity pattern, the low rank regularization
allow the sparsity pattern of different presentation to be differ-
ent while maintaining the correlation. Therefore, the modality-
specific pattern can be also discovered which may help to utilize
the modality-specific properties, which is useful to exploit the
complementarity of different modalities for appearance model-
ing. With the formulation in Equation (3), our tracking model
in Eq. (2) can be re-written as

min
{wm}Mm=1

M∑
m=1

1
2
‖ym − Xmwm‖22 + λ1rank(W) + λ2

M∑
m=1

‖wm‖1

s.t. W = [w1, . . . ,wM] (4)

Since minimizing the low rank regularization is a NP-hard
problem, for the tractability of optimization, we follow the s-
tandard relaxation (Candès and Recht (2009)) and approximate
the rank function as the nuclear norm ‖ · ‖∗, which is the sum of
all the singular values of a matrix. Then Eq.(4) can be reformu-
lated as

min
{wm}Mm=1

M∑
m=1

1
2
‖ym − Xmwm‖22 + λ1‖W‖∗ + λ2

M∑
m=1

‖wm‖1

s.t. W = [w1, . . . ,wM] (5)

To solve the optimization problem Eq. (5), we drive an opti-
mization algorithm to obtain the optimal solution. The detailed
derivation can be found in Section (3.2).

3.2. Optimization

Since the objective function in Eq. (5) is composed of a dif-
ferential function (i.e. square of `2 norm) and non-differential
ones (nuclear norm and `1 norm), for tractable optimization,
we introduce two block of auxiliary variables R = [r1, . . . , rM]
and Z = [z1, . . . , zM], and replace the variables in `1 norm and
nuclear norm, which separate the original problem into several
subproblems that can be solved more effectively. According-
ly, R = W and Z = W serve as additional constraints for the
transformed problem:

min
{wm}Mm=1

M∑
m=1

1
2
‖ym − Xmwm‖22 + λ1‖Z‖∗ + λ2

M∑
m=1

‖rm‖1

s.t. W = [w1, . . . ,wM],Z = W,R = W (6)

Then the augmented Lagrange function L for Eq. (6) is

L =

M∑
m=1

1
2
‖ym − Xmwm‖22 + λ1‖Z‖∗ + λ2

M∑
m=1

‖rm‖1

+ Φ(Γ,Z −W) + Φ(Λ,R −W) (7)

where the function Φ(·) is defined as Φ(A, B) = Trace(AT B) +
µ
2 ‖B‖

2
F , µ is a positive penalty constant, Γ = [Γ1, . . . ,ΓM] and

Λ = [Λ1, . . . ,ΛM] are the Lagrange multipliers. Based on E-
q. (7), the solution to Eq. (6) can be obtained by the Alter-
native Direction Method of Multipliers (ADMM) (Boyd et al.
(2011)). We derive the algorithm based on ADMM which iter-
atively updates three blocks of variables in three subproblems:
{R,Z}-subproblem, {W}-subproblem, and {Λ,Γ}-subproblem.
{R,Z}-subproblem: Keeping other variables fixed, by some

mathematical manipulation, solving {R,Z}-subproblem is e-
quivalent to solving the following problems:

min
R

1
2
‖R − P‖2F +

λ2

µ
‖R‖1 (8)

min
Z

1
2
‖Z − Q‖2F +

λ1

µ
‖Z‖∗ (9)

where P = W − Λ
µ

, Q = W − Γ
µ

. The optimums of problem-
s Eqs. (8) and (9) can be solved by computing R = S λ2

µ

(P)

and Z = T λ1
µ

(Q) where S(·)(·) is the soft-thresholding op-

erator such that Sα(A)m,n = sign(Am,n) · max(|Am,n| − α, 0),
and T(·)(·) is the singular-value thresholding operator such that
Tβ(B) = UBSβ(ΣB)VT

B where UBΣBVT
B is the singular value de-

composition of B
{W}-subproblem: With other variables fixed, by taking the

derivative of Eq. (7) and setting it to be zero, it is equivalent to
solve the linear equations:[

(Xm)T (Xm) + 2µI
]

wm = (Xm)T ym + µ(zm + rm) + Λm + Γm

m = 1, . . . ,M (10)
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Algorithm 1 Optimization Procedure for Problem (6)
Require: template set {Xm}Mm=1, target candidate sample {ym}Mm=1, reg-

ularization parameters λ1 and λ2

1: Initializaiton: Z ← 0, R ← 0, Γ ← 0, Λ ← 0, W ← 0, µ ←
10−6,Z ← 0, ρ← 1.5, ε ← 10−5, µmax ← 107

2: repeat
3: Updating R and Z via (8) and (9).
4: Updating W via (10).
5: Updating Γ and Λ via (11)
6: µ← min(ρµ, µmax)
7: until ‖Z −W‖∞ < ε‖W‖∞&&‖R −W‖∞ < ε‖W‖∞

Ensure: W

{Λ,Γ}-subproblem: With the updated optimal variables, the
lagrange multipliers are updated as follows:

Γ← Γ + µ(Z −W) (11)
Λ← Λ + µ(R −W) (12)

The derived optimization algorithm iteratively updates the opti-
mal variables and the Lagrangian multipliers until the norm of
the primal residual converges to zero (i.e. ‖Z −W‖∞ < ε‖W‖∞
and ‖R − W‖∞ < ε‖W‖∞). The optimization problem (6) is a
convex optimization problem with linear constraints in which
the optimal variables can be separated into two blocks R, Z
and W respectively and therefore we can exploit the alternat-
ing direction method of multipliers (ADMM) to estimate the
global optimal solution. The convergence of ADMM in solv-
ing structured optimization problem with linear constraints has
been guaranteed by the Theorem 4.1 in (Eckstein and Bertsekas
(1992)).

4. Implementation Details

This section mainly introduces some implementation details
of the proposed multi-modality tracker which include the target
position decision criteria.

4.1. Particle Filtering Framework for Target Position Decision
Our tracking algorithm is performed within a particle filter-

ing framework. Let ot and st denote the observation and state
variable at frame t. Provided with an observation variable set
up to Frame t, i.e. Ot == {ok |k = 1, . . . , t}, the true poste-
rior p(si

t |Ot) is approximated by a set of particles with states
si

t, i = 1, . . . , n. the tracking result at Frame t can be estimated
by maximizing a posteriori:

s̃t = arg max
si

t

p(si
t |Ot) (13)

Within the particle filtering framework, the posterior probabili-
ty p(si

t |Ot) is recursively estimated as

p(st |OT ) ∝ p(ot |st)
∫

p(st |st−1)p(st−1|Ot−1)dst−1 (14)

where P(ot |st) and P(st |st−1) denote the observation model and
the state transition model,respectively. To model the target
motion across two consecutive frames, we define the st =

[a1, a2, a3, a4, a5, a6]T which denote the vertical and horizontal
translation, rotation angle, scale, aspect ratio, and skew respec-
tively. The transition model P(st |st−1) is model as P(st |st−1) =

N(st |st−1,Σ) where Σ is a diagonal matrix.With the learned rep-
resentation of each target candidate in different modalities, the
observation likelihood function can be defined as follows:

p(oi
t |s

i
t) ∝ exp(−

M∑
m=1

‖ym,i
t − Xm

t wm,i
t ‖

2
2) (15)

where ym,i
t and wm,i

t denote the m-th modality feature of the i-
th particle and its sparse coefficients at Frame t, and Xm

t is the
object template of m-th modality at Frame t. The right hand
side of Eq. (5) is defined based on the total reconstruction error
using the object templates of different modalities.

5. Experiments

In this section, we first introduce the setting of the experi-
ments, and then we demonstrate and analyze the comparison
experimental results with the other trackers.

5.1. Experimental Setting

We adopt fifteen RGB-infrared video pairs1 in which video
pairs are captured by visible and infrared cameras to evaluate
the RGB-infrared tracking performance. The tracked objects
in these video pairs encountered some large appearance varia-
tions such as occlusion, poor illumination conditions, large s-
cale changes, etc.. Alignment and registration have been per-
formed on these video pairs accurately. Therefore, the tracked
targets of each video pair is almost in the same position in each
video frame of RGB and infrared modalities. We use nine base-
line methods for comparison. They are MEEM (Zhang et al.
(2014a)), STRUCK (Hare et al. (2016)), STC (Zhang et al.
(2014b)), CN Danelljan et al. (2014), RPT (Li et al. (2017a)),
KCF (Henriques et al. (2015)), CT (Zhang et al. (2014c)),
MIL Babenko et al. (2011), and JSR (Liu and Sun (2012))
methods. Among these comparison method, only the JSR meth-
ods is proposed for RGB-infrared tracking. For the others, they
are originally designed for RGB object tracking. Following the
setting used in (Li et al. (2016)), the multi-modality version
of these trackers can be implemented. Tracking results of these
trackers on these RGB-infrared videos can be obtained from (Li
et al. (2016)).

The tradeoff parameters λ1, λ2 in Eq. (5) are set as 0.01 and
0.001, respectively. Given the image patch in the bounding box,
we transform its RGB image to be in grey scale and extract the
HOG features Dalal and Triggs (2005) as representation from
the RGB modality, and extract the intensity feature from the in-
frared image as representation from the infrared modality. The
cell number of the HOG feature is 4 by 4 while the number
of orientation is 9. We follow the setting in Zou et al. (2013)
where the image patch inside the bounding box is resized to a

1http://hcp.sysu.edu.cn/resources/
http://vcipl-okstate.org/pbvs/bench/index.html
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Table 1. Overlapping Rate. The best three results are shown in red, blue and green.
STRUCK STC CT MIL RPT MEEM KCF CN JSR Proposed Method

BusScale 0.47 0.45 0.46 0.49 0.57 0.52 0.51 0.51 0.54 0.75
Exposure2 0.32 0.37 0.31 0.32 0.48 0.3 0.32 0.32 0.35 0.62
FastCar2 0.57 0.53 0.43 0.48 0.51 0.49 0.5 0.54 0.56 0.6

FastCarNig 0.46 0.75 0.36 0.36 0.63 0.41 0.43 0.43 0.38 0.53
MinibusNig 0.54 0.55 0.54 0.55 0.68 0.55 0.57 0.59 0.33 0.65
Motorbike 0.31 0.31 0.31 0.31 0.31 0.3 0.31 0.31 0.3 0.48

CarNig 0.25 0.21 0.2 0.18 0.36 0.19 0.16 0.25 0.2 0.32
Minibus1 0.53 0.05 0.52 0.55 0.06 0.38 0.56 0.05 0.53 0.65

Motorbike1 0.68 0.66 0.69 0.57 0.65 0.65 0.56 0.59 0.69 0.68
BusScale1 0.4 0.41 0.43 0.39 0.67 0.44 0.43 0.42 0.47 0.58
Football 0.65 0.6 0.73 0.67 0.56 0.65 0.69 0.59 0.62 0.7

OccCar-1 0.45 0.46 0.43 0.33 0.68 0.41 0.45 0.45 0.07 0.64
Otcbvs1 0.63 0.69 0.65 0.73 0.72 0.66 0.66 0.68 0.79 0.68
Walking 0.13 0.3 0.46 0.36 0.21 0.5 0.22 0.05 0.27 0.4

RainyCar2 0.55 0.46 0.35 0.44 0.58 0.55 0.4 0.55 0.52 0.5
Average 0.46 0.45 0.46 0.45 0.51 0.47 0.45 0.42 0.44 0.59

Table 2. Success Rate. The best three results are shown in red, blue and green.
STRUCK STC CT MIL RPT MEEM KCF CN JSR Proposed Method

BusScale 0.48 0.4 0.46 0.44 0.61 0.53 0.5 0.51 0.56 0.97
Exposure2 0.2 0.26 0.2 0.2 0.45 0.16 0.2 0.2 0.19 0.99
FastCar2 0.55 0.48 0.35 0.43 0.48 0.5 0.53 0.55 0.57 0.83

FastCarNig 0.31 0.93 0.28 0.28 0.73 0.26 0.28 0.28 0.39 0.55
MinibusNig 0.51 0.49 0.55 0.51 0.92 0.51 0.54 0.55 0.36 0.91
Motorbike 0.14 0.16 0.14 0.13 0.13 0.12 0.14 0.14 0.12 0.3

CarNig 0.13 0.19 0.13 0.13 0.21 0.13 0.13 0.13 0.17 0.17
Minibus1 0.59 0.04 0.54 0.58 0.05 0.32 0.54 0.04 0.49 0.91

Motorbike1 0.96 0.85 1 0.82 0.92 0.85 0.64 0.7 0.97 0.99
BusScale1 0.33 0.34 0.36 0.27 0.87 0.45 0.36 0.36 0.47 0.66
Football 0.9 0.81 0.96 0.83 0.64 0.87 0.97 0.76 0.76 0.9

OccCar-1 0.32 0.44 0.27 0.24 0.89 0.21 0.32 0.32 0.08 0.96
Otcbvs1 0.91 0.87 0.98 1 0.98 0.94 0.84 0.82 1 1
Walking 0.13 0.28 0.62 0.45 0.06 0.69 0.25 0.04 0.29 0.1

RainyCar2 0.55 0.52 0.3 0.43 0.76 0.62 0.54 0.65 0.62 0.72
Average 0.47 0.47 0.48 0.45 0.58 0.48 0.45 0.4 0.47 0.73

grey-scale image whose size is 32 by 32. Therefore, the size is
the same for every template, which means the feature dimen-
sion is the same for every template.

5.2. Experimental Results

5.2.1. Quantitative analysis
We adopt two metrics: VOC overlapping rate and success

rate to quantitatively measure the tracking accuracy. The VOC
overlapping rate is defined as area(A1

⋂
A2)

area(A1
⋃

A2) where A1 and A2 are
the bounding box of the ground-truth and the tracker. We con-
sider it as a tracking success if the overlapping rate for the result
in a video frame is larger than 0.5. The success rate is defined
as the percentage of video frames in which the track success
is achieved. The success rate and the overlapping rate of al-
l the compared tracker on these fifteen videos are recorded on
Tables 1 and 2. The quantitative results from these two tables
show that the proposed tracker performs better than the other
nine standard trackers on most videos in terms of overlapping
rates and success rates, and the proposed method achieves the
best overall performance with the highest mean value in terms

of both two metrics. The proposed tracker ranks in top three on
fifteen videos in terms of success rates and overlapping rates.
The proposed tracker utilizes the sparse and low ranking regu-
larization to combine information from multiple modalities, in
which the sparsity regularization helps to adaptively select rep-
resentative and informative feature templates in each modality
to handle different appearance changes, and low rank regular-
ization helps to exploit the correlation of different modalities
for more effective modality fusion. As illustrated in Fig. 2, it
demonstrates good performance to some large appearance vari-
ations, such as occlusion (e.g. BusScale1, Motorbike), poor
illumination conditions (e.g. FastCarNig, Otcbvs1), thermal
crossover (e.g.Football, FastCar2), etc..

Fig.3 shows the frame-by-frame quantitative comparison of
overlapping rates on some videos. we can see that the proposed
tracker maintains a high overlapping rate throughout the video,
which validates the stability of the proposed tracker. We can
see that the proposed method can run throughout the videos un-
der dim environment (e.g. MinibusNig), partial occlusion (e.g.
Exposure2), thermal crossover (e.g. MotorBike, FastCar2), low
resolution (e.g. Motorbike1).
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Fig. 2. Qualitative results on some frames of RGB and infrared modality with challenging factors, which includes Thermal crossover (e.g. Motorbike,
FastCar2), scale changes (e.g. BusScale1), poor illumination (e.g. CarNig), occlusion (e.g. Football). For each sub-figure, the top row shows images of RGB
modality while the bottom one shows images of infrared modality.

Running time. Because the learning algorithm is performed in
an iterative way, the proposed tracker cannot achieve real-time
speed and it is about 3 frames/sec.

5.2.2. Qualitative analysis
Thermal crossover. Videos such as Motorbike1 and FastCar2
undergos thermal crossover which means the infrared modal-
ity is not reliable. As shown in Fig. 3(g), the motorbike is

hardly seen in the video frames. Because of the proper fu-
sion of the RGB and infrared modality, the proposed tracker
can track the motorbike stably. However, methods such as the
MIL method which improperly uses feature concatenation for
fusion cannot achieve stable performance and have small drift
during the tracking.
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(a) BusScale (b) Exposure2 (c) FastCar2 (d) Motorbike1

(a) Motorbike (b) MinibusNig (c) Minibus1 (d) Football

STUCK STC CT MIL RPT MEEM KCF CN JSR Proposed method

Fig. 3. Quantitative comparison of 10 trackers on 8 challenging videos in terms of overlapping rate. The horizontal axis is the frame index and the vertical
axis indicates the overlapping rate.

Poor illumination. The lighting conditions of some testing
videos such as CarNig is not good. As shown in Fig. 3(b), be-
cause of the overexposure at night, the car is ambiguous around
the 60th frame in the RGB modality of CarNig while it is clear-
ly shown in the infrared modality. By exploit the correlation of
the rgb and infrared modalities, the proposed tracker can per-
form effective fusion of the reliable information from rgb and
infrared modalities, which enables them to track the target un-
der poor lighting condition.

Occlusion. The fusion of two modalities also enables the track-
er to run stably under occlusion. As shown in the Fig.3(h)where
the car is occluded by the trees in the initial stage of the video,
the high contrast of between the trees and the cars in infrared
modality can facilitate the robustness to the occlusion from the
tree. Therefore, the effective integration of the infrared modali-
ty help the proposed tracker can run through the occlusion at the
beginning of the video. However, some trackers such as the CN
methods are distracted by the occlusion, which further illustrate
the importance of the integration of the rgb and infrared modal-
ities in dealing with occlusion.

6. Conclusion

In this paper, we designed a modality-correlation-aware s-
parse representation model for RGB-Infrared object tracking.
The proposed model exploits the correlation of different modal-
ities via the low rank regularization and adaptively select rep-
resentative templates to deal with appearance changes via the
sparsity regularization, which makes it more able to perform
effective modality fusion and handle large appearance changes.

An effective and efficient learning algorithm is also derived to
optimize the learning model. Experimental results demonstrate
its effectiveness.

Due to some appearance changes, features extracted from
some modalities may be corrupted, and not informative for the
appearance model. Therefore, one of our future work is to de-
velop some learning model to remove these outlier features. In
addition, properly evaluating the reliability of different modali-
ties is also very important. We will also study an effective algo-
rithm to adaptively determine the reliability weight of different
modalities.
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