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ABSTRACT

The recently emerged spectral clustering surpasses conventional clustering methods by detecting clus-
ters of any shape without the convexity assumption. Unfortunately, with a computational complexity
of O(n3), it was infeasible for multiple real applications, where n could be large. This stimulates
researchers to propose the approximate spectral clustering (ASC). However, most of ASC methods as-
sumed that the number of clusters k was known. In practice, manual setting of k could be subjective or
time consuming. The proposed algorithm has two relevance metrics for estimating k in two vital steps
of ASC. One for selecting the eigenvectors spanning the embedding space, and the other to discover
the number of clusters in that space. The algorithm used a growing neural gas (GNG) approximation,
GNG is superior in preserving input data topology. The experimental setup demonstrates the efficiency
of the proposed algorithm and its ability to compete with similar methods where k was set manually.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral clustering (Shi and Malik (2000); Ng et al. (2002);
von Luxburg (2007)) emerged to be an effective learning tool
that attempts to capture non-convex similarities in input data.
Unlike spherical clustering algorithms, spectral clustering does
not assume compactness of clusters, instead it is driven by the
connectivity between data points. This enables spectral clus-
tering to uncover more complex shaped clusters leading to effi-
cient clustering. It was used in many applications like: image
segmentation (Shi and Malik (2000); Wang and Dong (2012)),
object localization (Vora and Raman (2018)), and community
networks (Wang et al. (2017)). Unfortunately, its computational
cost prevented it from expanding to more practical problems,
since its core component is decomposing the graph Laplacian L
of size n × n, leaving the algorithm with a complexity of O(n3)
(Yan et al. (2009)).

Due to its ability of providing high quality clustering, spec-
tral clustering computational demands were well studied in the
literature. The most intuitive solution is to sample representa-
tives from the dataset to perform spectral clustering then gener-
alize the results. Clearly, these methods ignore data points de-
pendencies while performing sampling, which could lead to a
loss of small clusters. Therefore, sampling was replaced by vec-
tor quantization to select m representatives (Yan et al. (2009))
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where m � n. This approach accumulates the feature space
dependencies into a set of representatives to perform spectral
clustering on.

Most of approximate spectral clustering methods assumed
that the number of clusters k was known beforehand. This is
a strong assumption giving that tuning k is not straightforward
for many real applications (e.g., image segmentation Cheung
et al. (2017)). The original work by (Ng et al. (2002)) indicates
two uses of the parameter k. The first use related to selecting
k eigenvectors corresponding to minimum eigenvalues of the
normalized graph Laplacian L, those eigenvectors represent the
embedding space Rn×k. Secondly, k was used by k-means to
separate data points.

We attempt to estimate the parameter k as well as reducing
the complexity of spectral clustering. Initially, a growing neu-
ral gas (Fritzke (1995)) is trained on the feature space to pro-
duce representative neurons. Then, the neurons’ affinity ma-
trix was constructed to decompose the graph Laplacian. The
first need of k was removed by selecting the eigenvectors that
maximize a relevance metric based on separation between the
graph nodes and explained variance. The final step performed
by clustering neurons in the embedding space using k-means,
where the number of clusters was estimated based on another
metric. Although spectral clustering could be used in a range
of applications, our experiments were mainly focused on im-
age segmentation problems for two reasons. First, the studies
that introduced these datasets used a spectral clustering bench-
mark with a manual k. Second, the effect of automating k could
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Fig. 1. Illustration of the proposed approach.

be easily visualized in image segmentation problems. The pro-
posed method showed a competitive performance to methods
where k was manually tuned.

This work is organized as follows: in section 2 we review ef-
forts related to approximations of spectral clustering; sections 3
and 4 introduce our proposed solution followed by experimen-
tal results.

2. Related Work

Given a graph G(V, E) connecting data points and the affin-
ity matrix A, spectral clustering attempts to relax the normal-
ized cut problem (Ncut) introduced by Shi and Malik (2000).
Ng et al. (2002) proposed a symmetric graph Laplacian as
Lsym = I − D−

1
2 AD−

1
2 . Then the points {x1, x2, · · · , xn} mapped

into the embedding space Rn×k spanned by k smallest eigenvec-
tors. In Rn×k, points form convex clusters that could be detected
by running k-means to avoid iterative bipartitioning. This algo-
rithm highlighted two uses of the parameter k. First, it is used
to select the top k eigenvectors of the graph Laplacian L, then
used as an input for k-means for clustering. Efforts in the liter-
ature for automating k could be classified based on their source
for evaluation, either eigenvalues or eigenvectors.

One way to discover k is to count the number of eigenval-
ues with multiplicity zero. Alternatively, one could look for
the largest gap between k and k + 1 in the eigenvalues plot,
this method is known as eigengap. Ideally, the gap between k
and k + 1 is large (von Luxburg (2007)). However, these tech-
niques need a clearly separated data (Zelnik-Manor and Perona
(2005)). Liu et al. (2013) proposed a soft threshold to locate the
eigengap. They used a parameter τ to penalize small eigenval-
ues that are less important for clustering. Although τ has fixed
limits (i.e., 0 < τ < 1), it still needs a carful tuning.

The use of eigenvectors to estimate k was initiated by
(Zelnik-Manor and Perona (2005)) where they look for an op-
timal rotation X̂ of the matrix of eigenvectors X. The method
starts by recovering the rotation of the first two eigenvectors
then iteratively add one eigenvector to be rotated. A cost func-
tion is computed with each iteration, and the optimal set is the
one that yields the minimal cost. One deficiency of this method
is the need for the parameter kmax, if not set, the method could
have to rotate a Rm×m space which could be costly. This ap-
proach was improved by (Tyuryukanov et al. (2018)) where
they used a computationally efficient alignment cost. Also, they
emphasized on the effectiveness the initialization scheme for
better optimization. Although these methods are well formu-

lated with sophisticated optimization, they could be computa-
tionally inefficient. They require high dimensional optimization
space and multiple initializations.

Eigenvectors of L could be evaluated individually to avoid
the need for high dimensional optimization space. Xiang and
Gong (2008) proposed an eigenvector evaluation metric Rek

based on the distribution of the points, whether it is unimodal
and multimodal. Ultimately, eigenvectors with low discrimi-
nation power ended up with low Rek scores. The number of
clusters in the embedding space was estimated based on the
lowest Bayesian information criterion (BIC). Another effort for
estimating k was introduced by Zhao et al. (2010), where they
ranked the eigenvectors based on the entropy caused by the ab-
sence of that eigenvector. Nevertheless, to obtain the entropy
score, one might need to examine different combinations of
eigenvectors. Li et al. (2017) formulated a cost function to
evaluate eigenvectors based on intra-cluster compactness and
inter-cluster separation. Starting from k = 2, eigenvectors were
evaluated and the set with minimum score will be returned.
All aforementioned methods require a parameter kmax which is
safely larger than the true number of clusters ktrue. In addition,
they have not used the eigenvalues of L which they could pos-
sess important information.

The need for the parameter k could be eased by avoiding the
method of Ng et al. (2002) (known as k-way approach). Alter-
natively, the graph would go through iterations each of which
uses a single eigenvector to bipartition the graph. This process
of iterative spectral clustering was used by Bhatti et al. (2018)
to partition the graph recursively. A cluster is established if it
cannot find a gap that satisfies the minimum tolerance. It also
was used by Wang et al. (2017) to detect community networks.
They define a “critical edge” to highlight the most significant
bipartition. Iterative spectral clustering was used by Vora and
Raman (2018) for object localization. The main difficulty of
iterative spectral clustering is how to specify the stopping crite-
ria. Also, it processes the eigenvectors independently Shi and
Malik (2000).

The deficiencies of previous efforts to automate k could be
summarized in three points. First, they use one source of infor-
mation, either eigenvalues or eigenvectors. Second, they esti-
mated one value for the number of eigenvectors and the number
of clusters, however, these two values are not necessarily equal.
Third, they used iterative clustering that is less efficient than us-
ing k eigenvectors simultaneously. We attempted to avoid these
shortcomings by proposing two evaluation metrics that utilize
both eigenvalues and eigenvectors.
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3. Proposed Approach

The proposed method provides an informed measure to es-
timate the appropriate k. It starts by mapping input data into
a growing neural gas (GNG). The spectral clustering continues
by decomposing the graph Laplacian L. The obtained eigen-
vectors were examined against a relevance metric to select the
ones that provides best separation of graph nodes penalized by
their eigenvalues. In the embedding space Rm×k, the value of
k was estimated by another relevance metric that measures the
separation of clusters and the accumulated sum of eigenvalues.

3.1. Growing Neural Gas

Growing neural gas (GNG) was proposed by Fritzke (1995),
it was an improvement over self-organizing map (SOM) and
neural gas (NG). GNG starts by introducing a random point xi

to the competing neurons. The winning neuron is the nearest
and called the best matching unit wb:

‖xi − wb‖ = min
i
{‖xi − wi‖} (1)

Then GNG computes the error of wb using:

error(wb, t + 1) = error(wb, t) + ‖wb − xi‖
2 (2)

The new positions of wb and its topological neighbors are com-
puted as per the following adaption rules:

wb(t + 1) = εb(xi − wb)
wd(t + 1) = εk(xi − wd)

(3)

d represents all direct topological neighbors of wb, whereas
εb and εd determine the amount of change. GNG introduces
a new neuron to the map if the current iteration is a multiple
of some parameter l. It first finds the neuron with the maxi-
mum accumulated error wq, then determines its neighbor with
the largest error w f . The new neuron is inserted between wq and
w f and connects to both of them. The training stops if quanti-
zation error is stable.

3.2. Approximating Data in Feature Space

To perform spectral clustering on large input data, a prepro-
cessing step using growing neural gas was deployed to mini-
mize the input data. GNG was selected over the original pre-
processing of k-means (Yan et al. (2009)) for two reasons. First,
unlike k-means that places representatives and let the similarity
measure connects them, GNG places representatives and con-
nects them with edges. This leaves the similarity measure with
an easy task of only weighing those edges produced by GNG,
which is usually a sparse graph. Second, GNG uses the com-
petitive Hebbian rule to draw edges, which produces a graph
called “induced Delaunay triangulation”. This graph forms a
perfectly topology preserving map of input data (see Theorem
2 in Martinetz (1993) and the discussion therein).

The most influential parameter of GNG is its size (m). In
case of images, ideally, we would like to capture all color pat-
terns with less number of neurons. Therefore, setting the lower

 

MIRFLICKR-25000 

Fig. 2. (Top) Synthetic data quantization error for m ∈

{4, 8, 16, 32, 64, 128, 256}, showing that m = 32 is an elbow point.
(Bottom) Distribution of the number of peaks in the color histogram for
25000 images retrieved from MIRFLICKR-25000. The red vertical line is
the size of GNG (best viewed in color).

bound for GNG size was very critical. To uncover color pat-
terns, we examined color histogram peaks in 25000 images re-
trieved from MIRFLICKR-25000 (Huiskes and Lew (2008)).
The distribution of color peaks illustrated in Fig. 2, in which
it is observable that setting m in GNG to 100 neurons is suffi-
cient to capture all color patterns. In case of synthetic data, a
range of m values were examined using k-means++ algorithm.
m was set as the number that represents an elbow point in the
quantization error curve (Fig. 2).

3.3. Performing Spectral Clustering

When m neurons are trained to approximate n points (m �
n), they became ready to be processed by spectral clustering.
The first step is to construct the affinity matrix A = {Ai j}

m
i, j=1,

where Ai j denotes the similarity between wi and w j. Commonly,
A is constructed by a kernel with a global scale σ. In spite
of its popularity, global σ processed all data points equally re-
gardless of their status in the feature space. Therefore, it could
be challenged when input data contains different local statistics
(Zelnik-Manor and Perona (2005)). A more reasonable selec-
tion of the scaling parameter is to set it locally as:

Ai j = exp
(
−d2(wi,w j)

σiσ j

)
, where (i, j) ∈ EGNG (4)

The local scale σi could be set as:

σi = d(wi,wK) (5)

wK is the Kth neighbor of wi. In Zelnik-Manor and Perona
(2005), it was set as K = 7, however, in our case it was set as
K = 1, that is the direct neighbor of wi. This was consequent
to the reduction performed by GNG in the preprocessing. The
degree matrix D is defined as Dii =

∑
j A ji. The diagonal in D

denotes the degree for all {wi}
m
i=1. Then, the normalized graph
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Fig. 3. Top eigenvectors of the approximated graph for the synthetic data.

Laplacian is computed as Lsym = D−
1
2 LD−

1
2 = I − D−

1
2 AD−

1
2

(von Luxburg (2007)).

3.4. Evaluation of Graph Laplacian Eigenvectors

Decomposing Lsym produces m nonnegative real-valued
eigenvalues 0 = λ1 ≤ · · · ≤ λm. The graph nodes are separable
in the space Rm×k spanned by the eigenvectors corresponding
to k smallest eigenvalues. One way to uncover k is to count the
eigenvalues of multiplicity 0 (von Luxburg (2007)). However, k
is not always clear in eigenvalues and relying on this to uncover
the number of clusters might not hold in case of noise (Zelnik-
Manor and Perona (2005)). Another way to estimate the num-
ber of dimensions in Rm×k is to recover the rotation that best
aligns the neurons to a block-diagonal matrix L (Zelnik-Manor
and Perona (2005)). The combination of eigenvectors that best
recover such an alignment is the optimal set to construct Rm×k.
However, recovering the alignment becomes more expensive as
we approach m, since an m × m space needs to be rotated. This
entails the tuning of another parameter that is kmax.

According to von Luxburg (2007), the eigenvector corre-
sponding to the second smallest eigenvalue provides a solu-
tion to the Normalized Cut (NCut) problem. Therefore, the
first eigenvector indicates the connectivity of the graph and the
second indicates the largest cut in the graph, then more eigen-
vectors are included if there are more clusters. Fig. 3 shows an
empirical validation on the usefulness of the second eigenvector
e2. Given that the true k equals 3, the e2 and e3 eigenvectors are
the most informative. In contrast, e4, e5, and e6 contain no sep-
aration of graph nodes. Therefore, we define a relevance metric
Rek that measures the ability of separating the graph nodes into
2, 3, and 4 clusters. Additionally, this quantity was penalized
by the eigenvalue corresponding to that eigenvector, to promote
eigenvectors with smaller eigenvalues:

Rek =

∑4
c=2 DBIc(ek)

λi
, 1 ≤ i ≤ m (6)

DBIc is the Davies–Bouldin index value defined as:

DBIc(ek) =
1
c

c∑
i=1

max
i, j

{S c(Qi) + S c(Q j)
dce(Qi,Q j)

}
(7)

Given one dimensional data {w1,w2, · · · ,wn} in ek, it could
be clustered into {Q1,Q2, · · · ,Qc} clusters where c ∈ {2, 3, 4}.

 

Input data Approximated weighted graph 𝑅𝑒𝑘scores histogram 

Fig. 4. Input data approximated using GNG, and the weights obtained
through local σ. The Rek histograms suggest that two eigenvectors are suf-
ficient to cluster synthetic data and four eigenvectors to segment the image.
The red vertical lines represent the interval [µ ± σ] (best viewed in color).

S c(Qi) is within-cluster distances in cluster i, and dce(Qi,Q j) is
the distance between clusters i and j.

Rek enables us to attach a score with every eigenvector for
evaluation in order to select the most informative eigenvectors.
By definition, an informative eigenvector has a substantially
large Rek due to its small eigenvalue and large DBI score. Con-
sequently, that eigenvector should standout from the remain-
ing eigenvectors which are close to the mean score (µ) of Rek .
Therefore, the selected eigenvectors are the ones that fall out-
side the interval [µ ± σ], where µ is the mean Rek score and
σ is the standard deviation of Rek scores. The bin size of this
histogram was set as per Freedman-–Diaconis rule that is de-
fined as 2Rm−1/3, where R is the inter–quartile range. The
qualified eigenvectors from Rek histogram, constitute the matrix
X ∈ Rm×k.

On synthetic data, Rek performs efficiently to highlight the in-
formative eigenvectors, since the graph is usually disconnected
and the data is clearly separable. However, this is not the case
in realistic data (e.g., images). Such data contain intercon-
nected components that might promote unnecessary eigenvec-
tors. Therefore, certain precautions have to be taken to make
sure that X is discriminative for k-means to find the true clus-
ters. In Fig. 5, we segmented the pigeon image using the eigen-
vectors qualified from Rek histogram shown in Fig. 4 (i.e., e2,
e3, e4, and e5). Interestingly, we could achieve more polished
segmentation if we dropped the last eigenvector. This is justi-
fied by the amount of variance explained by the eigenvectors.
e2, e3, and e4 accumulate almost 80% of the variance. Hence,
to ensure that X remains discriminative, we performed a prin-
ciple component analysis (PCA) on the eigenvectors qualified
from Rek histogram, and kept the ones that represent 80% of the
variance. We called the obtained matrix X∗ ∈ Rm×k.

3.5. Clustering in the Embedding Space Rm×k

The embedding space Rm×k is spanned by the eigenvectors
selected by Rek histogram. In this space, the graph nodes form
convex clusters. Therefore, they could be detected by k-means.
One issue needs to be addressed is the number of clusters in
the embedding space to run k-means. An intuitive way, to es-
timate k is to measure Davies–Bouldin index over multiple k
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Fig. 5. clustering results obtained through X and X∗.

Fig. 6. Testing a range of k values to return the one with the lowest score
(data in Fig. 3). With large k values, DBI tends to give a good score due to
better separation. But our proposed criterion penalizes large k values and
increases sharply to highlight the true k (k = 3) (best viewed in color).

values. However, DBI tends to favor large values of k for bet-
ter separation (see Fig. 6). A better approach would be uti-
lizing the graph Laplacian eigenvalues to penalize large values
of k that accumulate large sum of eigenvalues. Proposition 2
in (von Luxburg (2007)) states that “the multiplicity k of the
eigenvalue 0 of L equals the number of connected components
in the graph”. Hence, a small sum of eigenvalues is preferable
while examining different k values. Simply, this metric looks
for the value of k that provides best separation of graph nodes
and at the same time accumulates a small sum of eigenvalues.

Rk = DBIk(X∗) +

k∑
i=1

λi , 2 ≤ k ≤ m (8)

4. Experiments

Five methods were used to estimate the number of dimen-
sions for the embedding space Rm×k. 1) eigengap method (von
Luxburg (2007)), 2) eigenvectors alignment method (Zelnik-
Manor and Perona (2005)), 3) Low-Rank Representation met-
ric used in (Liu et al. (2013)) with τ = 0.08, 4) X, where the
number of dimensions was estimated via Rek score, 5) X∗ is a
refined version of X to keep the eigenvectors that hold 80% of
the variance. To maintain a fair comparison amongst competing
methods, the number of clusters in Rm×k was estimated using
the metric in equation 8. All experiments were implemented

Table 1. Clustering results on synthetic datasets.

 

 

   

  

𝑛 312 299 266 788 

𝑚 64 32 32 128 

eigengap 0.35 ± 0.0 0.50 ± 0.1 0.52 ± 0.1 0.56 ± 0.1 

eigenvectors alignment 0.53 ± 0.2 0.56 ± 0.1 0.64 ± 0.1 0.61 ± 0.2 

LRR cost 0.48 ± 0.0 0.35 ± 0.0 0.30 ± 0.0 0.87 ± 0.1 

𝑋 0.65 ± 0.1 0.90 ± 0.1 0.97 ± 0.1 0.83 ± 0.0 

𝑋∗ 0.71 ± 0.2 0.93 ± 0.1 0.98 ± 0.1 0.79 ± 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in MATLAB 2017b and carried out on a Windows 10 machine
with 3.40 GHz CPU and 8GB of memory.

4.1. Synthetic data

Table 1 shows the clustering results of 100 runs for every
method, where m was selected as the elbow point in the quan-
tization error curve. Some of used data was provided in sup-
plementaries1 of (Zelnik-Manor and Perona (2005)). The effi-
ciency of the proposed method (X∗) was clearly demonstrated
across the four datasets, particularly in second and third datasets
where it was close to full mark. Eigengap and eigenvectors
alignment did not perform as well as X and X∗. Their low per-
formances were due to large number of eigenvectors passed as
dimensions for Rm×k, which confuses the number of clusters es-
timation in that space. The performance of LRR cost fluctuates
across different datasets which highlights the large influence of
the parameter τ.

4.2. Real Images

Weizmann segmentation evaluation dataset2 contains 100
RGB images, each of which has a single foreground object.
Also, it provides three versions of human segmentation. The
accuracy of the segmentation method was measured in terms
of F-measure for the foreground class segmented by humans.
This dataset was introduced by Alpert et al. (2007), where au-
thors used the original version of spectral clustering (NCut) (Shi
and Malik (2000)) for benchmarking. That version used man-
ual selection for the parameter k, hence, we used that score as
a baseline to evaluate the competing methods in this study. The
produced segmented image was post processed using 3× 3 me-
dian filter to smooth small artifacts.

In Table 2, the baseline score was 0.72 for the spectral clus-
tering where k was manually set. The competing methods de-
viated from the baseline score by −0.24, −0.19, −0.15, −0.11,
and −0.08. This observation demonstrates the efficiency of the
proposed method compared to the baseline. The first 3 meth-
ods tend to provide more eigenvectors for the embedding space
Rm×k which makes the task of detecting the number of clusters

1http://lihi.eew.technion.ac.il/files/Demos/

SelfTuningClustering.html
2http://www.wisdom.weizmann.ac.il/~vision/Seg_

Evaluation_DB/
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Table 2. Results on Weizmann segmentation evaluation dataset. The num-
ber in parentheses indicates the deviation from the baseline score.

Segmentation method Segmentation F-score 

NCut (Alpert et al. (2007)) 0.72 ± 0.018 

eigengap 0.48 ± 0.1 (-0.24) 

eigenvectors alignment 0.53 ± 0.1 (-0.19) 

LRR cost 0.57 ± 0.1 (-0.15) 

𝑋 0.61 ± 0.1 (-0.11) 

𝑋∗ 0.64 ± 0.2 (-0.08) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Segmentation results on BSDS500. The number in parentheses
indicates the deviation from the baseline score.
 

Segmentation method Covering PRI VI 

NCut (Arbelaez et al. (2011)) 0.45 0.78 2.23 

eigengap 0.31 (-0.14) 0.69 (-0.09) 3.49 (1.26) 

eigenvectors alignment 0.34 (-0.11) 0.65 (-0.13) 3.10 (0.87) 

LRR cost 0.36 (-0.09) 0.67 (-0.11) 2.97 (0.74) 

𝑋 0.37 (-0.08) 0.69 (-0.09) 2.96 (0.73) 

𝑋∗ 0.38 (-0.07) 0.67 (-0.11) 2.82 (0.59) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

difficult. For X, the proposed metric was good, but we could
achieve a better performance if only keep the eigenvectors that
hold 80% of the variance as in X∗.

Berkeley Segmentation Data Set (BSDS500)3 is a more com-
prehensive dataset to evaluate segmentation methods. It con-
tains 500 images alongside their human segmentation. It also
provides three segmentation evaluation metrics: segmentation
covering, probabilistic rand index (PRI), and variation of infor-
mation (VI). A good segmentation would result in high cover-
ing, high PRI, and low VI scores. Arbelaez et al. (2011) tested
a version of spectral clustering on (BSDS500), it is called Multi
Scale NCut (Cour et al. (2005)). The scores on that study were
used as a baseline for the competing methods here. In that spec-
tral clustering implementation, k was set manually and the size
of the affinity matrix A was n × n.

As illustrated in Table 3, eigengap performed badly in terms
of covering and VI, although it got a good PRI score. Strug-
gling performances by the first three methods were due to the
large number of eigenvectors passed for the embedding space.
Better scores were achieved by X and X∗ with a clear advantage
for X∗. This emphasizes that keeping the eigenvectors that are
accountable for 80% of the variance would produce better seg-
mentation than using all eigenvectors. Comparing X∗ to NCut
scores reported in Arbelaez et al. (2011), where k was manually
set, would be more insightful. X∗ deviated from the baseline
method by −0.07, −0.11, and +0.59 in covering, PRI, and VI
respectively. This deviation was due to approximating the input
image by m representatives then estimating the value of k in two
locations of the spectral clustering pipeline.

3https://www2.eecs.berkeley.edu/Research/Projects/CS/

vision/grouping/resources
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Fig. 7. Examples for large and small differences between manual and auto
settings. Rows ordered as: original, human segmentation, manual k, and
auto k. The number beneath is the F-score (best viewed in color).

We rerun Weizmann dataset with manual setting to compare
against auto estimated k. The mean difference µ between man-
ual and auto k was 0.08 and the standard deviation σ was 0.09.
The difference was larger than µ + 2σ in 3 images. We suspect
the human semantics incorporated in the ground truth cause
these bad scores. For example, the image of the cat in Fig.
7 was segmented as per human perspective regardless of col-
ors presence. Although the colors were segmented correctly by
auto k, it was not the desired output by the human segmentation.
On the other hand, when the human segmentation has limited
colors, we could get competitive results as shown in Fig. 7.

The final experiment was a comparison with some approx-
imate spectral clustering methods. Wang and Dong (2012)
pulled out four images from BSDS500 to compare four ap-
proximate methods: multi-level low-rank approximate spectral
clustering-original space (MLASC-O), Nyström-based spectral
clustering (Nyström), INyström with k-means (INyström), and
k-means approximate spectral clustering (KASP). We used the
aforementioned methods as a baseline of our proposed ap-
proach, however k was provided manually in these methods.
As shown in Table 4, X∗ outperformed the competing meth-
ods in third and fourth images, with a clear advantage in the
fourth one. For the first two images, X∗ deviated by −0.0436
and −0.0330 from the best performer in terms of segmentation
covering.

5. Conclusions

Spectral clustering is an effective clustering tool that is able
to detect non-convex shaped clusters. Despite its effectiveness,
the computational demands of spectral clustering hold it back
from being practically integrated into real applications. The ef-
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Table 4. Comparing the proposed method with the results reported in (Wang and Dong (2012)). The number in parentheses indicates the deviation from
the best score (in bold), and its color illustrates the change direction.

Image 

    

Proposed method output 

    

Evaluation metric Covering PRI VI Covering PRI VI Covering PRI VI Covering PRI VI 

Proposed method 
0.4123 

(-0.0436) 

0.7304 

(-0.0798) 

2.5961 

(0.2605) 

0.5449 

(-0.0330) 

0.7383 

(-0.0435) 

2.0457 

(0.1352) 

0.5486 

(0.0895) 

0.6368 

(0.0314) 

1.9997 

(-0.3529) 

0.6548 

(0.1989) 

0.8407 

(0.0930) 

1.3756 

(-0.5561) 

Other 

approximation 

methods (Wang 

and Dong 

(2012)) 

MLASC-O 0.4559 0.8102 2.3437 0.5779 0.7818 1.9105 0.3879 0.5638 2.7682 0.4559 0.7477 1.9317 

Nyström 0.4275 0.7977 2.7179 0.5596 0.7726 1.985 0.3772 0.5608 2.8727 0.3625 0.7391 2.5098 

INyström 0.2767 0.7436 3.4722 0.5026 0.7389 2.3529 0.4591 0.6054 2.3526 0.4462 0.7356 2.0553 

KASP 0.4465 0.7387 2.3356 0.5692 0.7729 2.033 0.3766 0.5673 2.7855 0.4428 0.7128 2.051 

 

  

ficient solution was to provide an approximation of input data.
One factor was common among previous approximation tech-
niques was the assumption of prior knowledge of the number of
clusters k.

An automated estimation of k alongside topology preserving
approximation, were introduced in this work. We achieved that
by setting two metrics, the former of which selects the embed-
ding space dimensions Rm×k, while the latter detects the number
of clusters in Rm×k. The first metric measure the relevance of
an eigenvector ek based on its separation as well as possessing
a small eigenvalue. Subsequently, the second cost function pro-
motes the value of k that separates the graph nodes better, and
at the same time accumulates a small sum of eigenvalues. Ex-
periments demonstrate that the proposed approach provides a
competitive performance to the methods where k was manually
set.
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