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ABSTRACT

We describe a novel learning-by-synthesis method for estimating gaze direction of an automated in-
telligent surveillance system. Recently, progress in learning-by-synthesis has proposed training mod-
els on synthetic images, which can effectively reduce the cost of manpower and material resources.
However, learning from synthetic images still fails to achieve the desired performance compared to
naturalistic images due to the different distribution of synthetic images. In an attempt to address this
issue, previous method is to improve the realism of synthetic images by learning a model. However,
the disadvantage of the method is that the distortion has not been improved and the authenticity level
is unstable. To solve this problem, we put forward a new structure to improve synthetic images, via
the reference to the idea of style transformation, through which we can efficiently reduce the distortion
of pictures and minimize the need of real data annotation. We estimate that this enables generation
of highly realistic images, which we demonstrate both qualitatively and with a user study. We quanti-
tatively evaluate the generated images by training models for gaze estimation. We show a significant
improvement over using synthetic images, and achieve state-of-the-art results on various datasets in-
cluding MPIIGaze dataset.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In ordinary day-to-day behaviour humans identify the in-
tentions of others by drawing on knowledge of the world that
they have accumulated throughout their lifetime. On the con-
trary, for intelligent surveillance system (Hu et al. (2017)),
world knowledge is very limited, thus making it very difficult
to make such inferences. Eyes and their movements can rep-
resent feelings and desire, reveal human attention and play an
important role in social communication. Therefore, gaze esti-
mation method becomes an effective means to guide the intelli-
gent surveillance system to recognize Wang et al. (2016b); Feng
et al. (2018) the personal intention. We can capture people’s at-
tention priority via gaze estimation technology. Furthermore,it
makes the judgement of people’s criminal intent effective.

There is no denying that, in recent years, gaze estimation
has been able to meet the needs of actual landing scenar-
ios such as intelligent surveillance system under the training
of a large amount of data. However, due to the high cost
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of time and bankroll, solutions are required to tackle these
problems. When it comes to this matter, human give priority
to the synthetic image because the annotations are automati-
cally available. However, learning the misleading synthetic im-
ages cause owing to the gap between synthetic and real image
distributions-synthetic data is not the copy of the realism, the
details represented confuse the network and render it fail to
complete the mission.

As such, one solution is to improve the simulator. But in-
creasing the authenticity is computationally expensive, design-
ing a renderer is a heavy workload, and the top renderer may
still be difficult to model all the features of the real image. This
may make the model over fitting in the ”unreal” details of the
synthetic image. The other solution is to improve the distri-
bution of synthetic images and make them closer to the real
pictures. The current method of state-of-the-art is Shrivastava
et al. (2016). We adopt a neural network model similar to Gen-
erative Adversarial Networks (GAN). The main use of GAN
was to train computers to generate some emanational pictures.
To be graphic, it uses a synthetic-image-producing network to
be against another dataset that produces real pictures, and then
distinguish it with a separate distinction network. On the base
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of GAN, they make some big difference on models. For ex-
ample, they input synthetic images instead of random vectors
and propose a learning model called Simulated + Unsupervised
ultimately.

The contribution of this paper to computer vision, in addition
to a new learning model, also includes using the model success-
fully train an optimized network (Refiner) on the premise of
no artificial annotation and rendering computers generate more
real synthetic images. However, the disadvantage of the method
is that the distortion is not improved and the authenticity level
is not stable. So, to solve this problem, we put forward a new
structure, which can improve synthetic images, via the refer-
ence to the idea of style transformation to efficiently reduce the
distortion of pictures and minimize the need of real data anno-
tation. The same as general GAN structure, our framework also
includes the generation network G and the distinction network
D. We improve the structure of the image generation part and
change the input from the random vector to the content of real
image distribution and the simulation picture together. It will
make the generation more stable, avoiding the randomness of
distribution. It will also achieve a stable distribution in a short
time. We modify the way of loss evaluating of the distinction
network and add regular items to ensure the authenticity of the
pictures.

In summary, our contributions are five-fold:
1. We propose a new structure, which can improve synthetic

images, via the reference to the idea of style transformation to
efficiently reduce the distortion of pictures and minimize the
need of real data annotation.

2. We improve the structure of the image generation part and
modify the way of loss evaluating of the distinction network and
add regular items to ensure the authenticity of the pictures. It
will make the generation more stable, avoiding the randomness
of distribution.

3. We performance experiments to verify proposed structure
can generate highly realistic images steadily by qualitative and
user research. Meanwhile, the training model of gaze estima-
tion is used to evaluate produced images quantitatively. Com-
pared with the synthetic images used, we implemented the best
results on multiple datasets.

2. Related Works

The most prominent contemporary approach to refine syn-
thetic images (change the distribution of synthetic images) is
based on generative adversarial networks (GANs).The GANs
framework learns a generator and a discriminator with com-
peting losses. The goal of generator is to map the a random
vector to a realistic image,whereas the goal of the discrimina-
tor is to distinguish the generated and the real images. In the
original work of Goodfellow et al. (2014), GANs (Goodfellow
et al. (2014)) were used to generate visually realistic images.
Since then ,many improvements have been proposed to real-
ism synthetic images. Wang and Gupta (2016) used a Struc-
tures GANs to learn surface normals and then combine it with
a Style GANs to generate natural indoor scenes. Dosovitskiy
and Brox (2016) introduced a family of composite loss func-
tions for image synthesis, which combined regression over the

activations of a fixed perceiver network with a GANs (Goodfel-
low et al. (2014)) loss. Wang et al. (2015c) trained a Stacked
Convolutional Auto-Encoder on synthetic and real data to learn
the low-level representations of their font detector ConvNet.

Wang et al. (2015b) presented a novel approach towards
subspace clustering over multi-view data(Wang et al. (2015a);
Wang and Wu (2018); Wang et al. (2016a)), and further not only
proposed an iterative structured low-rank optimization method
to multi-view spectral clustering (Wang et al. (2016c) Wang
et al. (2018a)), but also a collaborative deep network for robust
landmark retrieval(Wang et al. (2017)). Wu et al. (2018a) pro-
posed a principled deep feature embedding approach for person
reidentification and presented a novel deep attention-based spa-
tially recursing model for fine-grained visual recognition(Wu
et al. (2018c,d,b)).

The most relevant to our work is Shrivastava et al.
(2016) which propose Simulated+Unsupervised (S+U) learn-
ing, where the task is to learn a model to improve the realism of
a simulators output using unlabeled real data, while preserving
the annotation information from the simulator. They develop a
method for S+U learning that uses an adversarial network sim-
ilar to Generative Adversarial Networks (GANs), but with syn-
thetic images as inputs instead of random vectors. Similar with
Shrivastava et al. (2016), we also uses an adversarial network
similar to Generative Adversarial Networks (GANs) to refine
the synthetic images, but we improve the structure of the image
generation part and change the input from the random vector to
the content of real image distribution and the simulation picture
together. It will make the generation more stable, avoiding the
randomness of distribution. It will also achieve a stable distri-
bution in a short time. Besides that, we modify the way of loss
evaluating of the distinction network and add regular items to
ensure the authenticity of the pictures.

Style transfer algorithms is another way to change the dis-
tribution of images. Global style transfer algorithms process an
image by applying a spatially-invariant transfer function. These
methods are effective and can handle simple styles like global
color shifts (e.g., sepia) and tone curves (e.g., high or low con-
trast). For instance, Reinhard et al. match the means and stan-
dard deviations between the input and reference style image
after converting them into a decorrelated color space. Local
style transfer algorithms based on spatial color mappings are
more expressive and can handle a broad class of applications.
For instance, Dosovitskiy et al. (2017) train a ConvNet to gen-
erate images of 3D models, given a model ID and viewpoint.
The network thus acts directly as a rendering engine for the 3D
model. pix2pix of Isola et al. (2017), which uses a conditional
GAN to learn a mapping from input to output images. Similar
ideas have been applied to various tasks such as generating pho-
tographs from sketches or from attribute and semantic layouts
(Karacan et al. (2016)). Unlike the earlier work, our approach
improve synthetic images, via the reference to the idea of style
transformation to efficiently reduce the distortion of pictures
and minimize the need of real data annotation.
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Fig. 1. The overview of proposed methods.

3. Proposed Method

Our proposed network (As Fig.1) takes two images with their
mask: the reference style image which is a set of naturalistic eye
image from video of driving environment or naturalistic eye im-
age dataset. A stylized and retouched image referred as the in-
put image from synthetic image dataset. We use this to train the
gaze estimation, as we seek to transfer the style of the reference
to the input while keeping the content and spatial information
due to its importance in appearance-based gaze estimation. The
proposed network can be divided into four parts: coarse seg-
mentation network, feature extraction network, Generator and
Discriminator.

We train the semantic segmentation network which builds
upon an efficient redesign of convolutional blocks with resid-
ual connections to segment, according to the line of gaze esti-
mation for the naturalistic image. One of the great benefits of
synthetic data is that its semantic information is clearer. Thus
the challenge is mainly on segment naturalistic image. Resid-
ual connections can avoid the degradation problem with a large
amount of stacked layers. Our architecture is fully depicted in
fig.2. Number o f f eature maps at layers @ output resolution
is shown under each block.

Input 

1024×1024
16@512×512 64@256×256 64@256×256 16@512×512

Output 

1024×1024
128@128×128

Downsampler 

block

Residual block

Upsampler 

block

Fig. 2. The overview of semantic segmentation network.Number o f f eature
maps at layers @ output resolution is shown under each block. The network
has three kinds of block. The structure of these block is shown in fig.2.
We follow an encoder-decoder architecture to avoid the need of using skip
layers to refine the output. Furthermore, in consideration of simplifying
the task, we only mark two kinds of information on the naturalistic image:
the pupil and the iris.

As we know, Residual block consist of many stacked Resid-
ual Units and each unit can be expressed in a general form as
yl = h(xl) + F(xl,Wl,xl+1 = f (yl) where xl and xl+1 are input
and output of the l − th unit, and F is a residual function. In
yl = h(xl) + F(xl,Wl,xl+1 = f (yl), h(xl) = xl is an identity
mapping and f is a ReLU function. We try to change the resid-
ual network structure makes the association between features
stronger. Furthermore, in consideration of simplifying the task,
we only mark two kinds of information on the naturalistic im-
age: the pupil and the iris. However, many naturalistic images
are influenced by light and other factors, and sometimes the

pupil and the iris cannot be completely separated, to avoid ”or-
phan semantic labels” that are only present in the input image,
which the ”orphan labels” usually are pupil region because of
the outdoor illumination effect, we constrain the pupil semantic
region to be set as the center of iris region. We have also ob-
served that the segmentation does not need to be pixel accurate
since eventually, the output is constrained by feature extraction
network.

3.1. Feature Extraction network

The architecture of the feature extraction network is shown as
Fig.3, the network has an encoder-decoder structure with skip
connections. To ensure the features are consistent within each
instance, we add an instance wise average pooling layer to the
putput of the encoder to compute the average feature for the in-
stance. The decoder uses the representation to synthesize pro-
gressively finer feature maps.

Encoder. Our encoder is based on VGG-19. The network
consists of five models and each module contains a number of
convolutional layers with layer normalization, ReLU and av-
erage pooling. The first module has two convolutional layers,
while each of the other modules have three.

Decoder. Our decoder is based on the cascaded refinement
network (CRN). The network is a cascade of refinement mod-
ules. Each refinement module contains two convolutional lay-
ers with layer normalization and Leaky ReLU.

Features

Convolution Pooling Upsampling

Generator G

Fig. 3. Using instance-wise features in addition to labels for generating im-
ages.

3.2. Generator G

We decompose the generator into two-subnetworks:G1 and
G2. We term G1 as the global generator network and G2 as
the local enhancer network. The generator is then given by the
tuple G = G1,G2 as visualized in Fig.5. The global gener-
ator The global generator network operates at a resolution of
297 × 297, and the local enhancer network outputs an image
with a semantic layouts that is the output of the previous se-
mantic segmentation network (Deng et al. (2018)).

Our global generator is built on the architecture proposed by
Johnson et al. [22], which has been proven successful for neural
style transfer on images. It consists of 3 components: a convo-
lutional front-end G1(F), a set of residual blocks G1(R) and a
transposed convolutional back-end G1(B).

The local enhancer network also consists of 3 components: a
convolutional front-end G2(F) , a set of residual blocks G2(R),
and a transposed convolutional back-end G2(B). Different from
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Fig. 4. Network architecture of our generator.

the global generator network, a semantic label map is passed
through the 3 components sequentially to output an image with
instance segmentation information and the input to the resid-
ual block G2(R) is the element-wise sum of two feature maps:
the output feature map of G2(F) , and the last feature map of
the back-end of the global generator network G1(B). This helps
integrating the global information from G1 to G2.

During training, we first train the global generator and then
train the local enhancer in the order of their scale. We then
jointly fine-tune all the networks together. We use this generator
design to effectively aggregate global and local information for
the image synthesis task.

3.3. Discriminator D
Realistic image synthesis poses a great challenge to the GAN

discriminator design. To differentiate distribution real and syn-
thesized images, the discriminator needs to have a large recep-
tive field with instance segmentation information on global and
local images. This would require either a deeper network or
larger convolutional kernels. As both choices lead to an in-
creased network capacity, overfitting would become more of
a concern. Also, both choices require a larger memory foot-
print for training, which is already a scarce resource for re-
alistic image generation. Inspired by Style Transfer, we pro-
pose Discriminator D with novel loss function which is a pre-
trained VGG-19 ( citeSimonyan2014) network and made some
key modifications to the standard perception losses to keep the
distribution of the naturalistic images and content of the syn-
thetic images to the fullest extent. As Fig.5 shows that instead
of taking only RGB color channels into consideration, our net-
work utilizes the representations of both color and semantic fea-
tures for style transfer. With the semantic features, we can ad-
dress the spatial arrangement information and avoid the spatial
configuration of the image being disrupted because of the style
transformation.

Feature Gram matrices are effective at representing texture,
because they capture global statistics across the image due to
spatial averaging. Since textures are static, averaging over po-
sitions is required and makes Gram matrices fully blind to the
global arrangement of objects inside the reference real image.
So if we want to keep the global arrangement of objects, make
the gram matrices more controllable to compute over the exact
region of entire image, we need to add some texture informa-
tion to the image. Luan et al. (2017) present a method which
add the masks to the input image as additional channels and
augment the neural style algorithm by concatenating the seg-
mentation channels, inspired by it, mask is added as the texture

information we need to compute over the exact region of entire
image, thus the style loss can be denoted as:

`l
style = λg`

l
gs + λl`

l
ls (1)

`l
gs =

C∑
c=1

1
4N2

l,cM2
l,c

∑
i j

(Gl[O] −Gl[S ])2
i j (2)

`l
ls =

C∑
c=1

1
4N2

l,cM2
l,c

∑
i j

(
Gl,c[O] −Gl,c[S ]

)2
i j (3)

where C is the number of channels in the semantic segmen-
tation mask and l indicates the l-th convolutional layer of the
deep convolutional neural network. Each layer with Nl distinct
filters has Nl feature maps each of size Ml, where Ml is the
height times the width of the feature map. So the responses in
each layer l can be stored in a matrix F[·] ∈ RNl×Ml where F[·]i j

is the activation of the ith filter at position j in each layer l.

Fl,c[O] = Fl[O]S l,c[I] (4)

Fl,c[S ] = Fl[S ]S l,c[S ] (5)

Gl,c[·] = Fl,c[·]Fl,c[·]T (6)

S l,c[·] is the segmentation mask in each layer l with the chan-
nel c. λg is the weight to configure layer preferences of global
losses `gs which calculated between raw input image and fea-
tures which was extracted by feature extraction network.λl is
the weight to configure layer preferences of local losses `ls

which calculated between input segmentation image and fea-
tures which was extracted by feature extraction network with
the input of segmentation image.

We now describe how we regularize this optimization
scheme to preserve the structure of the input image and produce
realistic but no distorted outputs. Our strategy is to express this
constraint not on the output image directly but on the transfor-
mation that is applied to the input image. We name Vc[O] the
vectorized version (N × 1) of the output image O in channel c
and define the following regularization term that penalizes out-
puts that are not well explained by a locally affine transform:

`m =

3∑
c=1

Vc[O]T Vc[O] (7)

We formulate the realistic but no distorted style transfer objec-
tive by combining all 3 components together:

Ltotal = η

L∑
l=1

βl`
l
style + ϑ`m (8)

where η = 102,ϑ = 104

Our full objective combines both GAN loss `GAN and style
tranfer loss Ltotal as:

minG(
∑

`GAN(G, `l) + λ
∑

Ltotal) (9)

where λ controls the importance of the two terms.
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4. Experimental Results

4.1. Implementation Details
This section describes the implementation details of our ap-

proach. We employed the pre-trained VGG-19 as the feature
extractor. We chose conv42(αl = 1 for this layer,αl = 0 for other
layers) as the local content representation, and conv11, conv21,
conv31, conv41, and conv51(βl = 1

5 for these five layers,βl = 0
for all other layers) as the local style representation. conv32
(αl = 1 for this layer,αl = 0 for other layers) as the global con-
tent representation, and conv12, conv22, conv33, conv43, and
conv53 (βl = 1

5 for these five layers,βl = 0 for all other layers)
as the global style representation. We used these layer prefer-
ences and parameters µ = 102 for all the results.

In order to validate the effectiveness of the proposed method
for controllable style transfer, we performed an experiment on
LPW dataset Tonsen et al. (2016) which cover people with dif-
ferent ethicalities, a diverse set of everyday indoor and outdoor
illumination environments, as well as natural gaze direction dis-
tributions.

In order to verify the effectiveness of the proposed method
for gaze estimation, 3 public datasets were used to train the
estimator with k-NN Wang et al. (2018b), MPIIGaze dataset
Zhang et al. (2017) is used for test the accuacry. Three public
datasets are:

UTView Sugano et al. (2014a): The data of subjects S0-S8
in UTView are used as subject 1–9 in our dataset. In total, there
are 144 (head pose) × 160 (gaze directions) × 9 (subjects) =

20,7360 training samples.
SynthesEyes Wood et al. (2015): contains 11,382 synthe-

sized close-up images of eyes. There are ten dynamic eye re-
gion model in this collection. The eye images are under a wide
range of head poses, gaze directions, and illumination condi-
tions.

UnityEyes Wood et al. (2016): can rapidly synthesize large
amounts of variable eye region images as training data. The
model is based on high-resolution 3D face scans and uses real-
time approximations for complex eyeball materials and struc-
tures as well as anatomically inspired procedural geometry
methods for eyelid animation. Here, the dataset contains 28,332
synthetic eye images with different eye region model and eye-
ball materials.

4.2. Qualitative Results
To evaluate the qualification of our result, we compare pro-

posed method with three state-of-the-art method, to compare
the effective of proposed GAN with style transfer architec-
ture, we compare with the Gatys et al. (2015) and Feifei Li et
al.Johnson et al. (2016) which only use style transfer and Shri-
vastava et al. (2016) which only use GAN. Basides that, we
show the result of without modify generator and without mod-
ify discriminator. With all this five baseline method, we show
the result of two different dataset which is UnityEyes Wood
et al. (2016) and SynthesEyes Wood et al. (2015). As Fig.8
and Fig.9 we can see that if closely observed, it can be seen
that none of these styles has similar gaze angle with naturalistic
images. The skin texture and the iris region in the refined syn-
thetic images are qualitatively significantly more similar to the

Feifei Li et al. SimpleGAN Proposed
Without modify 

discriminator

Without modify 

generator
Gatys et al.Original

Fig. 5. Example output of proposed method for UnityEyes gaze estimation
dataset.

Feifei Li et al. SimpleGAN Proposed
Without modify 

discriminator

Without modify 

generator
Gatys et al.Original

Fig. 6. Example output of proposed method for SynthesEyes gaze estima-
tion dataset.

Gatys et al. Feifei Li et al. Proposed

Inter 100

Inter 200

Inter 400

Inter 1000

Inter 800

Without modify 

discriminator

Without modify 

generator

Fig. 7. Example output of proposed method for UnityEyes gaze estimation
dataset for several iteration.

real images than to the synthetic images, it can be observed that
the proposed method is more similar with real conditions by
light and achieves outstanding results above Gatys et al. (2015)
and Feifei Li et al.Johnson et al. (2016). What’s more, compare
with without modify generator and without modify discrimina-
tor, the distribution of pupil and iris regions are dramatically
clear.

In order to validate the effectiveness of the proposed method,
we compared it with available methods for several iteration in
Fig.10 and Fig.11 on different dataset. ”Iter” means the num-
ber of iteration. Because Shrivastava et al. (2016) is not stable
so we only compare our method with Gatys et al. (2015) and
Feifei Li et al.Johnson et al. (2016), we can see that after iter-
ation for serval iteration, proposed method can achieve stable
distribution with less distortion, thus our result can be used as
to train a stable gaze estimator.
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Gatys et al. Feifei Li et al. Proposed

Inter 100

Inter 200

Inter 400

Inter 1000

Inter 800

Without modify 

discriminator

Without modify 

generator

Fig. 8. Example output of proposed method for SynthesEyes gaze estima-
tion dataset for several iteration.

4.3. Appearance-based Gaze Estimation

To verify the effectiveness of the proposed method, we per-
form experiments to assess both the quality of our refined im-
ages and their suitability for appearance-based gaze estimation.
We use COCO dataset to train the train net of coarse model net.
And few of images from MPIIGaze dataset are chosen as tar-
get images. The gaze estimation dataset consists of 28,332 syn-
thetic images from eye gaze synthesizer UnityEyes-fine dataset,
six subjects of UTview datset and 350,428 real images from the
MPIIGaze dataset. For UTview Zhang et al. (2015), the data
of subjects S0, S2, S3, S4, S6 and S8 in UTView are used as
subject 1–6 in our dataset. In total, there are 144 (head pose) ×
160 (gaze directions) × 6 (subjects) = 138,240 training samples
and 8 (head pose) × 160 (gaze directions) × 6 (subjects) = 7680
testing samples.

Table 1. Comparison of our method to the state-of-the-art on the part of
MPIIGaze dataset of real eyes and UnityEyes-fine dataset. The third col-
umn indicates whether the methods are trained on Real/Synthetic data.
The error means eye gaze estimation error in degrees.

Method Error R/S
ALR (Lu et al., 2014) 16.7 R
SVR Schneider et al. (2014) 16.6 R
RF Sugano et al. (2014b) 15.4 R
CNN with UT Zhang et al. (2015) 13.2 R
K-NN with UT (ours) 8.9 R
CNN with UT (ours) 10.2 R
K-NN with Refined UnityEyes
Wood et al. (2015) 10.2 S
CNN with Refined UnityEyes
Wood et al. (2015) 11.5 S
CNN with Refined UnityEyes
(SimGANs Shrivastava et al. (2016)) 8.0 S
K-NN with Refined UnityEyes(ours) 8.3 S
CNN with Refined UnityEyes(ours) 7.7 S

We evaluate the ability of our method for appearance-based
gaze estimation from real dataset and synthetic image dataset.
ALR (Lu et al., 2014), SVR Schneider et al. (2014), RF Sugano
et al. (2014b), convolution neural network ? and KNN Wood
et al. (2015) are compared with our method as baseline meth-
ods. Similar to Wood et al. (2016), we train a convolution neural

network (CNN) to predict the eye gaze direction. For RF train-
ing, pixel-wise data is employed to represent the original eye
image by converting it to column vector, the number of trees
during training is set to 20. For K-NN with UnityEyes refined
images or UTview real images, considering that the computa-
tion cost increases with neighbor samples number, it can be
found that a high-quality gaze estimator is obtained when the
neighbor samples number is set to 50, which costs a shorter op-
erating time. A comparison to the state-of-the-art can be shown
in Table.1. Training the CNN on the refined images outper-
forms the state-of-the-art on the part of MPIIGaze dataset. We
observe a large improvement in performance from training on
the refined images and an significant improvement compared to
the state-of-the-art.

5. Conclusion

We propose a coarse-to-fine eye synthesis method through
adversarial training to speed up refining synthetic images with
less unlabeled real data. We make several key modifications to
the GANs to make the net become an efficient refine model net
to improve the suitability of gaze estimation and made the im-
age not distorted. Comparing with the baseline methods, a large
improvement in performance from training on the refined im-
ages is observed and the quantity of real data reduces by more
than one order of magnitude.
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