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Highlights

• We propose a symmetric relative entropy based deep hash-
ing method.

• Our method can decrease the information loss during hash-
ing embedding.

• Distance similarity and distribution similarity can be si-
multaneously learned.

• We design a mutually optimization strategy for our deep
hashing architecture.

• Extensive experiments show that our method achieves
state-of-the-art performance.
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ABSTRACT

By virtue of their simplicity and efficiency, hashing algorithms have achieved significant success on
large-scale approximate nearest neighbor search. Recently, many deep neural network based hashing
methods have been proposed to improve the search accuracy by simultaneously learning both the fea-
ture representation and the binary hash functions. Most deep hashing methods depend on supervised
semantic label information for preserving the distance or similarity between local structures, which
unfortunately ignores the global distribution of the learned hash codes. We propose a novel deep su-
pervised hashing method that aims to minimize the information loss generated during the embedding
process. Specifically, the information loss is measured by the Jensen-Shannon divergence to ensure
that compact hash codes have a similar distribution with those from the original images. Experimen-
tal results show that our method outperforms current state-of-the-art approaches on two benchmark
datasets.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

With the explosive growth in the number of high volume
and high dimensional multimedia data sources, the potential
for including images and videos in efficient large-scale visual
retrieval has received increased interest. A general solution to
image retrieval is approximate nearest neighbor (ANN) search,
and which has been demonstrated to retrieve target images ef-
fectively and efficiently. Due to the rapid query speeds and low
memory costs achievable, hashing has become one of the most
widely used techniques among existing ANN methods. The
key idea of hashing is to embed high-dimensional data into a
set of compact binary codes while preserving the similarity of
the original data in the Hamming space of the codes.

Existing hashing algorithms can be divided into a) data-
independent and b) data-dependent groups. Data-independent
methods usually use random projections as the hash func-
tions to maximize the probability of “collision” between sim-
ilar items. A representative data-independent method is local-
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ity sensitive hashing (LSH) (Gionis et al., 1999), which directly
uses a random linear projection to learn hash codes. Although it
benefits from the theoretical bounds on the approximation qual-
ity, it has been proved that the LSH method suffers in terms of
poor accuracy of image retrieval.

Compared with data-independent methods, data-dependent
methods on the other hand attempt to learn hash functions from
training data and can achieve better performance using shorter
hash codes. According to whether image labels are used or
not, they can be further categorized into supervised and unsu-
pervised methods. Unsupervised hashing methods learn hash
functions by exploring the inherent structure of training data.
Typical learning goals include reconstruction error minimiza-
tion (Gong et al., 2013; Jegou et al., 2011) and preserving graph
structure (Liu et al., 2011; Weiss et al., 2009). With the devel-
opment and widespread adoption of deep learning techniques,
neural networks have been used to learn the data distribution
and often achieve better retrieval performance. Deep Hashing
(DH) (Erin Liong et al., 2015) and several related extensions of
the idea (Lin et al., 2016; Hu et al., 2017; Huang et al., 2017;
Shen et al., 2018) utilize the network as the nonlinear hash func-
tion and design mapping criteria to obtain an improved hashing
mapping. Most unsupervised hashing methods attempt to make
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the learned hash code independent and balanced. They also at-
tempt to construct pseudo labels using distance metrics to learn
the hash function. However, all of these methods face the se-
mantic gap dilemma. In other words, similar low-level features
may have very different high-level semantic descriptions, so the
results of retrieval cannot match the performance of visual per-
ception for human observers.

Many supervised hashing methods were proposed (Liu et al.,
2012; Zhang et al., 2014; Lin et al., 2014; Bai et al., 2014; Xiao
et al., 2009; Yang et al., 2016; Bai et al., 2018; Su et al., 2019;
Luo et al., 2018; Tang et al., 2015; Tang and Li, 2018; Li and
Tang, 2015) to mitigate the semantic gap using the image la-
bels. Recently, research on deep supervised hashing methods
has shown that feature extraction and hash coding can be con-
ducted more effectively by end-to-end learning of deep neu-
ral networks. These algorithms show the state-of-the-art re-
sults on many benchmarks (Li et al., 2018; Song et al., 2017;
Wang et al., 2019; Yan et al., 2019). Most existing deep hash-
ing methods utilize semantic labels to learn discriminative bi-
nary codes. Class-label based methods, such as DLBC (Lin
et al., 2015) and DHCQ (Tang et al., 2018), expect to generate
compact binary codes applicable to classification. Others pay
attention to better modeling the distance between the original
samples. Absolute distance is used in pairwise hashing meth-
ods, such as DQN (Cao et al., 2016), DHN (Zhu et al., 2016),
DSH (Liu et al., 2016), DPSH (Li et al., 2015), DSDH (Li et al.,
2017), which tries to make the Hamming distance between sim-
ilar images as small as possible and vice versa. Triplet meth-
ods, such as NINH (Lai et al., 2015), DSRH (Zhao et al., 2015),
DRSCH (Zhang et al., 2015), DTSH (Wang et al., 2016), con-
sider the relative distance between images, and aim to keep the
Hamming distance between dissimilar images larger than those
from similar images.

Although deep learning based methods have achieved signif-
icant success on the problem of image retrieval, they mainly fo-
cus on preserving the pairwise distance relationships between
images and hence ignore the global data distribution which is
important for feature represention and hash coding. In our pre-
vious work (Zhang et al., 2018), we have presented a deep
supervised hashing method that utilizes the Kullback-Leibler
(KL) divergence to constrain the hashing codes to have a sim-
ilar distribution with the original data. However, when retriev-
ing images online using the hash codes, one may also want
to minimize the information loss between the hash codes and
the original images. Hence, in this paper, we propose an ex-
tended method to address this issue. It leverages a symmetric
relative entropy, the Jensen-Shannon (JS) divergence, which is
both symmetric and has a finite value, to minimize the distri-
bution distance between the sources of the original image data
and the hash codes. Furthermore, we analyze these two differ-
ent relative entropies and demonstrate experimentally that the
symmetric relative entropy based hashing method gives the best
performance.

In brief, our contributions can be summarized as follows:

1. We propose a symmetric relative entropy based deep hash-
ing method that reduces the information loss during hash-
ing embedding by preserving similarity between the dis-

tribution of the original samples and the generated hash
codes.

2. Both the distance-based similarity and the distribution-
based similarity can be simultaneously learned and mu-
tually optimized in our deep hashing architecture.

3. Extensive experiments on two image benchmarks show
that our method can achieve comparable performance to
state-of-the-art methods for image retrieval.

2. Related work

2.1. Hashing

A comprehensive survey on learning to hash has been given
by (Wang et al., 2018). The relevant methods can be divided
into a) unsupervised and b) supervised categories. Unsuper-
vised hashing methods learn hash functions by exploring the
intrinsic structure of unlabeled training data. Weiss et al. de-
veloped Spectral Hashing (SH) (Weiss et al., 2009) to formu-
late hash coding as a graph partition problem. The method
generates binary codes by calculating the eigenvectors of the
graph Laplacian. Liu et al. presented the Anchor Graph Hash-
ing (AGH) (Liu et al., 2011) method to automatically capture
the neighborhood structure inherent in a given massively large
dataset. This work was extended to develop the Discrete Graph
Hashing (DGH) (Liu et al., 2014) method by introducing a
tractable alternating optimization method for preserving simi-
larity in the discrete Hamming space of the hash codes. Apart
from exploring the data structure based on a graph represen-
tation, reconstruction error minimization is another useful cri-
terion to guide the learning of hash codes. The goal of Iter-
ative Quantization (ITQ) (Gong et al., 2013) is to reduce the
quantization loss from a real-valued feature vector to the ver-
tices of a binary cube by finding a rotation of zero-centered
data. The Binary Reconstructive Embedding (BRE) (Kulis and
Darrell, 2009) method tries to learn hash functions by mini-
mizing the reconstruction error directly using the coordinate-
descent strategy. In a manner different from BRE that measures
data similarity by Euclidean distance, the Angular Reconstruc-
tive Embedding (ARE) (Hu et al., 2018) method uses cosine
similarity. Collective Reconstructive Embedding (CRE) (Hu
et al., 2019), on the other hand, uses both cosine-based and
Euclidean-based similarity simultaneously to address the cross-
model hashing problem. In 2015, Liong et al. proposed Deep
Hashing (DH) (Erin Liong et al., 2015) that first utilizes a multi-
layer neural network as the hash function to preserve nonlinear
neighborhood relationships. Due to the absence of label infor-
mation, the performance of unsupervised hashing approaches is
usually surpassed by supervised hashing.

Supervised hashing methods learn hash functions using both
label information and a representation of the data. Two Step
Hashing (TSH) (Lin et al., 2013) was developed to decompose
the hashing learning problem into hash bit learning and hash
function learning based on the learned bits, which is much eas-
ier to solve. Shen et al. introduced Supervised Discrete Hash-
ing (SDH) (Shen et al., 2015) to optimize the discrete optimiza-
tion problem directly with cyclic coordinate descent in conjunc-
tion with classification. With the aid of convolutional neural
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networks and supervised information, deep supervised hashing
achieves a great breakthrough in image retrieval. CNNH (Xia
et al., 2014) is the first deep hashing algorithm which needs two
stages to learn the high-level representation and binary codes.
A drawback of this method is that the hash codes cannot be up-
dated with the learned new image representation. To address
this problem, Lai et al. propounded NINH (Lai et al., 2015)
to simultaneously learn the feature representation and the hash-
ing codes in a joint optimizing process. Then Zhao et al. de-
scribed DRSH (Zhao et al., 2015) to use triplet ranking loss as
multi-level similarity information to guide the learning of bi-
nary codes. As a representation of methods based on pairwise
similarity, DPSH (Li et al., 2015) was developed to maximize
the probability of similarity labels in the Hamming space using
a Bayesian framework. Moreover, Deep Asymmetric Pairwise
hashing (DAPH) (Shen et al., 2017a,b) provided the asymmet-
ric hash forms to pairwise similarity loss for preserving more
similarity information. DSH (Liu et al., 2016) designed a regu-
larizer to encourage the binary-like outputs of neural networks
to decrease the quantization loss. Later, DSDH (Li et al., 2017)
was proposed by applying classification information as well as
pairwise similarity to directly optimize this discrete problem.
In prior work, we introduced an entropy-based deep hashing
method (Zhang et al., 2018) by minimizing the information loss
during the hashing process. Unlike the MFH method (Song
et al., 2013) which attempts to reduce the quantization loss by
minimizing the empirical error of the outputs of hash functions
with respect to the learned hash codes, our method aims at pre-
serving the original data distribution in the generated space of
hash codes.

2.2. Information divergence

Information divergence is a measure of dissimilarity between
probability distributions. One commonly used example is the
KL divergence:

KL(p‖q) =

N∑

i=1

p(xi) log
p(xi)
q(xi)

where p and q are two probability distributions. This is a non-
negative function, which is equal to zero when p(x) = q(x).
Obviously, KL divergence quantifies the information loss from
one distribution to another.

The JS divergence is another commonly used measure for the
distance between distributions. It is defined as:

JS (p‖q) =
1
2

KL(p‖m) +
1
2

KL(q‖m)

where m(x) =
p(x)+q(x)

2 . This divergence can be interpreted as
the average distance between each probability distribution and
the average distribution, or equivalently as the diversity of two
distributions with equal priors.

Compared with the KL divergence, the JS divergence has
some advantages. Firstly, it is symmetric, i.e., JS divergence
quantifies information loss from p to q as well as from q to p.
Secondly, JS divergence has a definite upper bound. Hence, JS
divergence is a better metric to measure the information loss
during the hashing process.

3. Proposed Method

Suppose we have N training points X = {xi}Ni=1 ∈ Rd×N where
each sample is represented as a d-dimensional feature vector xi.
Besides the feature vectors, some pairs of points xi and x j are
labeled with si j to indicate the pairwise similarity, where si j = 1
if xi and x j are similar and si j = 0 if xi and x j are dissimilar.
These similarity labels can be either provided manually or ac-
quired from typical semantic labels.

The goal of hashing is to learn a collection of K-bit binary
codes B ∈ {−1, 1}K×N , where the i-th column bi ∈ {−1, 1}K de-
notes the binary codes for the i-th sample xi. The binary codes
are generated by the hash function h(·), which can be rewritten
as [h1(·), . . . , hc(·)]. For each image sample xi, its hash codes
can be represented as bi = h(xi) = [h1(·), . . . , hc(·)]. Generally
speaking, hash coding aims to learn a hash function to project
image samples to a set of binary codes.

3.1. Preserving Similarity

We commence by posing the problem of preserving pairwise
similarity in a Bayesian framework. The goal is to locate the
hash codes B that satisfy the constraints provided by the simi-
larity labels S as closely as possible in the Hamming space.

Since there is a linear relationship between the Hamming dis-
tance and the corresponding inner product for each pair of bi-
nary codes bi and b j, i.e., distH(bi,b j) = 1

2 (K−〈bi,b j〉), we can
use the inner product to quantify pairwise similarity rather than
Hamming distance. Given the binary codes B = {bi}ni=1 for all
the points, we can define the likelihood of the pairwise labels
S = {si j} as:

p(si j | B) =

{
σ(Ωi j) si j = 1

1 − σ(Ωi j) si j = 0
(1)

where σ(Ωi j) = 1
1+e−Ωi j

, and Ωi j = 1
2 bT

i b j.
As a result, the larger the inner product 〈bi,b j〉, the smaller

the corresponding distH(bi,b j), and the larger p(1 | bi,b j). This
means that bi and b j should be classified as similar, and vice
versa.

By taking the negative log-likelihood of the observed set of
pairwise labels in S , we obtain the following optimization prob-
lem:

min
B

J1 = − log p(S | B) = −
∑

si j∈S
(si jΩi j − log(1 + eΩi j )) (2)

This equation requires the Hamming distance of two similar
points to be as small as possible, and simultaneously requires
the Hamming distance between two dissimilar points to be as
large as possible. This is exactly the goal of supervised hashing
with pairwise similarity.

Although pairwise similarity supervision is a good way to
preserve the distance similarity between the original images,
the available label information is not fully exploited. Since the
labels convey more information than similarity alone, as men-
tioned in (Lin et al., 2015), it is a reasonable assumption that
good binary codes should contain enough semantic information
to preserve the semantic similarity between images. In other
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Fig. 1. The architecture of our proposed method.

words, the learned binary codes should be ideal for image clas-
sification.

Considering the binary code learning problem in the linear
classification framework, the multi-class classification problem
can be stated as follows:

y = WT b = [wT
1 b, · · · ,wT

Cb]T (3)

where wk ∈ RL, k = 1, · · · ,C is the classification vector for
class k and y ∈ RL is the label vector, of which the maximum
item indicates the assigned class of x. Thus, we can obtain the
following optimization problem:

min
B,W

J2 =

n∑

i=1

L(yi,WT bi) + λ‖W‖2 (4)

where λ is the regularization parameter, yi ∈ RC is the ground
truth label of xi, where yki = 1 if xi belongs to class k and yki = 0
if not. ‖ · ‖ is the `2 norm for vectors and the Frobenius norm
for matrices. L(·) is the loss function for classification. The
problem can be rewritten as:

min
B,W

J2 =

n∑

i=1

‖yi −WT bi‖2 + λ‖W‖2 (5)

3.2. Preserving Distributions

Preserving distance and semantic similarity is an important
way to generate meaningful hash codes. However, existing
methods only take into account the relationship of one data
point or data point-pairs. Since a good embedding needs to
maintain not only the local structure but also global distribu-
tion of the data, we have utilized KL divergence as a means to
constrain the distribution variation in our previous work (Zhang
et al., 2018). However, as mentioned in Section 2.2, the JS di-
vergence would be a better measure due to its symmetry and
upper bound. Firstly, the symmetric property means not only
that similar images should have similar binary codes, but also
that similar binary codes should correspond to similar images.
Secondly, the JS divergence has an upper bound which helps
optimization process to converge. In fact, it is more stable, and
robust to noise and the length of hash codes.

First, we define the similarity of xi to x j as the conditional
probability p j|i in the original feature space where we use Eu-
clidean distance to represent similarities between data points.
This means that xi would select x j as its neighbor if neighbors
are selected in proportion to their probability density function
under the Gaussian distribution centered at xi. For nearby data
points, p j|i is relatively high, whereas for widely separated data
points, p j|i will be almost infinitesimal. This similarity mea-
sure matches the essence of retrieval. Therefore, the conditional
probability can be formulated as:

p j|i =
exp(−‖xi − x j‖2/2σ2

i )
∑

k,i exp(−‖xi − xk‖2/2σ2
i )

(6)

Furthermore, the joint probability can be derived as pi j =
pi| j+p j|i

2n .
Similarly, we can obtain the conditional probability in the

low-dimensional Hamming space. Following t-SNE (Maaten
and Hinton, 2008), in order to alleviate the crowding problem
we use a probability distribution that has much heavier tails
than a Gaussian to convert distances into probabilities. Specif-
ically, we employ the Student t-distribution with one degree of
freedom (which is the same as the Cauchy distribution) as the
heavy-tailed distribution. The joint probability qi j is defined as:

qi j =
(1 + ‖bi − b j‖2)

−1

∑
k,l (1 + ‖bk − bl‖2)

−1
(7)

If the binary points bi and b j correctly model the similarity
between the high-dimensional data points xi and x j, the joint
probabilities pi j and qi j will be equal. Therefore, our goal is
to find a low-dimensional binary representation that minimizes
the distance between pi j and qi j. The JS divergence provides
a good choice for meeting this goal. It can be represented as
follows:

J3 =
∑

JS (Pi‖Qi) =
∑

i

∑

j

(
1
2

pi j log
pi j

mi j
+

1
2

qi j log
qi j

mi j
) (8)

where mi j =
pi j+qi j

2 .
Combining equations (2), (5) and (8), we have the following

formulation:
J = J1 + αJ2 + βJ3 (9)
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3.3. Optimization

In order to have a fair comparison with previous deep hashing
methods, we also choose the CNN-F network to learn the fea-
ture representations and hash functions. Using pairwise-label
supervision, our model consists of two separate CNNs which
share the same weights. Each CNN includes 5 convolutional
layers and 2 fully connected layers. The pipeline is shown in
Fig. 1.

The minimization of the obtained loss function in Section 2.3
is a discrete optimization problem, which is hard to optimize di-
rectly. We solve this problem by introducing an auxiliary vari-
able, namely the output of the last fully connected layer, ui and
make bi = sgn(ui), which can be represented as:

ui = MTφ(xi; θ) + v (10)

where θ denotes all the parameters of the previous layers in
the CNN, φ(xi; θ) denotes the output of the penultimate fully
connected layer, M represents the weight matrix, and v is the
bias term. Then we can reformulate the optimization problem
as the following equivalent one:

min J′ = −
∑

si j∈S
(si jΨi j − log(1 + eΨi j )) + α

n∑

i=1

‖yi −WT ui‖2

+ λ‖W‖2 + β
∑

i

∑

j

(
1
2

pi j log
pi j

mi j
+

1
2

qi j log
qi j

mi j
)

+ η

n∑

i=1

‖bi − ui‖22
(11)

where Ψi j = 1
2 ui

T u j, and qi j =
(1+‖ui−u j‖2)

−1

∑
k,l (1+‖uk−ul‖2)

−1 .

In our method, an alternating strategy is used to learn these
parameters. Specifically, we optimize one parameter with the
other parameters fixed (or clamped). Firstly, bi can be directly
optimized by

bi = sgn(ui) = sgn(MTφ(xi; θ) + v) (12)

Then the remaining parameters can be optimized using the
back-propagation (BP) algorithm.

4. Experiments

4.1. Datasets and Setting

To make a fair comparison, we conducted experiments on
two widely used benchmark datasets: CIFAR-10 (Krizhevsky
and Hinton, 2009) and NUS-WIDE (Chua et al., 2009).

• CIFAR-10 dataset contains 60,000 color images of size
32*32 which are categorized into 10 classes with 6,000
images for each class. Each image is only associated with
one class.

• NUS-WIDE contains nearly 270,000 color images col-
lected from the web. It is a multi-label dataset in which
each image is annotated with one or multiple class labels
corresponding to 81 semantic concepts. Following (Xia

et al., 2014; Zhang et al., 2015; Li et al., 2015, 2017), we
used a subset of 195,834 images that belong to the 21 most
frequent classes, and each class consists of at least 5000
images.

Like most previous work, the standard mean average preci-
sion (MAP) was used as the main metric to evaluate the per-
formance of the proposed method together with the comparison
baselines. For the two benchmark datasets, the similar pairs
were constructed according to the image labels, i.e., two im-
ages were considered similar only if they shared at least one
common semantic label.

We compare our method with several state-of-the-art hash-
ing approaches. They can be roughly divided into traditional
hashing and deep hashing. The traditional approaches can be
further categorized into unsupervised and supervised methods.
The unsupervised methods include SH (Weiss et al., 2009) and
ITQ (Gong et al., 2013). Supervised methods include KSH (Liu
et al., 2012), FastH (Lin et al., 2014), LFH (Zhang et al., 2014),
and SDH (Shen et al., 2015). Both hand-crafted features and
features extracted using a CNN-F network were used as the in-
put for these traditional hashing methods. In a manner similar
to previous work, we used a 512-dimensional GIST descriptor
to represent each image of the CIFAR-10 dataset, and an 1134-
dimensional feature vector for the NUS-WIDE dataset, which
is the concatenation of a 64-D color histogram, a 144-D color
correlogram, a 73-D edge direction histogram, a 128-D wavelet
texture, a 225-D block-wise color moments and a 500-D BoW
representation based on SIFT descriptors.

The compared deep hashing methods are CNNH (Xia et al.,
2014), NINH (Lai et al., 2015), DSRH (Zhao et al., 2015),
DSCH (Zhang et al., 2015), DRSCH (Zhang et al., 2015), DQN
(Cao et al., 2016), DHN (Zhu et al., 2016), DPSH (Li et al.,
2015), DTSH (Wang et al., 2016), and DSDH (Li et al., 2017).
Although DPSH, DTSH, and DSDH are based on the CNN-F
network and DQN, DHN, and DSRH are based on AlexNet, it is
still comparable since both CNN-F and AlexNet consist of five
convolutional layers and two fully connected layers. Here, most
of the results were directly retrieved from the original papers.

We compare our method to baselines under the following two
experimental settings. For the first setting, we randomly se-
lected 100 images per class (1,000 images in total) as the test
query set and 500 images per class (5,000 images in total) as
the training set in CIFAR-10. For the NUS-WIDE, we ran-
domly sampled 100 images per class (2,100 images in total)
as the test query set and 500 images per class (10,500 images
in total) as the training set. As for the second experimental
setting, in CIFAR-10, 1,000 images per class were selected as
the test query set, and the remaining 50,000 images were used
as the training set. In NUS-WIDE, 100 images per class were
randomly sampled as the test query images, and the remain-
ing 193,734 images were used as the training set. Since NUS-
WIDE contains a large number of images, we only considered
the top 5,000 returned neighbors under the first setting and the
top 50,000 under the second experimental setting when com-
puting MAP for NUS-WIDE.
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Table 1. Mean Average Precision(MAP) under the first experimental setting. The best performance is shown in boldface.

Method
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH 0.127 0.128 0.126 0.129 0.454 0.406 0.405 0.400
ITQ 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477
LFH 0.176 0.231 0.211 0.253 0.571 0.568 0.568 0.585
KSH 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588
SDH 0.285 0.329 0.341 0.356 0.568 0.600 0.608 0.637
FastH 0.305 0.349 0.369 0.384 0.621 0.650 0.665 0.687
CNNH 0.439 0.511 0.509 0.522 0.611 0.618 0.625 0.608
NINH 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715
DHN 0.555 0.594 0.603 0.621 0.708 0.735 0.748 0.758
DQN 0.554 0.558 0.564 0.580 0.768 0.776 0.783 0.792
DPSH 0.713 0.727 0.744 0.757 0.752 0.790 0.794 0.812
DTSH 0.710 0.750 0.765 0.774 0.773 0.808 0.812 0.824
DSDH 0.740 0.786 0.801 0.820 0.776 0.808 0.820 0.829
DISH 0.738 0.792 0.822 0.841 0.781 0.823 0.837 0.840
Ours 0.771 0.817 0.839 0.858 0.801 0.833 0.849 0.861

Table 2. Mean Average Precision(MAP) under the second experimental setting. The best performance is shown in boldface.

Method
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DSRH 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631
DSCH 0.609 0.613 0.617 0.620 0.592 0.597 0.611 0.609

DRSCH 0.615 0.622 0.629 0.631 0.618 0.622 0.623 0.628
DPSH 0.763 0.781 0.795 0.807 0.715 0.722 0.736 0.741
DTSH 0.915 0.923 0.925 0.926 0.756 0.776 0.785 0.799
DSDH 0.935 0.940 0.939 0.939 0.815 0.814 0.820 0.821
DIDH 0.941 0.945 0.948 0.952 0.843 0.849 0.857 0.862
Ours 0.953 0.959 0.961 0.970 0.851 0.859 0.864 0.871

4.2. Results and Analysis

The MAP results of all methods on CIFAR-10 and NUS-
WIDE for the first experimental setting are listed in Table 1.
The table shows that the proposed method substantially outper-
forms all the methods compared. Specifically, we can see that
there is a large margin between deep hashing and traditional
hashing methods on CIFAR-10. Compared to the representative
traditional methods, the MAP results delivered by our method
are more than twice those from SDH, FastH, and ITQ. For the
deep hashing methods, our proposed method considers both su-
pervised information and distribution similarity, so it improves
the performance of DSDH by on average 3.5% for different bit
lengths. These results verify that our similarity and distribution
preserving method is both effective and efficient in obtaining
good binary codes. As for NUS-WIDE, it is also shown that our
method outperforms the other methods compared by about 3%.
Compared to our previous work DISH, the proposed method
gives both better results and a more stable improvement on the
two benchmarks. On the CIFAR-10 dataset, DISH with KL di-
vergence performs poorly with short code length. For example,
for 12 bits it does not outperform DSDH, while with the JS di-
vergence the new method achieves stable and robust retrieval
performance.

An important practical concern is the quality of retrieval re-

100 200 300 400 500 600 700 800 900 1000
Number of returned images

0.2

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

on

ours
DSDH
DHN
DSH
DPSH
DNNH
ITQ
CNNH
SDH
KSH
SH

Fig. 2. Precision curve w.r.t top N @64 bits.

sults for the top N returned images. Hence improving the pre-
cision with respect to the top returned samples is an imperative.
Fig. 2 shows the precision curve for the different number of
top returned images with 64-bit hash codes. The experiment
is conducted on CIFAR-10. These methods have overall sta-
ble performance when the number of returned images varies,
and the precision gently converges when more than 800 images
have been returned. In general, our method outperforms the
alternative methods compared.
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Fig. 3. Mean Average Precision(MAP) under the second experimental set-
ting.

We also compare the different hashing methods under the
second experimental setting. This involves a larger sample
of training images. While the deep architecture requires large
amounts of data for training, our method is based on preserv-
ing distributions, and distribution modeling in turn depends to a
large extent on the amount of data available. As a result, more
training images are conducive to the performance of these al-
gorithms. Table 2 lists the MAP results for the different ap-
proaches compared. From the table almost all the deep hashing
methods perform much better than when trained in the first ex-
perimental setting. This means that they are more suitable for
large-scale datasets. With sufficient training data and adequate
guidance by the selected loss function, our method is not only
superior in performance to each of the alternative methods but
also achieves a greater improvement in performance over that
achieved with the first experimental setting.

To further verify the effectiveness of our proposed method,
we compare it with some traditional hashing methods that use
deep features extracted by CNN-F pre-trained on ImageNet.
The results are reported in Fig. 3. We can see that all of the
traditional hashing methods have a significant performance im-
provement when CNN features are used. In particular, the per-
formance of FastH with CNN features on CIFAR-10 is nearly
twice than that obtained with hand-crafted features. However,
there is still a large gap between our method and the traditional
approaches in terms of retrieval performance.

Conclusion

In this paper, we have proposed a novel deep hashing method.
In addition to the commonly used pairwise label information
and classification information, we have introduced the JS diver-
gence to constrain the information loss during the hashing em-
bedding process. This means we can preserve both the local and
global structure of the data. Extensive experiments show that
our method can achieve comparable performance to the state-
of-the-art methods in image retrieval applications. In our future
work, we will extend the probabilistic framework using addi-
tional elements from information theory. For example, using
divergences to measure pairwise similarity would be an inter-
esting direction.
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