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ABSTRACT

Optical Music Recognition is the technology that allows computers to read music notation, which is
also referred to as Handwritten Music Recognition when it is applied over handwritten notation. This
technology aims at efficiently transcribing written music into a representation that can be further pro-
cessed by a computer. This is of special interest to transcribe the large amount of music written in
early notations, such as the Mensural notation, since they represent largely unexplored heritage for
the musicological community. Traditional approaches to this problem are based on complex strategies
with many explicit rules that only work for one particular type of manuscript. Machine learning ap-
proaches offer the promise of generalizable solutions, based on learning from just labelled examples.
However, previous research has not achieved sufficiently acceptable results for handwritten Mensural
notation. In this work we propose the use of deep neural networks, namely convolutional recurrent
neural networks, which have proved effective in other similar domains such as handwritten text recog-
nition. Our experimental results achieve, for the first time, recognition results that can be considered
effective for transcribing handwritten Mensural notation, decreasing the symbol-level error rate of pre-
vious approaches from 25.7 % to 7.0 %.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Anyone with average knowledge in art may name relevant
Renaissance painters or writers. However, it is not the same if
asked about music composers. This shortfall is mainly caused
by the scarcity of transcribed musical pieces of that time, de-
spite the huge amount of written manuscript sources. This is
particularly the case for early music written in the so called
Mensural notation.

The framework in which the musical pieces of that era were
developed fostered, among other things, the massive use of
handwritten copies. As a result there are millions of music doc-
uments (hand)written in this notation. While large quantities
of them have recently been scanned into digital images, only
a few hundreds Mensural notation documents have been tran-
scribed and can therefore be effectively used by scholars and
general public. Clearly, to make this huge amount of sources
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available and useful, accurate musical transcripts are required.
That is why there is a need for developing systems that are capa-
ble of recognizing handwritten music, i.e. Handwritten Music
Recognition (HMR) systems.

Several attempts have been made to develop HMR systems in
the past decades. Traditional approaches focused on exploiting
domain knowledge. However, handwritten music documents
(and their trancripts) are very heterogeneous and this type of
heuristic systems do not generalize well. Consequently, it is
common that new systems need to be built from scratch for
each type of manuscripts and, moreover, they seldom reach the
required level of usefulness.

In recent years, the paradigm is shifting towards machine
learning techniques, which allow for the required generalization
as long as adequate training data are available. So far, however,
the success of these techniques has only been demonstrated for
parts of the whole HMR task, such as the removal of staff lines
(a traditional image pre-process in this domain) or the classifi-
cation of isolated musical elements. More recently, holistic ap-
proaches based on machine learning have also been proposed.



While these approaches provide a well-principled framework
and promising results, their accuracy still fall short of what is
considered sufficiently successful.

In this paper we further develop the machine learning, holis-
tic paradigm and propose a system based on deep Convolutional
and Recurrent Neural Networks, which do prove sufficiently
successful for Mensural notation HMR. Specifically, in our ex-
periments we improve the results achieved to date with holistic
approaches from 26% to 7% error at the symbol level.

The rest of the paper is organized as follows: we overview
related works in Section 2; the neural framework is described
in Section 3; the experiments are presented in Section 4; and
the paper is concluded in Section 5.

2. Related works

The term Optical Music Recognition (OMR) is rather gen-
eral, because the task itself depends on several factors such as
the notation type (modern Western, Mensural, Neumatic, etc.)
or the engraving mechanism (handwritten or printed).

It is true, however, that there has been a general OMR frame-
work to address the recognition of music notation through a
series of independent stages that work on different parts of the
problem (Wen et al., 2015). Given that music notation hardly
has what we might consider low-level entities, like phonemes
in speech or characters in text, but rather isolated music sym-
bols, most previous approaches consider by default that symbol
segmentation should be an initial step.

Nevertheless, symbol segmentation is often difficult, espe-
cially in the case of images of ancient handwritten music. It
becomes particularly difficult to distinguish between relevant
small elements from noise and other artifacts caused by docu-
ment preservation problems and possible lack of image qual-
ity. Recently, the early stages of the process have been re-
formulated as object detection tasks (Everingham et al., 2015),
with the aim of by-passing some of the stages of the traditional
workflow. The state of the art for object detection considers the
use of region-based deep neural models (Ren et al., 2015; Dai
et al., 2016). Pacha et al. (2018) provided a baseline for direct
music-object detection in music score images, experimenting
with several models and corpora of different typology.

Conversely, in this paper, we study a holistic approach for
HMR using deep neural networks. In this regard, our model
performs the complete recognition of musical notation from an
image, yielding directly the sequence of music symbols present
therein as output. Unlike other recent works (Hajic et al., 2018;
Bar¢ et al., 2019), this prevents the need of the training set to be
annotated at the symbol-level position and post-process strate-
gies that convert the individually detected elements to the actual
music notation .

Concerning this formulation, Pugin (2006) already pro-
posed a holistic approach for printed Mensural notation us-
ing Hidden Markov Models (HMM). This approach was re-
cently extended to handwritten sources by using a more ap-
propriate set of features (Calvo-Zaragoza et al., 2016), and
further improved by considering discriminative training tech-
niques (Calvo-Zaragoza et al., 2017), as well as hybridization
with neural networks (Calvo-Zaragoza et al., 2019).

2

However, although HMMs represent models that fit perfectly
well with the task at issue, other tasks of a similar nature, like
speech recognition or handwritten text recognition, have ex-
perienced a leap in performance using deep neural networks
(Amodei et al., 2016; Shi et al., 2017). This is why in this work
we study the use of a deep neural network model for holis-
tic end-to-end HMR. A holistic approach has been explored
before but restricted to synthetically-rendered music notation
(van der Wel and Ullrich, 2017; Calvo-Zaragoza and Rizo,
2018). Therefore, this is the first work that uses deep neural
networks to deal with handwritten notation in old documents.

3. Framework

We follow the holistic approaches to HMR discussed in
Sec.2. The most important novelty here is the use of CRNNs
to model the posterior probability of generating output sym-
bols, given an input image. As in previous works, input images
are assumed to be single staff-sections, which have been previ-
ously detected using well-known simple and robust techniques
like that of Cardoso et al. (2009).

A CRNN is composed of one block of convolutional layers
followed by another block of recurrent layers (Shi et al., 2017).
Each convolutional layer is usually followed by a max-pooling
layer to reduce the dimensionality of its output. The convo-
lutional block is in charge of extracting relevant image fea-
tures and the recurrent layers interpret these features in terms
of sequences of output musical symbols. In this work, the re-
current layers are networks of special “neurons” called “Long
Short Term Memory” (LSTM) units, arranged into the so called
“Bidirectional LSTM” architecture (BLSTM) (Graves, 2008).

In our previous works, mainly based on HMMs, the sys-
tem input was a sequence of feature vectors, extracted from
the image by means of general feature extraction methods, as-
sumedly adequate for all HMR tasks. In contrast, here no hand-
crafted feature extraction process is necessary, because the lay-
ers of the convolutional block are automatically trained from
the task-specific training data to implicitly extract the most
adequate features for the images of this task (Zeiler and Fer-
gus, 2014). Moreover, rather than a single, gray-level image,
a multi-channel (RGB) image can be directly used as input.
In any case, the unit activations in the last convolutional/max-
pooling layer can be seen as a sequence of feature vectors rep-
resenting the input image, x. They can also be seen as linearly
downscaled versions of x. Let W be the horizontal size of x,
i.e., the width of the input image. The width of the resulting
“feature images” will be J = yW, where y < 1 is defined by the
max-pooling parameters.

The convolutional block produces as many feature images as
the number of filters set in the last layer. All these images are
concatenated to form a single feature image, which is fed to the
first BLSTM layer. Then, the unit activations of the last recur-
rent layer are considered estimates of the posterior probabilities
per frame:

P(o|x,j), 1<j<J, ce¥ = XU{e (1)

where X is the set of music symbols and € is a special “non-
character” symbol, needed for images that contain two or more



consecutive instances of the same musical symbol (Graves,
2008). P(o | x,j) is often referred to as the symbol posteri-
orgram of X.

3.1. CRNN training

Convolutional neural networks can be straightforwardly
trained through gradient descent using the well-known Back
Propagation (BP) algorithm. BLSTM networks can be trained
similarly by means of a version of BP known as Back Propaga-
tion Through Time (BPTT) (Williams and Zipser, 1995). There-
fore both the convolutional and recurrent blocks of a CRNN can
be jointly and uniformly trained, essentially through BP/BPTT.

As it is, the conventional BPTT process requires the infor-
mation about which symbol must be predicted in each out-
put frame. Nevertheless, a usual HMR training set only pro-
vides, for each staff image, its corresponding target transcript
into musical symbols, without any kind of explicit informa-
tion about the framewise location of the symbols. Oppor-
tunely enough, it has been shown that the BLSTM layers can
be conveniently trained without this information by using the
so called “Connectionist Temporal Classification” (CTC) loss
function (Graves et al., 2006). The resulting CTC training pro-
cedure is a form of Expectation-Maximization, similar to the
backward-forward algorithm used for HMM training (Rabiner
and Juang, 1993). It is often claimed that the use of a non-
character symbol becomes essential for adequate CTC train-
ing (Graves et al., 2000).

In order to reduce overfitting, we apply Dropout (Srivastava
et al., 2014) during each gradient descent iteration, by disabling
a set of units selected at random. In this work, this applied only
to units of the recurrent block.

3.2. Statistical language modeling

Music notation exhibits regularities or constraints that, de-
spite being extremely difficult to model in their totality, can
be exploited to some extent to improve recognition accuracy.
These regularities are often referred to as language constraints.

The CRNN implicitly models these constraints, given that
it is trained to estimate the symbol posteriorgram P(o | X, j),
which is closely related (see below) to the posterior probability
P(s | x), where s € T* is a transcript of this image into a se-
quence of musical symbols. However, in other domains related
with HMR, such as handwritten text recognition and automatic
speech recognition, it has been clearly shown that the use of an
explicit, independently trained language model (LM) can sig-
nificantly improve recognition accuracy (Bluche, 2015).

Therefore, we follow this idea and explore the impact of us-
ing such a kind of LM in the HMR task. Specifically we resort
to N-gram models. An N-gram model assumes a local-context

simplification of the probability of a sequence s = sy ... s,, as':

IFor the sake of notation simplicity, for any sequence z if j < 1, P(z |
Zj... Zk-1) is assumed to denote P(zx | z1 ... zx-1). If j = 1, it is just P(z; |
A) = P(z1), where A is the empty sequence.
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where P(si|si_y+1 --. si—1) denotes the probability of finding s;
after s;_n+1 ... Si-1. These probabilities are the parameters of
the N-gram model, which are easily estimated using the training
set transcripts (Vidal et al., 2005).

Given the limited amount of training data, many events might
not appear in the training set. In order to generalize better, the
smoothing strategy proposed by Kneser and Ney (1995) is used,
so that P(s) > 0 Vs € *.

3.3. Recognition or decoding

Formally, we are given an input image x, which has to be
recognized or “decoded” into a most likely music symbol se-
quence, § € X*:

§ = argmax P(s | x) 3)
sex*

Without any explicit LM, Eq. (3) is straightforwardly solved by
local optimization. To this end, first an optimal symbol is com-
puted for each posteriorgram position j:

b = argmz;xP(a'Ix,j) 1<j<J @)
ey’

Then an approximately optimal output sequence is obtained as:

P

S=§1...§ z?(é’]@'}) m<J (5)

where F : £/ — ™ is a function which first merges all the
consecutive characters such that 6-; = &;_; and then deletes all
the non-character symbols (o; = €) (Graves et al., 2000).

To use a LM, first Eq.(3) is rewritten as
§ = arg maxyey+ P(S) p(x | ), where P(s) is the LM proba-
bility, computed as in Eq.(2). Let ¢ = o...0; € X'*.
Assuming X is conditionally independent of s given o, p(x | s)
can be rewritten as:

pxls) = Y px.ols) = ) P@|s)p(x|a.s)

> P |s)px| o) (©6)

P(0 | s) can be considered uniform for all o~ such that s = F (o)
and null for all the other o-. Therefore,

pix|s) o« > pxlo) ~ max p(x|o) ()
oF (o)=s oF(0)=s

Finally, from Eq. (3) and Eq. (7):

A

§ = argmax P(s) p(x|s) ~ argmax P(s) max p(x|o) (8)
S S o F(0)=s

p(x | ) is obtained from the posteriorgram of x as follows:

P
p(x) ]_] oAl 9)

px| o) ~ Py



where the factor p(x) can be ignored in Eq.(8) since it does
not depend on o. The symbol priors P(0), o € ¥, can be
straightforwardly estimated from training data and « is a meta-
parameter to be tuned empirically (Bluche, 2015).

Clearly, Eq. (8) can not longer be solved by local optimiza-
tion, but sufficiently accurate solutions can be obtained using
the Viterbi algorithm (which is sometimes referred to as “token
passing” or “max-product belief propagation”).

In this work the N-gram model is represented as a finite-state
transducer whose edges are weighted with the product of the N-
gram probabilities (the factors in Eq. (2)) and the optical model
probabilities (the factors of Eq. (9), without the term p(x)). Fi-
nally, Eq. (8) is solved using the Viterbi beam search decoder
implemented in the Kaldi toolkit (Povey et al., 2011).

To summarize, Fig. 1 illustrates the whole pipeline to decode
the input image X into an (approximately) optimal sequence of
music symbols § using a CRNN and an LM.
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Figure 1. General overview of the HMR framework proposed in this work,
from an input image depicting a staff-section region to decoding it into a
sequence of music symbols by means of a CRNN and an LM.
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4. Experiments

In this section, the experiments carried out to validate the
goodness of the proposed framework will be presented. The
dataset used and the evaluation protocol are also described be-
fore the actual results.

4.1. Corpus

We consider Capitan corpus (Calvo-Zaragoza et al., 2017),
which contains a complete 96—page manuscript of the 17th cen-
tury corresponding to a missa (sacred music). Each page was
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already segmented into staff-section images following a semi-
automatic procedure.

As in almost any music notation, the meaning of most mu-
sical symbols relies on two geometrical informations: shape
and height (vertical position of the symbol in the staff), which
mostly indicate the duration and pitch, respectively. In the case
of the considered notation, this duality is more general because
even symbols that do not denote any sound (such as rests) may
also appear at different heights, which was useful for reading
the music when many rests appear consecutively. In this re-
gard, each possible combination of shape and height is consid-
ered here as a unique symbol, which leads to a vocabulary of
183 different symbols.

A standard partition into training, validation, and test sam-
ples was already established, which allows us to fairly compare
our performance with previous results over the same dataset. A
summary of the characteristics of the dataset as regards to this
partition is given in Table 1.

Table 1. Partition of the Capitan dataset, reporting the number of staves,
the number of different music symbols (or “vocabulary”) and the number
of running symbols.

Training Validation  Test
Staves 462 57 57
Different symbols 176 123 115
10323 1286 1254

Running symbols

4.2. Evaluation protocol

Taking into account the different elements of the HMR task,
we consider several metrics to measure the recognition perfor-
mance, namely:

o Diplomatic Symbol Error Rate (SER): computed as the
average number of elementary editing operations needed
to produce a reference (correctly transcribed) symbol se-
quence from the recognized symbol sequence.

e Glyph Error Rate (GER): as in SER but only taking into
account the shape of the symbols, ignoring the height com-
ponent (where any).

e Height Error Rate (HER): as in SER but only taking into
account the height of the symbol. Those symbols that have
no height are grouped into the same one.

4.3. Image pre-processing

Although the CRNN is able to learn to extract features from
the examples using the convolutional layers, it is often conve-
nient to perform simple normalization processes to ensure that
the staff-section images are always presented in a similar way.
The following steps are applied in this work:

1. Skew correction: the image skew is computed and cor-
rected so that the staff remains aligned with the horizontal
axis. We use the staff-line detection algorithm proposed
by Cardoso et al. (2009) which capitalizes on the excellent
reference provided by the staff lines themselves.



2. Staff location: to ensure that the staff section to be pro-
cessed is well framed, we force the middle line of the staff
to be in the centre of the image. In addition, the image
is cropped so that it has a fixed height of 1.5 times the
distance between the first and last line of the staff. The
average height of the resulting staff images is 256 pixels.

3. Height normalization: the recognition methods to be ap-
plied require that each image column be of a fixed height.
Therefore, the image is rescaled to a fixed height, with-
out changing the aspect ratio. The specific height will be
empirically studied.

Note that neither the staff section separation nor these
normalization steps remove the possible accompanying text
(Iyrics), which is just considered “noise” for the music nota-
tion recognition. Fig. 2b shows the result of applying this pre-
processing stage to the staff image depicted in Fig. 2a.
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(b) Skew correction and staff normalization.

Figure 2. Pre-processing steps applied to an original staff sample for the
HMR task.

Once the staff-region image has been normalized, there are
several ways to present the image. In particular, we consider
the following image transformations (illustrated in Fig.-3):

e Color (Fig. 3a): the staff section is used as it is (RGB),
without any image transformation.

o Grayscale (Fig. 3b): the staff section is transformed into
grayscale mode.

e Binarization (Fig. 3c): the staff section is binarized using
Sauvola’s method (Sauvola and Pietikdinen, 2000).

e Channel-wise binarization (Fig. 3d): the same as the pre-
vious case but considering the binarization independently
in each channel.
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Figure 3. Examples of the pre-processing transformations applied to the in-
put staff sections: (a) Original RGB image, (b) Grayscale, (¢) Binarization,
(d) Channel-wise binarization. This figure must be seen in color.

In the experiments, we will analyze the impact of the differ-
ent image transformations in the recognition performance.

4.4. CRNN configuration tuning

We study empirically the impact of different CRNN topolo-
gies or architectures. In order to reduce the search space, we
have restricted ourselves to a template CRNN, described in Ta-
ble 2. It consists of 4 convolutional layers with Leaky ReLU ac-
tivation (Maas et al., 2013) and max-pooling down-sampling,
and 2 BLSTM recurrent layers. The height of the input im-
age is parameterized, and rescaled keeping the aspect ratio, and
the input layer is configured with as many channels as needed
for each image transformation considered (see Sec.4.3). This
template defines a set of CRNN topologies, which show to be
successful in the HTR field (Shi et al., 2017).

Table 2. Template of the CRNN used in this work, consisting of 4 convolu-
tional layers and 2 recurrent layers. The model accepts a variable-width
image, whose height is parametrized. The number of channels depends on
the image pre-process considered. Notation: Input(sxXwxc) means an input
image of height /2, width w and ¢ channels; Conv(#n, 2 X w) denotes a convo-
lution operator of # filters and kernel size of 2 xw; MaxPooling(7xw) repre-
sents a down-sampling operation of the dominating value within a window
of size (h x w); BLSTM(n) means a bi-directional Long Short-Term Mem-
ory unit of n neurons; Dropout(p) represents a dropout operation with a
ratio of p per iteration; Dense(n) denotes a dense layer of n neurons; and
Softmax() represents the softmax activation function. X denotes the alpha-
bet of musical symbols considered.

Input(h x W x C)

Conv(64,5 X 5), MaxPooling(2 X p;)
Conv(64, 5 x 5), MaxPooling(2 X p,)
Conv(128, 3 x 3), MaxPooling(2 X p3)
Conv(128, 3 x 3), MaxPooling(2 X p4)
BLSTM(256), Dropout(0.5)
BLSTM(256), Dropout(0.5)
Dense(|X’[), Softmax()

In addition, in the experiments, we study the impact of the
following hyper-parameters:

e Height of the image (%): using the image at its original size
may represent a high complexity for the learning process
— especially given the limited number of training sam-
ples. Therefore, a rescaling process of the image is consid-
ered, at fixed heights of 32, 64, and 128 pixels, and keep-
ing the aspect ratio. Given that the original staff-section
samples depict an average height of 250 pixels, these pa-
rameters represent an approximate average scale factor of
0.125, 0.25, and 0.5, respectively.

e Horizontal pooling (pi, p2, p3, p4): an important aspect is
the amount of frames that exist at the output of the convo-
lutional block. Note that, because of the CTC loss func-
tion operation, during training the recurrent block must
provide at least twice as many frames as the expected
sequence length. The parameterization of the horizontal
pooling therefore represents a balance between complex-
ity and flexibility for the recurrent block. That is why we
consider the values (2,2,2,1), (2,2,1,1), and (2,1,1,1), to
cover many options for this trade-off.



Table 3. Symbol error rate (SER, in %) with respect to hyper-parameters
over the validation set. Best value and parameters are typeset in bold-
face. Notation: / indicates the fixed image height; (p1, p2, p3, pa) denote
the consecutive horizontal pooling values of the convolutional block; C, G,
B, and Ch.B represent the color, grayscale, binarization, and channel-wise
binarization image transformations, respectively.

Image transformation

h (p1,p2,p3,p4)  C G B ChB
2221 - - - -
32 22,11 235 237 253 240
2,1,1,1 139 148 177 167
2221 109 125 120 103
64 2,2,1,1 6.1 66 70 62
2,1,1,1 52 51 73 49
2221 61 54 59 54
128 2,2,1,1 47 45 47 47
2,1,1,1 49 53 47 438

Table 3 shows results considering several combinations of
the image transformations and hyper-parameters mentioned
above. Note that this experiment is performed only over the
validation partition. For simplicity, only the most general met-
ric (SER) is considered here.

An initial remark is that the results of each row remain quite
similar, which indicates that the transformation applied to the
images is not as relevant as other parameters. The fixed height
of the images is the most relevant parameter, resulting in differ-
ences between 10 % and 20 % of SER. Within the block that
represents each fixed height, we observe that the way of doing
the consecutive pooling operations also has an impact on the
results, yet to a lesser extent.

According to these results, for the following recognition ex-
periments we adopt a configuration consisting of a single input
chanel (original grayscale image) normalized to a height of 128
pixels, and a series of horizontal pooling operations of (2,2,1,1).

4.5. Recognition results

We carried out the final evaluation over the test set for in-
creasing N-gram orders using the best configuration determined
in Sec. 4.4 with the validation set.

In addition, the accuracy of the considered approach is com-
pared with previous work over the same corpus. Specifi-
cally: HMMs both trained with the classic Maximum Likeli-
hood (ML) estimation (Calvo-Zaragoza et al., 2016) and with
Discriminative Training (DT) (Calvo-Zaragoza et al., 2017), as
well as HMMs hybridized with Multi-Layer Perceptron (MLP)
models (Calvo-Zaragoza et al., 2019). In these cases, we di-
rectly consider the results with the best N-gram estimation
found in the aforementioned references. For the sake of com-
parison, we also report the performance of some previous re-
search on recognition of music notation, such as Aruspix sys-
tem (Pugin, 2006) and the neural sequence-to-sequence ap-
proach (seq2seq) described in the work of van der Wel and UlI-
rich (2017). It is really important to emphasize that this com-
parison is not totally fair, as these methods were not designed
to work with handwritten notation, which is the object of study
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here. However, including them might help to put into context
our work.

All these works have been implemented following the details
provided in the corresponding publication, except in the case
of Aruspix?, and evaluated under the same experimental condi-
tions considered for the CRNN.

Table 4. Summary of final results for different HMR approaches, including
those achieved in this work in the last two rows.

Method SER GER HER
HMM-GMM-ML + 4-gram 46.2 412 349
HMM-GMM-DT + 3-gram 404 352 282

HMM-MLP + 3-gram 257 224 187
Aruspix 945 93.0 94.1
seq2seq 27.8 245 265
CRNN-CTC 7.3 5.8 5.1
CRNN-CTC + 3-gram 7.0 5.6 4.9

The final recognition results are shown in Table 4. An in-
spection of the reported figures reveals two relevant conclu-
sions. On one end, the use of CRNN-CTC drastically improves
all the results obtained previously with HMM, even those that
were attained by hybridizing HMM with MLP. In this case, the
error is reduced from around 26 % to 7 %, at the full sym-
bol level. This implies that the approach proposed in this work
achieves, for the first time, recognition results that can be con-
sidered effective for handwritten music notation in old docu-
ments. The two compared approaches that were not designed
for HMR report an unalike performance. Aruspix misclassifies
almost all symbols, thus yielding an error close to 100 %. The
neural seq2seq approach does correctly recognize much more
symbols, and provides a fair performance that is close to that
based on HMMs hybridized with MLP, yet quite far from the
performance attained by the proposed CRNN-CTC approach.

On the other end, it is observed that even in this improved
scenario, when the error is already relatively low, adding an N-
gram statistical LM can be beneficial, slightly decreasing the
error up to 0.3 %. It should be noted that this statistical model
was estimated from a quite limited corpus (the training partition
only includes 462 samples) so it would be interesting to verify
its impact with a greater number of samples.

As regards to the dual nature of the symbols, it follows from
GER and HER figures that both the height and the shape sym-
bol components contribute almost equally to the accuracy, as
happened in previous approaches. The HER is systematically
lower in all cases, which is not surprising considering that there
are 35 different shapes but only 16 height positions.

5. Conclusions

In this paper we consider a neural approach based on CRNN,
for the task of HMR in Mensural notation. Unlike traditional

2 Aruspix software is available at http://www.aruspix.net/ (last ac-
cessed 22-07-2019).


http://www.aruspix.net/

approaches, the recognition task is modeled in an end-to-end
way, for which the training stage only needs pairs of images
and their corresponding transcripts in the form of music symbol
sequences.

In our experiments over a 17th century manuscript, we em-
pirically evaluate which hyper-parameters are most suitable,
such as the neural network configuration, the height of the in-
put, or the pre-processing of the image. These experiments con-
firm that the selection of these hyper-parameters might have a
great impact on the performance of the model. With the best of
these configurations, the obtained recognition results improve
considerably compared to previous holistic approaches based
on HMM, decreasing the symbol-level error rate from 25.7 %
to 7.0 %.

Additionally, we have considered the use of statistical LMs
to lead the recognition towards those hypotheses that are most
promising a priori. Given that the recurrent layers of the CRNN
implicitly provide the same kind of contextual modelling by
themselves, we have observed that the improvements that can
be obtained are limited — at least when the statistical LM is es-
timated with the same samples that are used to train the CRNN.
As future work, it might be interesting to measure the impact
of a LM when it is estimated from data outside the training set,
which is especially interesting because it only needs series of
transcripts (without their associated images).

Another interesting avenue for future research is to model
the double shape-height nature of symbols, as it is one of the
main features that distinguish music notation from other simi-
lar domains such as text. In this work we considered that each
combination of these two components must be understood by
the system as a totally new independent symbol. Nevertheless,
all notes of the same shape share many features, and this infor-
mation is not being used to improve recognition performance.
Also, a more convenient estimation can possibly be obtained
from independent shape and height statistical LMs.

Furthermore, given the limited amount of data and the rela-
tively large number of symbols, data augmentation represents
an interesting framework to consider to make the neural model
more robust. However, it should be noted that data augmenta-
tion for music staves must go beyond simple blurring, rotation,
and scaling. In particular, staff lines are elements that should re-
main basically similar in all images, and only musical symbols
should be altered.
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