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ABSTRACT
Chirality plays an important role in physics, chemistry, biology, and other fields.
It describes an essential symmetry in structure. However, chirality invariants are
usually complicated in expression or difficult to evaluate. In this paper, we present
five general three-dimensional chirality invariants based on the generating functions.
And the five chiral invariants have four characteristics:(1) They play an important
role in the detection of symmetry, especially in the treatment of “false zero” prob-
lem. (2) Three of the five chiral invariants decode an universal chirality index. (3)
Three of them are proposed for the first time. (4) The five chiral invariants have
low order (≤ 4), brief expression, low time complexity (O(n)) and can act as de-
scriptors of three-dimensional objects in shape analysis. The five chiral invariants
give a geometric view to study the chiral invariants. And the experiments show that
the five chirality invariants are effective and efficient, they can be used as a tool for
symmetry detection or features in shape analysis.
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1. Introduction

Reflection and rotation are two kinds of generally symmetry, which consists in many
fields, such as physics, chemistry, biology, art and so on. The reflection symmetry
means that the object is divided by a plane or a line into two parts, and one part is
the mirror image of another. The rotation symmetry means that the object coincides
with itself after rotation.

However, most objects in the world do not have the features above. Chirality is
a concept which is used to express the geometric property of an object, it indicates
that an object could not be superimposed on its mirror image by translation, scaling
and rotation operation. Otherwise, the object is achiral [1]. The chiral object and its
mirror image are called enantiomorph.

It is natural for us to think about how to determine if an object is chiral with an
efficient and simple method. Obviously, it is essential to find some metrical expressions
that could be used to give a label to the object, for example, achiral or chiral. Further-
more, it is very important for us to discriminate the enantiomorph if the object is not
achiral, because the function of the chiral object and its mirror object maybe different
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even opposite. For example, molecules in chemistry are divided into two types, achiral
or chiral, and the handedness of chiral object could be measured with prescriptive
resolutions. Actually there are many different methods to measure the chirality in dif-
ferent disciplines [2, 3]. An intuitionistic thinking is to compare the two objects and
quantify if they are enantiomorph. However, this kind of way ignores the fact that
it is usually complex to find the mirror plane which is indispensable in the process
of comparison. It makes the problem hard because this kind of way needs us to seek
out all possible mirror plane in advance, which is generally time-consuming when the
scale of objects is large. This could be understood as that finding out all solutions is
usually harder than confirming a solution. It is usually complex and time-consuming
to discriminate chirality although many different ideas have been reported, such as
searching possible reflective symmetry plane [4], using general moment [5] and some
other methods [6–11]. And the idea of solving spherical harmonic expression [5] makes
an improvement in three-dimensional situations.

The concept of geometric invariant cores was proposed in [12], the construction
method could be valid in any degree and any order. Recently, two generating functions,
which could re-express the moment invariants and give us a geometric view to consider
the inner structure in shape analysis, were shown in [13]. Furthermore, the study of
chiral moment invariant of three-dimensional objects [14–16] gives us another way to
judge the chirality of objects. Osipov et al. gave the expression of universal chirality
index G0 in [14] with the integration of four points, and the complexity of G0 is O(n4).
By choosing a = 0, b = −2, a chiral invariant (CI) was given in [15] with the complexity
is O(n).

In order to simplify the expression G0 and then find more essential expressions
in particular case, and find out more chiral invariants that are fast and efficient in
practice, we decode three chiral invariants from the expression G0 and find two other
chiral invariants, inspired by the generating functions in [13] and the propositions in
[16]. In this paper, we will show five chiral invariants, whose degree and order are
no more than 4, with the complexity is O(n). The experiments show that the five
chiral invariants are efficient in the discrimination of chirality in three-dimensional
situations.

2. Low order moment chiral invariants

2.1. 3-D Moments

Given the density function ρ(x, y, z) of the 3-D object and the order l + m + n, the
Riemann integral expression defines the 3-D moments as below.

Mlmn =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xlymznρ(x, y, z)dxdydz. (1)

The moments of all order, which are determined by ρ(x, y, z), exist if the density
function is bounded and piecewisely continuous in a finite region of 3-D Euclidean
space [17].

The centroid of the 3-D object could be determined by the zeroth and first-order
moments as below.

x =
M100

M000
, y =

M010

M000
, z =

M001

M000
. (2)
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The definition of central moments is

µlmn =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x− x)l(y − y)m(z − z)nρ(x, y, z)dxdydz. (3)

The central moments are invariants under the translation operation. Assuming that
the centroid of the 3-D object has been moved to the origin of 3-D Euclid space and
the object is scaled with λ, the expressions of central moments of the scaled object
and the original object satisfy:

µ
′

lmn =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xlymznρ(

x

λ
,
y

λ
,
z

λ
)dxdydz = λl+m+n+3µlmn. (4)

Furthermore, dividing the central moments by the µ000 with designated order when
the calculations of the central moments finish, the result we get would be invariable
under uniform scaling for 3-D objects [18], it is

ηlmn =
µlmn

µ
1+(l+m+n)/3
000

. (5)

Now we know that the expression (5) is an invariant under translation and uniform
scaling. It maybe natural for us to think about what is the form of moment invariant
under the rotation which is an important part in similarity transformation, but we will
skip this step and take the form of chiral invariant into consideration directly, since
we could choose the mirror plane in any direction.

2.2. 3-D Invariants and Generating functions

Four invariant geometric primitives for invariants under translation and rotation in 3-D
Euclidean space were proposed in [12], they are the distance D(i, j), the area A(i, j, k),
the dot product Dp(i, j, k) and the signed volume V (i, j, k, l). The dot-product function
f(i, j) and the cross-product function g(i, j, k) were shown in [13] as the generating
functions in 3-D Euclidean space. The expressions of them are

f(i, j) = (xi, yi, zi) · (xj , yj , zj) = xixj + yiyj + zizj , (6)

g(i, j, k) =

∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣ =xiyjzk + xjykzi + xkyizj

− xiykzj − xjyizk − xkyjzi,

(7)

where (6) is the dot-product of two vectors and (7) is the determinant of matrix which
constructed by three vectors. By combining different (6) and (7) and choosing multiple
integrals carefully, we could get the moment invariants with their expression are the
multiple integrals of the multiplication of generating functions. And the composite
expressions of (6) and (7) is called the primitive invariants (PIs).
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For example, the expressions of invariants proposed in [17] are as follows.

J1 = µ200 + µ020 + µ002

J2 = µ200µ020µ002 + 2µ110µ101µ011 − µ2
011µ200 − µ2

110µ002 −−µ2
101µ020

J3 = µ020µ002 − µ2
011 + µ200µ002 − µ2

101 + µ200µ020 − µ2
110

(8)

The relationship between the expressions and the generating functions of 3-D Eu-
clidean space are shown as bellows.

J1 ⇔ f(1, 1)

J2 ⇔ g(1, 2, 3)2

J3 ⇔ f(1, 1)f(2, 2)− f(1, 2)2

(9)

Assuming that the centroid of the 3-D object has been moved to the origin of 3-D
Euclidean space and taking J1 for instance, the first expression in (9) means that∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(1, 1)ρ(x, y, z)dxdydz

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x1x1 + y1y1 + z1z1)ρ(x, y, z)dxdydz

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x2

1ρ(x, y, z)dxdydz+∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
y2

1ρ(x, y, z)dxdydz+∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
z2

1ρ(x, y, z)dxdydz

=µ200 + µ020 + µ002

=J1.

(10)

2.3. Chiral Invariants

The expression of universal chirality index G0, which is the integration of four points,
was given by Osipov et al. in [14], and the complexity of G0 is O(n4). The expression
of G0 is as bellows.

G0 =

∫
(r12 × r34 · r14)(r12 · r23)(r23 · r34)

(r12r23r34)arb14

ρ(r1)ρ(r2)ρ(r3)ρ(r4)dr1dr2dr3dr4 (11)

And r1, r2, r3 and r4 are four points in 3-D Euclid space, rij = ri − rj , rij = ‖rij‖, a
and b are arbitrary integers. Actually there are many different choices of a and b, and
different choices lead to different results. For example, G0 would be a scale invariant
by choosing a = 2 and b = 1 [14], and the expression would be zero if chose a = 0 and
b = 0. Hattne and Lamzin showed a chiral invariant in [15] by choosing a = 0, b = −2
in G0, and the complexity of the chiral invariant is O(n). The choice of a and b in [15]
could be considered as a balance between computational efficiency and robustness.
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With choosing a = 0 and b = −2, we expand the expression

(r12 × r34 · r14)(r12 · r23)(r23 · r34)

(r12r23r34)arb14

. (12)

The result is a combination of 192 monomials, each of which is composed by 3 f(i, j)s
and 1 g(i, j, k). We convert the 192 monomials into the expressions that composed by
µlmn, just like the process in (10), the result shows that some of them are equal to
zero and some of them are equal or opposite to other monomials. Moreover, some of
them contain the µlmn which is zero in the context of central moments. We remove
the monomials with the above characteristics from the 192 monomials, and get three
chiral invariants. The expressions of them are listed as below.

S1 = f(1, 1)f(1, 2)f(2, 3)g(1, 2, 3) (13)

S2 = f(1, 1)f(1, 2)f(3, 3)g(1, 2, 3) (14)

S3 = f(1, 2)f(1, 3)f(2, 4)g(1, 3, 4) (15)

After adjusting the order of the points, we find (13) is opposite to the first chiral
invariant proposed in [16], and (14) is equal to the second chiral invariant in [16].

The analysis about the structure of the chiral invariants was proposed in [16], it gives
the guiding principle about how to construct a new chiral invariant. Moreover, the
comparison in [12] shown that the moment invariants of lower orders or lower degrees
are more stable than the moment invariants of higher orders or higher degrees, and
the former is usually more time-saving than the later as a result of the multinomials of
the later are more complicated and the size are bigger. Therefore, we find two another
chiral invariants with the order and the degree of them are no more than four. The
expressions of them are listed as below.

S4 = f(1, 1)f(2, 3)2g(1, 2, 3) (16)

S5 = f(1, 2)g(1, 2, 3)g(1, 3, 4)2 (17)

The fully expanded expressions of S1, S2, S3, S4, S5 are given in appendix A.

2.4. Analysis of the five chiral invariants

2.4.1. Structure of the five chiral invariants

The total number of points that participate in the integral is called as the degree of the
invariant, and the highest occurrence number of the points is called the order of the
invariant. Apart from the degree and the order, the number of generating functions
f(i, j) and g(i, j, k) that compose the invariant are the important property of the
moment invariant. A necessary and sufficient condition for a chiral invariant was given
in [16], it is obviously that (13) (14) (15) (16) (17) are five chiral invariants with their
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Table 1. The degree, order and the number of f(i, j) and g(i, j, k) that compose the five chiral

invariants.

Chiral invariant expression Degree Order Number of f(i, j) Number of g(i, j, k)

S1 = f(1, 1)f(1, 2)f(2, 3)g(1, 2, 3) 3 4 3 1
S2 = f(1, 1)f(1, 2)f(3, 3)g(1, 2, 3) 3 4 3 1
S3 = f(1, 2)f(1, 3)f(2, 4)g(1, 3, 4) 3 4 3 1
S4 = f(1, 1)f(2, 3)2g(1, 2, 3) 4 3 3 1
S5 = f(1, 2)g(1, 2, 3)g(1, 3, 4)2 4 4 1 3

Table 2. The comparison of CI and the five chiral invariants.

Chiral Invariant Number of additions Number of multiplications

CI 117 About 110
S1 125 58
S2 143 51
S3 64 60
S4 95 108
S5 151 383

Remark: We get the result with the help of simplification command of
the Maple.

degree and order are no more than four. The values of relative parameters mentioned
above are listed in Table 1.

2.4.2. Functional Independent

We could use the five chiral invariants to describe the shape of 3-D objects when they
are functional independent of each other, which is considered as a more rigid require-
ment than linear independent. A technique about how to determine the functional
independent of a group of functions was proposed by Brown et al. in [19]. It could be
described as below.

Assuming that there are a group of functions fj(x1, x2, . . . , xn), and j = 1, . . . ,m,
x1, x2, . . . , xn are the variables. And we could deduce a m × n matrix J which is the
Jacobian matrix of this group of functions. So this group of functions are functional
independent if and only if the rank of the Jacobian matrix J is m.

Based on the technique mentioned above, we verified that the set of (13) (14) (15)
(16) (17) is independent with the help of Maple software.

2.4.3. Computation Complexity

The computation complexity of expression G0 given by Osipov et al. [14] is O(n4). By
choosing a = 0, b = −2, the complexity of the CI [15] is O(n). The complexity of the
five chiral invariants shown in (13) (14) (15) (16) (17) is O(n), too. The comparison
of CI and the five chiral invariants is shown in Table 2.

2.4.4. “False Zero” Problem and Sign

The “false zero” problem is a typical problem[20], it means that the value of chiral
invariants would be 0 even if the object is chiral and Fowler gave an example in [20].
The five chiral invariants can not solve this problem. However, [16] gave a technique
to detect the potential planes of symmetry of an object and then to judge if the two
parts divided by the plane are mirrored. The technique is effective and the five chiral
invariants are helpful in the verification part.
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Figure 1. The structure of the biphenyl molecule. The arrow indicates the rotation direction of the right
benzene ring alone the C-C bond which links the left benzene and the right benzene.

In the practice, the sign of the five chiral invariants could be modified with multi-
plying by -1, if the user has chosen a calibrated object.

We can use the calibrated model to define the correct sign to normalize them. As
well known that the concept of “left” or “right” is only relative, there is no absolute,
clear standard of it. Some “physical” or “empirical” methods are definitely needed.

3. Experimental Results

3.1. Biphenyl

Biphenyl is a typical achiral molecule (Figure 1). When the right benzene ring is
rotated alone the C-C bond which links the left benzene and the right benzene, the
chirality of the structure is determined by the angle of rotation. We get the structure
data from the PubChem database of NIH [21], and calculate the values of the five
chiral invariants and CI (Figure 2). The result shows that the values of the five chiral
invariants and CI are zero at θ = 0◦, θ = 90◦ and θ = 180◦. The curves of S1, S2,
S3, S4 perform sinusoidal (differ by at most a negative sign) like the curve of CI with
getting their highest absolute values at θ = 45◦, θ = 135◦. The curve of S5 is a little
different to others and it gets highest absolute values at θ = 60◦ and θ = 120◦.

When adding different degrees of normal noise to the structure data of biphenyl,
the experiments show that S1, S3, S4 are robust to normal noise scaled with 10−1 like
CI, S5 is robust to normal noise scaled with 10−2 and S2 is robust to normal noise
scaled with 10−6. The curves of the five chiral invariants and CI with adding normal
noise to the structure data are shown in Figure 3.

3.2. Platonic Objects

We choose the Platonic Objects, which are obviously achiral, to verify if the five chiral
invariants are valid in the symmetry detection. We use the Wolfram Mathematica 11
to get the vertex-coordinates of the Tetrahedron, Cube, Octahedron, Dodecahedron
and Icosahedron and then calculate the values of the five chiral invariants and CI. The
result is shown in Table 3.

3.3. Horse Model

The horse model is a typical chiral object. We use the method in [22] to get the voxel
data on the horse model in different scales with the step=0.05.

The experiments show that the absolute values of the five chiral invariants almost
do not change in translation, rotation and mirror operation and change slightly in
scale operation. And the sign of the values only change in mirror operation.

7



Figure 2. The curve of the values of the five chiral invariants and CI at different angle of rotation on Biphenyl.

And (a) is the curve of S1, (b) is the curve of S2, (c) is the curve of S3, (d) is the curve of S4, (e) is the curve
of S5, (f) is the curve of CI. The signs of S1 and S3 are modified with -1 for a better comparison with CI.

Figure 3. The red curves are the values of the five chiral invariants and CI at different angle of rotation on
Biphenyl, and the blue curves are the values of them when adding different degrees of normal noise to the

structure data of biphenyl. And the blue curves in (a) (c) (d) (f) are the values of S1, S3, S4, CI with adding

normal noise scaled with 10−1 to the structure data, the blue curve in (e) is the value of S5 with adding normal
noise scaled with 10−2 to the structure data, the blue curve in (b) is the value of S2 with adding normal noise

scaled with 10−6 to the structure data.
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Table 3. The values of the five chiral invariants and CI on Platonic objects.

Platonico
bjects

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Figure

S1 0 0 0 0 0
S2 0 0 0 0 0
S3 0 0 0 0 0
S4 0 0 0 0 0
S5 0 0 0 0 0
CI 0 0 0 0 0

Table 4. The error-values of the five chiral invariants and CI on the horse model.

Operation Translationa Rotationb Mirrorc Scale(1.5)d Scale(2)e

S1 5.10× 10−12 2.31× 10−12 0 1.36 2.87
S2 7.47× 10−12 1.90× 10−12 0 3.52 5.09
S3 2.83× 10−12 4.03× 10−12 0 0.27 0.72
S4 4.74× 10−12 2.12× 10−12 0 9.86 8.10
S5 1.67× 10−11 3.14× 10−12 0 4.13 6.26
CI 9.09× 10−12 3.38× 10−12 0 2.79 3.53

a This means that the model is not scaled, and the operation is only translation.
b This means that the model is not scaled, and the operation is only rotation.
c This means that the model is not scaled, and the operation is only mirror.
d This means that the model is scaled with 1.5, and the operations are translation,
rotation and mirror.
e This means that the model is scaled with 2, and the operations are translation,
rotation and mirror.

Figure 4. The result after operations mentioned above on the horse model. The red horse is the original voxel

model, the green horse is the voxel model experiences the translation, rotation and mirror operation after the
horse model is scaled with 1.5. The figure is just like the big green horse is turning her head to right to look
back to the little red horse, the red horse is turning her head to the left to look forward to the big green horse.
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Table 5. The normals of potential symmetry planes.

NO. 1 2 3 4 5 6 7 8 9 10 · · ·

x 0 0.9511 0.9489 0.8074 0.1788 -0.3777 -0.1517 -0.2440 0.1517 0.3777
y 0 -0.0502 0.0801 0.5691 -0.1435 -0.3266 -0.1639 0.9685 0.1639 0.3266 · · ·
z 1 0.3049 0.3051 0.1553 0.9734 0.8664 0.9747 0.0505 -0.9747 -0.8664

The way to evaluate relative error is

ei =
|Si| − |S

′

i |
|Si|+ |S

′

i |
× 100%. (18)

Where ei is the relative error, Si is the value of the chiral invariants, S
′

i is the value
of the same chiral invariants after relative operation, | | means getting the absolute
value.

For example, we set translation vector = (0.1, 0.3, 0.05), rotation vector = (0, 0, 135),
mirror vector = (0, 1, 0). These vectors mean that the scaled model is translated with
(0.1, 0.3, 0.05), rotated 135 degrees around the z axis and mirrored with the normal
vector of the mirror plane is (0, 1, 0). The values of the relative error on the five chiral
invariants are shown in Table 4. The result after the operations on horse model which
is scaled with 1.5 is shown in Figure 4.

3.4. “False Zero” Object

In order to show the availability of the five chiral invariants in the task of symmetry
detection, we conducted the following experiments.

Firstly, we construct a simple 3-D object with the values of the five chiral invariants
are 0. We fix the four points (-1,0,0), (1,-2,0), (1,2,0), (-1,2,0), and they located on
the bottom of the 3-D object. The fifth point move from (-20,1,1) to (20,1,1) with the
step length is 0.05, the density of these five points is (1,1,2,1,1). The process is shown
in figure 5. The values of the five chiral invariants in above process are shown in figure
6, the result shows that the values of the five chiral invariants and CI experience the
process from positive to negative, and they are 0 when the offset in about [222,571].
We choose offset=405 as an example, and the position of the fifth point is (0.3,1,1).
The 3-D object is shown in figure 7-(a).

Secondly, we use the technique proposed in [16] to show that the five chiral invariants
are helpful in the verification part. We set k=4 in Mk(ϕ, θ), and then get potential
symmetry planes of the object, and the normals of them are shown in table 5. The
figure 7-(b) shows the object and a potential symmetry plane with the No.7 normal
in table 5. The plane divide the 3-D object into two parts, the upper object and the
lower object. Then we calculate the values of the five chiral invariants, and the result
is shown in table 6. The result shows that the two parts are not enantiomorph. After
verifying all potential symmetry planes, we get the conclusion that the zeros are false.
Moreover, we get the same conclusion at other offset values.

This is an example about the application of the five chiral invariants in the task of
symmetry detection.
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Figure 5. The construction process of chiral object with the values of the five chiral invariants are 0.

Figure 6. The values of the five chiral invariants in the construction process. The signs of S1, S3 and S4 are

motified with -1 in order to clearly show the changing process.

Figure 7. The left figure (a) is the “False Zero” chiral object, the right figure (b) is the “False Zero” chiral

object and a potential symmetry.

Table 6. The values of the five chiral invariants on the upper object and lower object in figure 7-(b).

S S1 S2 S3 S4 S5

Upper object −3.3789× 10−5 3.2856× 10−5 2.8561× 10−5 −5.1065× 10−5 1.0687× 10−8

Lower object −0.0017 0.0023 −6.6493× 10−5 −0.0012 3.0568× 10−5

11



4. Conclusion

We have shown that the universal chirality index G0 in specified circumstance could
be decoded into more essential expressions S1, S2 and S3. As the expressions proposed
for the first time, S3, S4 and S5 perform as well as S1 and S2. The five chiral invariants
have brief expression with low order (≤ 4) and low time complexity (O(n)).

With regard to a three-dimensional chiral object A and its mirror counterpart A
′
,

the signs of the same chirality invariant will be opposite and the absolute values of
the same chirality invariant will be equal. And we have shown they play an important
role in the detection of symmetry, especially in the treatment of “false zero” problem.

The five chirality invariants are effective and efficient in experiments. They give a ge-
ometric view to study the chiral invariants and could be used as a group of descriptors
in the task of shape analysis.
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Appendix A. The expressions of the five chiral invariants

S1 = η002η012η103 + η002η012η121 + η002η012η301 − η002η013η102 + η002η021η112

+ η002η021η130 + η002η021η310 − η002η022η111 − η002η031η102 − η002η040η111

− η002η102η211 + η002η111η202 + η002η111η400 − η002η112η201 − η002η130η201

− η002η201η310 − η003η011η103 − η003η011η121 − η003η011η301 + η003η013η101

+ η003η031η101 + η003η101η211 + η004η011η102 − η004η012η101 + η004η020η111

− η004η021η110 + η004η110η201 − η004η111η200 − η011η012η112 − η011η012η130

− η011η012η310 + η011η021η103 + η011η021η121 + η011η021η301 + η011η022η102

− η011η022η120 + η011η030η112 + η011η030η130 + η011η030η310 − η011η040η120

− η011η102η220 − η011η102η400 + η011η103η201 − η011η112η210 + η011η120η202

+ η011η120η400 + η011η121η201 − η011η130η210 + η011η201η301 − η011η210η310

+ η012η013η110 − η012η020η103 − η012η020η121 − η012η020η301 + η012η031η110

+ η012η040η101 − η012η101η202 + η012η101η220 + η012η110η211 + η013η020η120

− η013η021η101 − η013η030η110 − η013η101η201 + η013η102η200 + η013η110η210

− η013η120η200 − η020η021η112 − η020η021η130 − η020η021η310 + η020η022η111

+ η020η031η120 + η020η103η210 − η020η111η220 − η020η111η400 + η020η120η211

+ η020η121η210 + η020η210η301 − η021η031η101 + η021η040η110 − η021η101η211

− η021η110η202 + η021η110η220 − η022η101η210 + η022η110η201 − η030η031η110

− η030η110η211 − η031η101η201 + η031η102η200 + η031η110η210 − η031η120η200

− η040η101η210 + η040η111η200 + η101η102η112 + η101η102η130 + η101η102η310

+ η101η112η120 − η101η112η300 + η101η120η130 + η101η120η310 − η101η130η300

− η101η201η211 + η101η202η210 + η101η210η400 − η101η300η310 − η102η103η110

− η102η110η121 − η102η110η301 + η102η200η211 − η103η110η120 + η103η110η300

− η103η200η210 − η110η120η121 − η110η120η301 + η110η121η300 − η110η201η220

− η110η201η400 + η110η210η211 + η110η300η301 − η111η200η202 + η111η200η220

+ η112η200η201 − η120η200η211 − η121η200η210 + η130η200η201 + η200η201η310

− η200η210η301;

S2 = − η002η012η103 − η002η012η121 − η002η012η301 + η002η013η102 + η002η013η120

+ η002η013η300 − η002η030η103 − η002η030η121 − η002η030η301 + η002η031η102

+ η002η031η120 + η002η031η300 + η002η102η211 − η002η103η210 + η002η120η211

− η002η121η210 − η002η210η301 + η002η211η300 + η003η011η103 + η003η011η121

+ η003η011η301 − η003η013η101 + η003η020η112 + η003η020η130 + η003η020η310

− η003η022η110 − η003η031η101 − η003η040η110 − η003η101η211 + η003η110η202

+ η003η110η400 − η003η112η200 − η003η130η200 − η003η200η310 − η004η011η102

− η004η011η120 − η004η011η300 + η004η012η101 + η004η030η101 + η004η101η210

− η011η012η112 − η011η012η130 − η011η012η310 + η011η021η103 + η011η021η121

+ η011η021η301 − η011η030η112 − η011η030η130 − η011η030η310 + η011η040η102

+ η011η040η120 + η011η040η300 − η011η102η202 + η011η102η220 + η011η103η201
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− η011η112η210 − η011η120η202 + η011η120η220 + η011η121η201 − η011η130η210

+ η011η201η301 − η011η202η300 − η011η210η310 + η011η220η300 + η012η013η110

+ η012η022η101 + η012η031η110 − η012η101η220 − η012η101η400 + η012η103η200

+ η012η110η211 + η012η121η200 + η012η200η301 − η013η020η102 − η013η020η120

− η013η020η300 − η013η021η101 + η013η030η110 − η013η101η201 + η013η110η210

+ η020η021η112 + η020η021η130 + η020η021η310 − η020η031η102 − η020η031η120

− η020η031η300 − η020η102η211 + η020η112η201 − η020η120η211 + η020η130η201

+ η020η201η310 − η020η211η300 − η021η022η110 − η021η031η101 − η021η040η110

− η021η101η211 + η021η110η202 + η021η110η400 − η021η112η200 − η021η130η200

− η021η200η310 + η022η030η101 + η022η101η210 − η022η110η201 + η030η031η110

− η030η101η220 − η030η101η400 + η030η103η200 + η030η110η211 + η030η121η200

+ η030η200η301 − η031η101η201 + η031η110η210 − η040η110η201 + η101η102η112

+ η101η102η130 + η101η102η310 + η101η112η120 + η101η112η300 + η101η120η130

+ η101η120η310 + η101η130η300 − η101η201η211 − η101η210η220 − η101η210η400

+ η101η300η310 − η102η103η110 − η102η110η121 − η102η110η301 − η103η110η120

− η103η110η300 + η103η200η210 − η110η120η121 − η110η120η301 − η110η121η300

+ η110η201η202 + η110η201η400 + η110η210η211 − η110η300η301 − η112η200η201

+ η121η200η210 − η130η200η201 − η200η201η310 + η200η210η301;

S3 = η2
002η020η111 − η2

002η021η110 + η2
002η110η201 − η2

002η111η200 − η002η
2
011η111

+ 2η002η011η012η110 − η002η011η020η102 + η002η011η020η120 + η002η011η021η101

− η002η011η030η110 − η002η011η101η201 + η002η011η102η200 + η002η011η110η210

− η002η011η120η200 − η002η012η020η101 + η002η012η101η200 − η002η
2
020η111

+ η002η020η021η110 + η002η020η101η210 − η002η020η110η201 + η002η021η110η200

+ η002η
2
101η111 − 2η002η101η102η110 − η002η101η110η120 + η002η101η110η300

− η002η101η200η210 − η002η110η200η201 + η002η111η
2
200 − η003η

2
011η110

+ η003η011η020η101 − η003η011η101η200 + η003η
2
101η110 + η3

011η102 − η3
011η120

− η2
011η012η101 + η2

011η020η111 + η2
011η021η110 + η2

011η030η101 − 2η2
011η101η210

+ 2η2
011η110η201 − η011η012η020η110 − η011η012η110η200 − 2η011η020η021η101

− η011η020η101η201 + η011η020η102η200 + η011η020η110η210 − η011η020η120η200

+ η011η021η101η200 + η011η030η110η200 + η011η
2
101η102 + 2η011η

2
101η120

− η011η
2
101η300 + 2η011η101η200η201 − 2η011η102η

2
110 − η011η102η

2
200

− η011η
2
110η120 + η011η

2
110η300 − 2η011η110η200η210 + η011η120η

2
200

+ η012η
2
020η101 − η012η020η101η200 − η012η

3
101 + 2η012η101η

2
110 − η2

020η101η210

+ η2
020η111η200 − η020η021η110η200 + η020η101η102η110 + 2η020η101η110η120

− η020η101η110η300 + η020η101η200η210 − η020η
2
110η111 + η020η110η200η201

− η020η111η
2
200 − 2η021η

2
101η110 + η021η

3
110 − η030η101η

2
110 + η3

101η210

− η2
101η110η201 − η2

101η111η200 + η101η102η110η200 + η101η
2
110η210
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− η101η110η120η200 − η3
110η201 + η2

110η111η200;

S4 = η002η012η103 − η002η013η102 + 2η002η021η112 − 2η002η022η111 + η002η030η121

− η002η031η120 + 2η002η111η202 − 2η002η112η201 + 2η002η120η211 − 2η002η121η210

+ η002η210η301 − η002η211η300 − η003η011η103 + η003η013η101 − η003η020η112

+ η003η022η110 − η003η110η202 + η003η112η200 + η004η011η102 − η004η012η101

− η011η012η112 + 2η011η013η111 + η011η021η121 − η011η022η102 + η011η022η120

+ η011η030η130 − 2η011η031η111 − η011η040η120 − 2η011η102η202 + 2η011η103η201

+ 2η011η112η210 + 2η011η120η220 − 2η011η121η201 − 2η011η130η210 − η011η201η301

+ η011η202η300 + η011η210η310 − η011η220η300 − η012η013η110 − 2η012η020η121

+ 2η012η022η101 + 2η012η031η110 + η012η101η202 − η012η103η200 − 2η012η110η211

+ 2η012η121η200 + η013η020η102 − 2η013η021η101 − η020η021η130 + 2η020η022η111

+ η020η031η120 − 2η020η102η211 − 2η020η111η220 + 2η020η112η201 + 2η020η121η210

− η020η201η310 + η020η211η300 − 2η021η022η110 + η021η031η101 + η021η040η110

+ 2η021η101η211 − η021η110η220 − 2η021η112η200 + η021η130η200 − η022η030η101

− η030η031η110 + η030η101η220 − η030η121η200 + η101η102η112 − 2η101η103η111

+ 2η101η111η301 − 2η101η112η120 − η101η120η130 + 2η101η120η310 − η101η201η211

− η101η202η210 − 2η101η210η220 + η101η210η400 − η101η300η310 + η102η103η110

+ 2η102η110η121 − 2η102η110η301 + 2η102η200η211 + 2η110η111η130 − 2η110η111η310

− η110η120η121 + 2η110η201η202 + η110η201η220 − η110η201η400 + η110η210η211

+ η110η300η301 − 2η111η200η202 + 2η111η200η220 − 2η120η200η211 + η200η201η310

− η200η210η301;

S5 = − 2η2
011η012η301 + 2η2

011η013η300 + 2η2
011η021η310 − 2η2

011η031η300 + 2η2
011η102η211

− 2η2
011η103η210 + 4η2

011η111η202 − 4η2
011η111η220 − 4η2

011η112η201 − 2η2
011η120η211

+ 4η2
011η121η210 + 2η2

011η130η201 − η003η130η
2
200 + 3η012η121η

2
200 − 3η021η112η

2
200

+ η030η103η
2
200 + η003η

2
020η310 − η013η

2
020η300 − 3η2

020η102η211 + 3η2
020η112η201

− η2
002η030η301 + η2

002η031η300 + 3η2
002η120η211 − 3η2

002η121η210 − 2η012η
2
101η121

+ 2η013η
2
101η120 + 4η021η

2
101η112 − 2η021η

2
101η310 − 4η022η

2
101η111 − 2η030η

2
101η103

+ 2η030η
2
101η301 + 2η031η

2
101η102 + 4η2

101η111η220 − 4η2
101η120η211 + 2η2

101η121η210

− 2η2
101η130η201 − 4η012η

2
110η121 + 2η012η

2
110η301 − 2η013η

2
110η120 + 2η021η

2
110η112

+ 4η022η
2
110η111 − 2η031η102η

2
110 + 4η102η

2
110η211 + 2η103η

2
110η210 − 4η2

110η111η202

− 2η2
110η112η201 + 2η003η

2
110η130 − 2η003η

2
110η310 + η020η101η112η300

− 2η020η101η201η211 − η020η101η202η210 − 3η020η102η110η301 + 2η020η102η200η211

− η020η103η110η300 + η020η103η200η210 + 3η020η110η201η202 − 2η020η111η200η202

− η020η112η200η201 − η200η002η012η121 + η200η002η013η120 + 2η200η002η021η112

− 2η200η002η022η111 − η200η002η030η103 + η200η002η031η102 + η200η003η011η121

+ η200η003η020η130 − η200η003η031η101 − η200η003η040η110 + 3η200η003η110η220
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− η200η004η011η120 + η200η004η030η101 − 2η200η011η012η112 − η200η011η012η130

+ 2η200η011η013η111 + η200η011η021η103 + 2η200η011η021η121 − η200η011η022η102

+ η200η011η022η120 − η200η011η030η112 − 2η200η011η031η111 + η200η011η040η102

− 2η200η012η020η121 + 3η200η012η022η101 + 3η200η012η031η110 − 3η200η012η101η220

− 6η200η012η110η211 − η200η013η020η120 − 3η200η013η021η101 + η200η013η030η110

+ η200η020η021η112 + 2η200η020η022η111 − η200η020η031η102 − 3η200η021η022η110

+ 6η200η021η101η211 + 3η200η021η110η202 − 3η200η030η101η202 + 3η200η101η102η130

− 6η200η101η111η121 + 3η200η101η112η120 − 3η200η102η110η121 − 3η200η103η110η120

+ 6η200η110η111η112 − η002η011η030η310 + η002η011η040η300 + 3η002η011η120η220

− 3η002η011η130η210 + η002η020η021η310 − η002η020η031η300 − 2η002η020η111η220

− η002η020η120η211 + 2η002η020η121η210 + η002η020η130η201 − η002η021η110η220

+ η002η021η110η400 − η002η021η200η310 − η002η030η101η400 + η002η030η110η211

+ η002η030η200η301 + η002η031η110η210 − η002η040η110η201 + 3η002η101η120η310

+ η002η101η130η300 − 3η002η101η210η220 + 2η002η110η111η130 − 2η002η110η111η310

− 2η002η110η120η121 − η002η110η120η301 − η002η110η121η300 + η002η110η201η220

+ 2η002η110η210η211 + 2η002η111η200η220 − 2η002η120η200η211 + η002η121η200η210

− η002η130η200η201 − η002η012η020η301 + η002η013η020η300 + η002η020η102η211

− η002η020η103η210 + 2η002η020η111η202 − 2η002η020η112η201 + η003η011η020η301

− η003η020η101η211 + η003η020η110η400 − η003η020η200η310 − η004η011η020η300

+ η004η020η101η210 − 3η011η012η020η310 + 3η011η020η022η300 − 3η011η020η102η202

+ 3η011η020η102η220 + 3η011η020η103η201 + 6η011η020η111η211 − 3η011η020η112η210

− 6η011η020η121η201 + η012η020η101η202 − η012η020η101η400 + η012η020η200η301

− η013η020η101η201 + 2η020η101η102η112 + η020η101η102η310 − 2η020η101η103η111

+ 2η020η101η111η301 + 2η011η102η110η310 − 2η011η102η200η220 + 4η011η110η111η301

+ 2η011η110η112η300 − 4η011η110η201η211 − 2η011η110η202η210 − 2η011η112η200η210

+ 2η011η120η200η202 + 2η011η121η200η201 + 3η002η011η021η301 − 3η002η011η022η300

− 6η002η011η111η211 + 6η002η011η112η210 − 3η002η011η120η202 + 3η002η011η121η201

− 2η011η012η110η400 + 2η011η012η200η310 + 2η011η021η101η400 − 2η011η021η200η301

− 4η011η101η111η310 − 2η011η101η120η301 − 2η011η101η121η300 + 2η011η101η201η220

+ 4η011η101η210η211 + 4η110η011η031η201 − 3η110η020η022η201 + 4η110η101η121η201

+ 3η110η012η020η211 + 3η110η013η020η210 − 6η110η020η111η112 − 4η110η011η021η211

− 4η110η021η101η301 + 2η110η002η012η211 − 2η110η002η021η202 + 2η110η002η022η201

− 2η110η002η102η121 + 2η110η011η012η202 + 4η110η012η101η310 + 2η110η003η101η121

− 4η110η012η101η112 + 2η110η021η101η103 − 4η110η101η102η220 + 4η110η101η120η202

− 4η110η011η103η111 + 4η110η013η101η111 − 4η110η011η102η130 + 6η110η020η102η121

− 2η110η022η101η102 + 2η110η002η103η120 − 2η110η004η101η120 + 4η110η011η112η120

− 3η110η003η020η220 − 4η110η011η022η210 + 4η110η011η102η112 − 2η110η003η011η211

+ 4η110η011η012η220 − 2η110η011η013η201 − 2η110η002η013η210 + 2η110η004η011η210

− 4η110η101η112η210 − 2η101η012η110η130 + 4η101η021η110η121 − 2η101η030η110η112
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+ 2η101η011η030η211 + 2η101η011η031η210 − 4η101η011η120η121 − 4η101η011η021η202

+ 4η101η011η022η201 + 3η101η002η022η210 − 4η101η011η013η210 − 2η101η011η040η201

+ 2η101η020η031η201 + 2η101η012η020η220 − 2η101η020η021η211 − 2η101η020η022η210

+ 2η101η020η112η120 − 2η101η011η021η220 + 3η101η002η030η202 − 3η101η002η021η211

− 3η101η002η031η201 + 6η101η002η111η121 + 4η101η011η012η211 + 4η101η011η111η130

− 4η101η031η110η111 − 4η101η011η102η121 − 2η101η020η102η130 + 2η101η040η102η110

− 6η101η002η112η120 + 4η101η011η103η120 + 2η101η022η110η120.
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